1
|
Mohanty A, Parida A, Subhadarshanee B, Behera N, Subudhi T, Koochana PK, Behera RK. Alteration of Coaxial Heme Ligands Reveals the Role of Heme in Bacterioferritin from Mycobacterium tuberculosis. Inorg Chem 2021; 60:16937-16952. [PMID: 34695354 DOI: 10.1021/acs.inorgchem.1c01554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The uptake and utilization of iron remains critical for the survival/virulence of the host/pathogens in spite of the limitations (low bioavailability/high toxicity) associated with this nutrient. Both the host and pathogens manage to overcome these problems by utilizing the iron repository protein nanocages, ferritins, which not only sequester and detoxify the free Fe(II) ions but also decrease the iron solubility gap by synthesizing/encapsulating the Fe(III)-oxyhydroxide biomineral in its central hollow nanocavity. Bacterial pathogens including Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, encode a distinct subclass of ferritins called bacterioferritin (BfrA), which binds heme, the versatile redox cofactor, via coaxial, conserved methionine (M52) residues at its subunit-dimer interfaces. However, the exact role of heme in Mtb BfrA remains yet to be established. Therefore, its coaxial ligands were altered via site-directed mutagenesis, which resulted in both heme-bound (M52C; ∼1 heme per cage) and heme-free (M52H and M52L) variants, indicating the importance of M52 residues as preferential heme binding axial ligands in Mtb BfrA. All these variants formed intact nanocages of similar size and iron-loading ability as that of wild-type (WT) Mtb BfrA. However, the as-isolated heme-bound variants (WT and M52C) exhibited enhanced protein stability and reductive iron mobilization as compared to their heme-free analogues (M52H and M52L). Further, increasing the heme content in BfrA variants by reconstitution not only enhanced the cage stability but also facilitated the iron mobilization, suggesting the role of heme. In contrary, heme altered the ferroxidase activity to a lesser extent despite facilitating the accumulation of the reactive intermediates formed during the course of the reaction. The current study suggests that heme in Mtb BfrA enhances the overall stability of the protein and possibly acts as an intrinsic electron relay station to influence the iron mineral dissolution and thus may be associated with Mtb's pathogenicity.
Collapse
Affiliation(s)
- Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Akankshika Parida
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Narmada Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Tanaya Subudhi
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
2
|
Alcala-Torano R, Halloran N, Gwerder N, Sommer DJ, Ghirlanda G. Light-Driven CO 2 Reduction by Co-Cytochrome b 562. Front Mol Biosci 2021; 8:609654. [PMID: 33937320 PMCID: PMC8082397 DOI: 10.3389/fmolb.2021.609654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 11/23/2022] Open
Abstract
The current trend in atmospheric carbon dioxide concentrations is causing increasing concerns for its environmental impacts, and spurring the developments of sustainable methods to reduce CO2 to usable molecules. We report the light-driven CO2 reduction in water in mild conditions by artificial protein catalysts based on cytochrome b 562 and incorporating cobalt protoporphyrin IX as cofactor. Incorporation into the protein scaffolds enhances the intrinsic reactivity of the cobalt porphyrin toward proton reduction and CO generation. Mutations around the binding site modulate the activity of the enzyme, pointing to the possibility of further improving catalytic activity through rational design or directed evolution.
Collapse
Affiliation(s)
| | | | | | | | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
3
|
Lin YW, Sawyer EB, Wang J. Rational heme protein design: all roads lead to Rome. Chem Asian J 2013; 8:2534-44. [PMID: 23704071 DOI: 10.1002/asia.201300291] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Indexed: 01/03/2023]
Abstract
Heme proteins are among the most abundant and important metalloproteins, exerting diverse biological functions including oxygen transport, small molecule sensing, selective C-H bond activation, nitrite reduction, and electron transfer. Rational heme protein designs focus on the modification of the heme-binding active site and the heme group, protein hybridization and domain swapping, and de novo design. These strategies not only provide us with unique advantages for illustrating the structure-property-reactivity-function (SPRF) relationship of heme proteins in nature but also endow us with the ability to create novel biocatalysts and biosensors.
