1
|
Cui Z, Wang Y, Zhang L, Qi H. Zwitterionic Peptides: From Mechanism, Design Strategies to Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56497-56518. [PMID: 39393043 DOI: 10.1021/acsami.4c08891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Zwitterionic peptides, as a type of peptide composed of charged residues, are electrically neutral, which combine the advantages of zwitterionic materials and biological peptides, exhibiting hydrophilicity and programmable properties. As attractive candidates for resisting nonspecific adsorption of biomacromolecules and microorganisms, zwitterionic peptides have been applied in materials science, biomedicine, and biochemistry over the past decade. In this review, the development of zwitterionic peptides has been systematically outlined and analyzed, including their mechanisms, structure-function relationships, and design strategies. Furthermore, this review emphasizes and discusses their recent applications for developing functional coatings, biosensors, drug delivery systems, and engineering proteins. Finally, future research perspectives and challenges of zwitterionic peptides are also prospected and discussed. This review is intended to provide clarity and insight into the design and applications of zwitterionic peptides.
Collapse
Affiliation(s)
- Zhongxin Cui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Yuefeng Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| |
Collapse
|
2
|
Windels A, Franceus J, Pleiss J, Desmet T. CANDy: Automated analysis of domain architectures in carbohydrate-active enzymes. PLoS One 2024; 19:e0306410. [PMID: 38990885 PMCID: PMC11238990 DOI: 10.1371/journal.pone.0306410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Carbohydrate-active enzymes (CAZymes) can be found in all domains of life and play a crucial role in metabolic and physiological processes. CAZymes often possess a modular structure, comprising not only catalytic domains but also associated domains such as carbohydrate-binding modules (CBMs) and linker domains. By exploring the modular diversity of CAZy families, catalysts with novel properties can be discovered and further insight in their biological functions and evolutionary relationships can be obtained. Here we present the carbohydrate-active enzyme domain analysis tool (CANDy), an assembly of several novel scripts, tools and databases that allows users to analyze the domain architecture of all protein sequences in a given CAZy family. CANDy's usability is shown on glycoside hydrolase family 48, a small yet underexplored family containing multi-domain enzymes. Our analysis reveals the existence of 35 distinct domain assemblies, including eight known architectures, with the remaining assemblies awaiting characterization. Moreover, we substantiate the occurrence of horizontal gene transfer from prokaryotes to insect orthologs and provide evidence for the subsequent removal of auxiliary domains, likely through a gene fission event. CANDy is available at https://github.com/PyEED/CANDy.
Collapse
Affiliation(s)
- Alex Windels
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| | - Jorick Franceus
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Tom Desmet
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Hu L, Zhang S, Chai S, Lyu Y, Wang S, Feng Z. Discovery of two bifunctional/multifunctional cellulases by functional metagenomics. Enzyme Microb Technol 2023; 169:110288. [PMID: 37467538 DOI: 10.1016/j.enzmictec.2023.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Cellulases are widely used in industry, and the usage in bioconversion of biofuels makes cellulases more valuable. In this study, two tandem genes that encoded cellulases ZF994-1 and ZF994-2, respectively, were identified on a cosmid from a soil metagenomic library. Phylogenetic analysis indicated that ZF994-1 and ZF994-2 belonged to glycoside hydrolase family 12 (GH12), and GH3, respectively. Based on the substrate specificity analysis, the recombinant ZF994-1 exhibited weak endoglucanase activity, moderate β-1,3-glucanase and β-1,4-mannanase activities, and strong β-glucosidase activity, while the recombinant ZF994-2 exhibited moderate endoglucanase activity and strong β-glucosidase activity. More than 45% β-glucosidase activity of the recombinant ZF994-1 retained in the buffer containing 3 M glucose, indicating the good tolerance against glucose. The recombinant ZF994-2 showed high activity in the presence of metal ions and organic reagents, exhibiting potential industrial applications.
Collapse
Affiliation(s)
- Lingzhi Hu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shengxia Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shumao Chai
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shaochen Wang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhiyang Feng
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
4
|
Chaudhari YB, Várnai A, Sørlie M, Horn SJ, Eijsink VGH. Engineering cellulases for conversion of lignocellulosic biomass. Protein Eng Des Sel 2023; 36:gzad002. [PMID: 36892404 PMCID: PMC10394125 DOI: 10.1093/protein/gzad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023] Open
Abstract
Lignocellulosic biomass is a renewable source of energy, chemicals and materials. Many applications of this resource require the depolymerization of one or more of its polymeric constituents. Efficient enzymatic depolymerization of cellulose to glucose by cellulases and accessory enzymes such as lytic polysaccharide monooxygenases is a prerequisite for economically viable exploitation of this biomass. Microbes produce a remarkably diverse range of cellulases, which consist of glycoside hydrolase (GH) catalytic domains and, although not in all cases, substrate-binding carbohydrate-binding modules (CBMs). As enzymes are a considerable cost factor, there is great interest in finding or engineering improved and robust cellulases, with higher activity and stability, easy expression, and minimal product inhibition. This review addresses relevant engineering targets for cellulases, discusses a few notable cellulase engineering studies of the past decades and provides an overview of recent work in the field.
