Okui N, Kitamura Y, Kobayashi N, Sakuma R, Ishikawa T, Kitamura T. Virion-targeted viral inactivation: new therapy against viral infection.
MOLECULAR UROLOGY 2002;
5:59-66. [PMID:
11690549 DOI:
10.1089/109153601300177565]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND
Acquired immune deficiency syndrome (AIDS) is resistant to all current therapy. Gene therapy is an attractive alternative or additive to current, unsatisfactory AIDS therapy.
MATERIALS AND METHODS
To develop an antiviral molecule targeting viral integrase (HIV IN), we generated a single-chain antibody, termed scAb, which interacted with human immunodeficiency virus type 1 (HIV-1) IN and inhibited virus replication at the integration step when expressed intracellularly. To reduce infectivity from within the virus particles, we made expression plasmids (pC-scAbE-Vpr, pC-scAbE-CA, and pC-scAbE-WXXF), which expressed the anti-HIV IN scAb fused to the N-terminus of HIV-1-associated accessory protein R (Vpr), capsid protein (CA), and specific binding motif to Vpr (WXXF), respectively. All fusion proteins were tagged with a nine-amino acid peptide derived from influenza virus hemagglutinin (HA) at the C terminus.
RESULTS
The fusion molecules, termed scAbE-Vpr, scAbE-CA, and scAbE-WXXF, interacted specifically with HIV IN immobilized on a nitrocellulose membrane. Immunoblot analysis showed that scAbE-Vpr, scAbE-CA, and scAbE-WXXF were incorporated into the virions produced by cotransfection of 293T cells with HIV-1 infectious clone DNA (pLAI) and pC-scAbE-Vpr, pC-scAbE-WXXF. A multinuclear activation galactosidase indicator (MAGI) assay revealed that the virions released from 293T cells cotransfected with pLAI and pC-scAbE-Vpr, pC-scAbE-WXXF had as little 1000-fold of the infectivity of the control wild-type virions, which were produced from the 293T cells transfected with pLAI alone. Furthermore, the virions produced from the 293T cells cotransfected with pLAI and an scAb expression vector (pC-scAb) showed only 1% of the infectivity of the control HIV-1 in a MAGI assay, although scAb was not incorporated into the virions. In either instance, the total quantity of the progeny virions released from the transfected 293T cells and the patterns of the virion proteins were hardly affected by the presence of scAb, scAbE-Vpr, or scAbE-WXXF, as determined by virion-associated reverse transcriptase assay and by immunoblot analysis, respectively. Because G418-selected HeLa clones carrying the expression plasmid for scAbE-WXXF were obtained much more frequently than those for scAbE-Vpr, scAbE-WXXF was inferred to be less toxic to cells than scAbE-Vpr. The result that scAbE-WXXF with viral incorporation achieved more than a 10-fold reduction in infectivity of the progeny virions than scAb without incorporation suggests that scAbE-WXXF is a potential antiviral molecule, inhibiting replication by neutralization of HIV IN activity both within cells and within virions. Moreover, it is nontoxic to human cells. We termed this gene therapy "virion-"targeted-viral inactivation" and these molecules "packageable antiviral therapeutics."
CONCLUSION
This new gene therapy has the potential for wide application in many viral infectious diseases.
Collapse