Collapse
Affiliation(s)
- Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001 (China)
| | | | | |
Collapse
|
4
|
Behera RK, Nakajima H, Rajbongshi J, Watanabe Y, Mazumdar S. Thermodynamic Effects of the Alteration of the Axial Ligand on the Unfolding of Thermostable Cytochrome c. Biochemistry 2013; 52:1373-84. [DOI: 10.1021/bi300982v] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rabindra Kumar Behera
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha
Road, Colaba, Mumbai 400005, India
| | - Hiroshi Nakajima
- Department of Chemistry, Graduate
School of Science, Nagoya University, Nagoya
464-8602, Japan
| | - Jitumani Rajbongshi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha
Road, Colaba, Mumbai 400005, India
- Department
of Chemistry, Gauhati University, Guwahati
781014, India
| | - Yoshihito Watanabe
- Department of Chemistry, Graduate
School of Science, Nagoya University, Nagoya
464-8602, Japan
| | - Shyamalava Mazumdar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha
Road, Colaba, Mumbai 400005, India
| |
Collapse
|
5
|
Behera RK, Goyal S, Mazumdar S. Modification of the heme active site to increase the peroxidase activity of thermophilic cytochrome P450: A rational approach. J Inorg Biochem 2010; 104:1185-94. [DOI: 10.1016/j.jinorgbio.2010.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/13/2010] [Accepted: 07/15/2010] [Indexed: 11/28/2022]
|
6
|
Characterization of two cytochrome b 6 proteins from the cyanobacterium Gloeobacter violaceus PCC 7421. J Bioenerg Biomembr 2010; 42:517-26. [DOI: 10.1007/s10863-010-9279-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 01/22/2010] [Indexed: 11/29/2022]
|
7
|
Foit L, Morgan GJ, Kern MJ, Steimer LR, von Hacht AA, Titchmarsh J, Warriner SL, Radford SE, Bardwell JC. Optimizing protein stability in vivo. Mol Cell 2009; 36:861-71. [PMID: 20005848 PMCID: PMC2818778 DOI: 10.1016/j.molcel.2009.11.022] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 08/04/2009] [Accepted: 10/24/2009] [Indexed: 11/23/2022]
Abstract
Identifying mutations that stabilize proteins is challenging because most substitutions are destabilizing. In addition to being of immense practical utility, the ability to evolve protein stability in vivo may indicate how evolution has formed today's protein sequences. Here we describe a genetic selection that directly links the in vivo stability of proteins to antibiotic resistance. It allows the identification of stabilizing mutations within proteins. The large majority of mutants selected for improved antibiotic resistance are stabilized both thermodynamically and kinetically, indicating that similar principles govern stability in vivo and in vitro. The approach requires no prior structural or functional knowledge and allows selection for stability without a need to maintain function. Mutations that enhance thermodynamic stability of the protein Im7 map overwhelmingly to surface residues involved in binding to colicin E7, showing how the evolutionary pressures that drive Im7-E7 complex formation have compromised the stability of the isolated Im7 protein.
Collapse
Affiliation(s)
- Linda Foit
- Howard Hughes Medical Institute University of Michigan, Ann Arbor, MI 48109, USA
- Institute for Chemistry and Pharmacy, University of Münster, 48149 Münster, Germany
| | - Gareth J. Morgan
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, UK
- Institute for Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Maximilian J. Kern
- Howard Hughes Medical Institute University of Michigan, Ann Arbor, MI 48109, USA
| | - Lenz R. Steimer
- Howard Hughes Medical Institute University of Michigan, Ann Arbor, MI 48109, USA
| | | | - James Titchmarsh
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, UK
- School of Chemistry, University of Leeds, LS2 9JT UK
| | - Stuart L. Warriner
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, UK
- School of Chemistry, University of Leeds, LS2 9JT UK
| | - Sheena E. Radford
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, UK
- Institute for Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - James C.A. Bardwell
- Howard Hughes Medical Institute University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Lin YW, Ni FY, Ying TL. Early events in thermal unfolding of apocytochrome b562 and its double-cysteine mutant as revealed by molecular dynamics simulation. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2008.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Dreher C, Prodöhl A, Hielscher R, Hellwig P, Schneider D. Multiple Step Assembly Of The Transmembrane Cytochrome b6. J Mol Biol 2008; 382:1057-65. [DOI: 10.1016/j.jmb.2008.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
|
10
|
A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2. Mol Cell Biol 2008; 28:4697-711. [PMID: 18505821 DOI: 10.1128/mcb.00236-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although efforts have been made to identify circadian-controlled genes regulating cell cycle progression and cell death, little is known about the metabolic signals modulating circadian regulation of gene expression. We identify heme, an iron-containing prosthetic group, as a regulatory ligand controlling human Period-2 (hPer2) stability. Furthermore, we define a novel heme-regulatory motif within the C terminus of hPer2 (SC(841)PA) as necessary for heme binding and protein destabilization. Spectroscopy reveals that whereas the PAS domain binds to both the ferric and ferrous forms of heme, SC(841)PA binds exclusively to ferric heme, thus acting as a redox sensor. Consequently, binding prevents hPer2 from interacting with its stabilizing counterpart cryptochrome. In vivo, hPer2 downregulation is suppressed by inhibitors of heme synthesis or proteasome activity, while SA(841)PA is sufficient to stabilize hPer2 in transfected cells. Moreover, heme binding to the SC(841)PA motif directly impacts circadian gene expression, resulting in altered period length. Overall, the data support a model where heme-mediated oxidation triggers hPer2 degradation, thus controlling heterodimerization and ultimately gene transcription.