Collapse
Affiliation(s)
- Yogesh B Chaudhari
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
5
|
Yuan Y, Chen C, Wang X, Shen S, Guo X, Chen X, Yang F, Li X. A novel accessory protein ArCel5 from cellulose-gelatinizing fungus Arthrobotrys sp. CX1. BIORESOUR BIOPROCESS 2022; 9:27. [PMID: 38647580 PMCID: PMC10991334 DOI: 10.1186/s40643-022-00519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/06/2022] [Indexed: 11/10/2022] Open
Abstract
Improved understanding of cellulose swelling mechanism is beneficial for increasing the hydrolysis efficiency of cellulosic substrates. Here, we report a family 5 glycoside hydrolase ArCel5 isolated from the cellulose-gelatinizing fungus Arthrobotrys sp. CX1. ArCel5 exhibited low specific hydrolysis activity and high cellulose swelling capability, which suggested that this protein might function as an accessory protein. Homology modeling glycosylation detection revealed that ArCel5 is a multi-domain protein including a family 1 carbohydrate-binding module, a glycosylation linker, and a catalytic domain. The adsorption capacity, structural changes and hydrature index of filter paper treated by different ArCel5 mutants demonstrated that CBM1 and linker played an essential role in recognizing, binding and decrystallizing cellulosic substrates, which further encouraged the synergistic action between ArCel5 and cellulases. Notably, glycosylation modification further strengthened the function of the linker region. Overall, our study provides insight into the cellulose decrystallization mechanism by a novel accessory protein ArCel5 that will benefit future applications.
Collapse
Affiliation(s)
- Yue Yuan
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Chunshu Chen
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Xueyan Wang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Shaonian Shen
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Xiaoyu Guo
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China.
| | - Xianzhen Li
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China.
| |
Collapse
|
6
|
Fungal cellulases: protein engineering and post-translational modifications. Appl Microbiol Biotechnol 2021; 106:1-24. [PMID: 34889986 DOI: 10.1007/s00253-021-11723-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
Enzymatic degradation of lignocelluloses into fermentable sugars to produce biofuels and other biomaterials is critical for environmentally sustainable development and energy resource supply. However, there are problems in enzymatic cellulose hydrolysis, such as the complex cellulase composition, low degradation efficiency, high production cost, and post-translational modifications (PTMs), all of which are closely related to specific characteristics of cellulases that remain unclear. These problems hinder the practical application of cellulases. Due to the rapid development of computer technology in recent years, computer-aided protein engineering is being widely used, which also brings new opportunities for the development of cellulases. Especially in recent years, a large number of studies have reported on the application of computer-aided protein engineering in the development of cellulases; however, these articles have not been systematically reviewed. This article focused on the aspect of protein engineering and PTMs of fungal cellulases. In this manuscript, the latest literatures and the distribution of potential sites of cellulases for engineering have been systematically summarized, which provide reference for further improvement of cellulase properties. KEY POINTS: •Rational design based on virtual mutagenesis can improve cellulase properties. •Modifying protein side chains and glycans helps obtain superior cellulases. •N-terminal glutamine-pyroglutamate conversion stabilizes fungal cellulases.
Collapse
|
7
|
Dou Y, Yang Y, Mund NK, Wei Y, Liu Y, Wei L, Wang Y, Du P, Zhou Y, Liesche J, Huang L, Fang H, Zhao C, Li J, Wei Y, Chen S. Comparative Analysis of Herbaceous and Woody Cell Wall Digestibility by Pathogenic Fungi. Molecules 2021; 26:molecules26237220. [PMID: 34885803 PMCID: PMC8659149 DOI: 10.3390/molecules26237220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Fungal pathogens have evolved combinations of plant cell-wall-degrading enzymes (PCWDEs) to deconstruct host plant cell walls (PCWs). An understanding of this process is hoped to create a basis for improving plant biomass conversion efficiency into sustainable biofuels and bioproducts. Here, an approach integrating enzyme activity assay, biomass pretreatment, field emission scanning electron microscopy (FESEM), and genomic analysis of PCWDEs were applied to examine digestibility or degradability of selected woody and herbaceous biomass by pathogenic fungi. Preferred hydrolysis of apple tree branch, rapeseed straw, or wheat straw were observed by the apple-tree-specific pathogen Valsa mali, the rapeseed pathogen Sclerotinia sclerotiorum, and the wheat pathogen Rhizoctonia cerealis, respectively. Delignification by peracetic acid (PAA) pretreatment increased PCW digestibility, and the increase was generally more profound with non-host than host PCW substrates. Hemicellulase pretreatment slightly reduced or had no effect on hemicellulose content in the PCW substrates tested; however, the pretreatment significantly changed hydrolytic preferences of the selected pathogens, indicating a role of hemicellulose branching in PCW digestibility. Cellulose organization appears to also impact digestibility of host PCWs, as reflected by differences in cellulose microfibril organization in woody and herbaceous PCWs and variation in cellulose-binding domain organization in cellulases of pathogenic fungi, which is known to influence enzyme access to cellulose. Taken together, this study highlighted the importance of chemical structure of both hemicelluloses and cellulose in host PCW digestibility by fungal pathogens.