Collapse
|
11
|
Landfried DA, Vuletich DA, Pond MP, Lecomte JTJ. Structural and thermodynamic consequences of b heme binding for monomeric apoglobins and other apoproteins. Gene 2007; 398:12-28. [PMID: 17550789 PMCID: PMC2394511 DOI: 10.1016/j.gene.2007.02.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 02/05/2007] [Indexed: 01/09/2023]
Abstract
The binding of a cofactor to a protein matrix often involves a reorganization of the polypeptide structure. b Hemoproteins provide multiple examples of this behavior. In this minireview, selected monomeric and single b heme proteins endowed with distinct topological properties are inspected for the extent of induced refolding upon heme binding. To complement the data reported in the literature, original results are presented on a two-on-two globin of cyanobacterial origin (Synechococcus sp. PCC 7002 GlbN) and on the heme-containing module of FixL, an oxygen-sensing protein with the mixed alpha/beta topology of PAS domains. GlbN had a stable apoprotein that was further stabilized and locally refolded by heme binding; in contrast, apoFixLH presented features of a molten globule. Sequence analyses (helicity, disorder, and polarity) and solvent accessibility calculations were performed to identify trends in the architecture of b hemoproteins. In several cases, the primary structure appeared biased toward a partially disordered binding pocket in the absence of the cofactor.
Collapse
Affiliation(s)
- Daniel A Landfried
- The Pennsylvania State University, Department of Chemistry, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
12
|
Huang SS, Koder RL, Lewis M, Wand AJ, Dutton PL. The HP-1 maquette: from an apoprotein structure to a structured hemoprotein designed to promote redox-coupled proton exchange. Proc Natl Acad Sci U S A 2004; 101:5536-41. [PMID: 15056758 PMCID: PMC397418 DOI: 10.1073/pnas.0306676101] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synthetic heme-binding four-alpha-helix bundles show promise as working model systems, maquettes, for understanding heme cofactor-protein assembly and function in oxidoreductases. Despite successful inclusion of several key functional elements of natural proteins into a family of heme protein maquettes, the lack of 3D structures, due principally to conformational heterogeneity, has prevented them from achieving their full potential. We report here the design and synthesis of HP-1, a disulfide-bridged two-alpha-helix peptide that self-assembles to form an antiparallel twofold symmetric diheme four-alpha-helix bundle protein with a stable conformation on the NMR time-scale. The HP-1 design strategy began with the x-ray crystal structure of the apomaquette L31M, an apomaquette derived from the structurally heterogeneous tetraheme-binding H10H24 prototype. L31M was functionally redesigned to accommodate two hemes ligated to histidines and to retain the strong coupling of heme oxidation-reduction to glutamate acid-base transitions and proton exchange that was characterized in molten globule predecessors. Heme insertion was modeled with angular constraints statistically derived from natural proteins, and the pattern of hydrophobic and hydrophilic residues on each helix was then altered to account for this large structural reorganization. The transition to structured holomaquette involved the alteration of 6 of 31 residues in each of the four identical helices and, unlike our earlier efforts, required no design intermediates. Oxidation-reduction of both hemes displays an unusually low midpoint potential (-248 mV vs. normal hydrogen electrode at pH 9.0), which is strongly coupled to proton binding, as designed.
Collapse
Affiliation(s)
- Steve S Huang
- The Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
13
|
Mazumdar S, Springs SL, McLendon GL. Effect of redox potential of the heme on the peroxidase activity of cytochrome b562. Biophys Chem 2003; 105:263-8. [PMID: 14499898 DOI: 10.1016/s0301-4622(03)00075-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Measurements of peroxidase activities of two site-specific mutants and wild type cytochrome b562 suggest that the enzymatic activity correlates with the redox potential of the metal center. A lower value of the Fe(3+)/Fe(2+) redox potential seems to be important for promoting peroxidase activity of the hemeprotein possibly by stabilization of the high-valent redox intermediate involved in the catalytic function. The results provide an approach towards rational tuning of enzyme function when 'grafted' into a new protein environment.
Collapse
|
14
|
Self-assembly of electron transport protein using oligonucleotide hybridization. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(01)00305-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Takeda S, Kamiya N, Arai R, Nagamune T. Design of an artificial light-harvesting unit by protein engineering: cytochrome b(562)-green fluorescent Protein chimera. Biochem Biophys Res Commun 2001; 289:299-304. [PMID: 11708816 DOI: 10.1006/bbrc.2001.5966] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have generated a novel model protein for an artificial light-harvesting complex composed of two proteins, cytochrome b(562) (cytb(562)) and enhanced green fluorescent protein (EGFP), in which two chromophores are fixed in each protein matrix. Cytb(562) was appended to the N-terminus of EGFP via a Gly-Ser linker and the resultant fusion protein was successfully expressed in Escherichia coli as a mixture of the apo- and the holo-forms as to the cytb(562) moiety. The fluorescence of EGFP was substantially quenched when the apo-form was reconstituted with hemin. Based on the fluorescence lifetime measurements, it appeared that light energy entrapped by EGFP is transferred to the heme of cytb(562) by resonance energy transfer (energy transfer yield: 65%). Spatial organization of two chromophores using small and stable protein matrices will be promising toward the construction of an artificial light-harvesting complex by protein engineering.
Collapse
Affiliation(s)
- S Takeda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | |
Collapse
|