Collapse
Affiliation(s)
- Yanhua Dou
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yan Yang
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China;
| | - Nitesh Kumar Mund
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yanping Wei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yisong Liu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Linfang Wei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yifan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Panpan Du
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yunheng Zhou
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Lili Huang
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Hao Fang
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chen Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yahong Wei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (Y.W.); (S.C.); Tel.: +86-029-87091021 (S.C.)
| | - Shaolin Chen
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (Y.W.); (S.C.); Tel.: +86-029-87091021 (S.C.)
| |
Collapse
|
8
|
Dodda SR, Sarkar N, Jain P, Aikat K, Mukhopadhyay SS. Improved catalytic activity and stability of cellobiohydrolase (Cel6A) from the Aspergillus fumigatus by rational design. Protein Eng Des Sel 2020; 33:5892787. [PMID: 32930798 DOI: 10.1093/protein/gzaa020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/08/2020] [Accepted: 07/08/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Cheap production of glucose is the current challenge for the production of cheap bioethanol. Ideal protein engineering approaches are required for improving the efficiency of the members of the cellulase, the enzyme complex involved in the saccharification process of cellulose. An attempt was made to improve the efficiency of the cellobiohydrolase (Cel6A), the important member of the cellulase isolated from Aspergillus fumigatus (AfCel6A). Structure-based variants of AfCel6A were designed. Amino acids surrounding the catalytic site and conserved residues in the cellulose-binding domain were targeted (N449V, N168G, Y50W and W24YW32Y). I mutant 3 server was used to identify the potential variants based on the free energy values (∆∆G). In silico structural analyses and molecular dynamics simulations evaluated the potentiality of the variants for increasing thermostability and catalytic activity of Cel6A. Further enzyme studies with purified protein identified the N449V is highly thermo stable (60°C) and pH tolerant (pH 5–7). Kinetic studies with Avicel determined that substrate affinity of N449V (Km =0.90 ± 0.02) is higher than the wild type (1.17 ± 0.04) and the catalytic efficiency (Kcat/Km) of N449V is ~2-fold higher than wild type. All these results suggested that our strategy for the development of recombinant enzyme is a right approach for protein engineering.
Collapse
Affiliation(s)
- Subba Reddy Dodda
- Department of Biotechnology, National Institute of Technology Durgapur 713209, West Bengal, India
| | - Nibedita Sarkar
- Department of Biotechnology, National Institute of Technology Durgapur 713209, West Bengal, India
| | - Piyush Jain
- Department of Biotechnology, National Institute of Technology Durgapur 713209, West Bengal, India
| | - Kaustav Aikat
- Department of Biotechnology, National Institute of Technology Durgapur 713209, West Bengal, India
| | - Sudit S Mukhopadhyay
- Department of Biotechnology, National Institute of Technology Durgapur 713209, West Bengal, India
| |
Collapse
|
9
|
Sidar A, Albuquerque ED, Voshol GP, Ram AFJ, Vijgenboom E, Punt PJ. Carbohydrate Binding Modules: Diversity of Domain Architecture in Amylases and Cellulases From Filamentous Microorganisms. Front Bioeng Biotechnol 2020; 8:871. [PMID: 32850729 PMCID: PMC7410926 DOI: 10.3389/fbioe.2020.00871] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Enzymatic degradation of abundant renewable polysaccharides such as cellulose and starch is a field that has the attention of both the industrial and scientific community. Most of the polysaccharide degrading enzymes are classified into several glycoside hydrolase families. They are often organized in a modular manner which includes a catalytic domain connected to one or more carbohydrate-binding modules. The carbohydrate-binding modules (CBM) have been shown to increase the proximity of the enzyme to its substrate, especially for insoluble substrates. Therefore, these modules are considered to enhance enzymatic hydrolysis. These properties have played an important role in many biotechnological applications with the aim to improve the efficiency of polysaccharide degradation. The domain organization of glycoside hydrolases (GHs) equipped with one or more CBM does vary within organisms. This review comprehensively highlights the presence of CBM as ancillary modules and explores the diversity of GHs carrying one or more of these modules that actively act either on cellulose or starch. Special emphasis is given to the cellulase and amylase distribution within the filamentous microorganisms from the genera of Streptomyces and Aspergillus that are well known to have a great capacity for secreting a wide range of these polysaccharide degrading enzyme. The potential of the CBM and other ancillary domains for the design of improved polysaccharide decomposing enzymes is discussed.
Collapse
Affiliation(s)
- Andika Sidar
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands.,Department of Food Science and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Erica D Albuquerque
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands.,Sun Pharmaceutical Industries Europe BV., Hoofddorp, Netherlands
| | - Gerben P Voshol
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands.,Dutch DNA Biotech B.V., Utrecht, Netherlands
| | - Arthur F J Ram
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands
| | - Erik Vijgenboom
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands
| | - Peter J Punt
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands.,Dutch DNA Biotech B.V., Utrecht, Netherlands
| |
Collapse
|