1
|
McShan AC, Flores-Solis D, Sun Y, Garfinkle SE, Toor JS, Young MC, Sgourakis NG. Conformational plasticity of RAS Q61 family of neoepitopes results in distinct features for targeted recognition. Nat Commun 2023; 14:8204. [PMID: 38081856 PMCID: PMC10713829 DOI: 10.1038/s41467-023-43654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The conformational landscapes of peptide/human leucocyte antigen (pHLA) protein complexes encompassing tumor neoantigens provide a rationale for target selection towards autologous T cell, vaccine, and antibody-based therapeutic modalities. Here, using complementary biophysical and computational methods, we characterize recurrent RAS55-64 Q61 neoepitopes presented by the common HLA-A*01:01 allotype. We integrate sparse NMR restraints with Rosetta docking to determine the solution structure of NRASQ61K/HLA-A*01:01, which enables modeling of other common RAS55-64 neoepitopes. Hydrogen/deuterium exchange mass spectrometry experiments alongside molecular dynamics simulations reveal differences in solvent accessibility and conformational plasticity across a panel of common Q61 neoepitopes that are relevant for recognition by immunoreceptors. Finally, we predict binding and provide structural models of NRASQ61K antigens spanning the entire HLA allelic landscape, together with in vitro validation for HLA-A*01:191, HLA-B*15:01, and HLA-C*08:02. Our work provides a basis to delineate the solution surface features and immunogenicity of clinically relevant neoepitope/HLA targets for cancer therapy.
Collapse
Affiliation(s)
- Andrew C McShan
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr NW, Atlanta, GA, 30318, USA
| | - David Flores-Solis
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, 37075, Göttingen, Germany
| | - Yi Sun
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel E Garfinkle
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jugmohit S Toor
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA
| | - Michael C Young
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Papadaki GF, Woodward CH, Young MC, Winters TJ, Burslem GM, Sgourakis NG. A Chicken Tapasin ortholog can chaperone empty HLA-B∗37:01 molecules independent of other peptide-loading components. J Biol Chem 2023; 299:105136. [PMID: 37543367 PMCID: PMC10534222 DOI: 10.1016/j.jbc.2023.105136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023] Open
Abstract
Human Tapasin (hTapasin) is the main chaperone of MHC-I molecules, enabling peptide loading and antigen repertoire optimization across HLA allotypes. However, it is restricted to the endoplasmic reticulum (ER) lumen as part of the protein loading complex (PLC), and therefore is highly unstable when expressed in recombinant form. Additional stabilizing co-factors such as ERp57 are required to catalyze peptide exchange in vitro, limiting uses for the generation of pMHC-I molecules of desired antigen specificities. Here, we show that the chicken Tapasin (chTapasin) ortholog can be expressed recombinantly at high yields in a stable form, independent of co-chaperones. chTapasin can bind the human HLA-B∗37:01 with low micromolar-range affinity to form a stable tertiary complex. Biophysical characterization by methyl-based NMR methods reveals that chTapasin recognizes a conserved β2m epitope on HLA-B∗37:01, consistent with previously solved X-ray structures of hTapasin. Finally, we provide evidence that the B∗37:01/chTapasin complex is peptide-receptive and can be dissociated upon binding of high-affinity peptides. Our results highlight the use of chTapasin as a stable scaffold for protein engineering applications aiming to expand the ligand exchange function on human MHC-I and MHC-like molecules.
Collapse
Affiliation(s)
- Georgia F Papadaki
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Claire H Woodward
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Young
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Trenton J Winters
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Papadaki GF, Woodward CH, Young MC, Winters TJ, Burslem GM, Sgourakis NG. A Chicken Tapasin ortholog can chaperone empty HLA molecules independently of other peptide-loading components. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546255. [PMID: 37425753 PMCID: PMC10326978 DOI: 10.1101/2023.06.23.546255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Human Tapasin (hTapasin) is the main chaperone of MHC-I molecules, enabling peptide loading and antigen repertoire optimization across HLA allotypes. However, it is restricted to the endoplasmic reticulum (ER) lumen as part of the protein loading complex (PLC) and therefore is highly unstable when expressed in recombinant form. Additional stabilizing co-factors such as ERp57 are required to catalyze peptide exchange in vitro , limiting uses for the generation of pMHC-I molecules of desired antigen specificities. Here, we show that the chicken Tapasin (chTapasin) ortholog can be expressed recombinantly at high yields in stable form, independently of co-chaperones. chTapasin can bind the human HLA-B * 37:01 with low micromolar-range affinity to form a stable tertiary complex. Biophysical characterization by methyl-based NMR methods reveals that chTapasin recognizes a conserved β 2 m epitope on HLA-B * 37:01, consistent with previously solved X-ray structures of hTapasin. Finally, we provide evidence that the B * 37:01/chTapasin complex is peptide-receptive and can be dissociated upon binding of high-affinity peptides. Our results highlight the use of chTapasin as a stable scaffold for future protein engineering applications aiming to expand the ligand exchange function on human MHC-I and MHC-like molecules.
Collapse
|
4
|
Li ZM, Fan ZL, Wang XY, Wang TY. Factors Affecting the Expression of Recombinant Protein and Improvement Strategies in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2022; 10:880155. [PMID: 35860329 PMCID: PMC9289362 DOI: 10.3389/fbioe.2022.880155] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 01/20/2023] Open
Abstract
Recombinant therapeutic proteins (RTPs) are important parts of biopharmaceuticals. Chinese hamster ovary cells (CHO) have become the main cell hosts for the production of most RTPs approved for marketing because of their high-density suspension growth characteristics, and similar human post-translational modification patterns et al. In recent years, many studies have been performed on CHO cell expression systems, and the yields and quality of recombinant protein expression have been greatly improved. However, the expression levels of some proteins are still low or even difficult-to express in CHO cells. It is urgent further to increase the yields and to express successfully the “difficult-to express” protein in CHO cells. The process of recombinant protein expression of is a complex, involving multiple steps such as transcription, translation, folding processing and secretion. In addition, the inherent characteristics of molecular will also affect the production of protein. Here, we reviewed the factors affecting the expression of recombinant protein and improvement strategies in CHO cells.
Collapse
Affiliation(s)
- Zheng-Mei Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Zhen-Lin Fan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Tian-Yun Wang,
| |
Collapse
|
5
|
Margulies DH, Taylor DK, Jiang J, Boyd LF, Ahmad J, Mage MG, Natarajan K. Chaperones and Catalysts: How Antigen Presentation Pathways Cope With Biological Necessity. Front Immunol 2022; 13:859782. [PMID: 35464465 PMCID: PMC9022212 DOI: 10.3389/fimmu.2022.859782] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Immune recognition by T lymphocytes and natural killer (NK) cells is in large part dependent on the identification of cell surface MHC molecules bearing peptides generated from either endogenous (MHC I) or exogenous (MHC II) dependent pathways. This review focuses on MHC I molecules that coordinately fold to bind self or foreign peptides for such surface display. Peptide loading occurs in an antigen presentation pathway that includes either the multimolecular peptide loading complex (PLC) or a single chain chaperone/catalyst, TAP binding protein, related, TAPBPR, that mimics a key component of the PLC, tapasin. Recent structural and dynamic studies of TAPBPR reveal details of its function and reflect on mechanisms common to tapasin. Regions of structural conservation among species suggest that TAPBPR and tapasin have evolved to satisfy functional complexities demanded by the enormous polymorphism of MHC I molecules. Recent studies suggest that these two chaperone/catalysts exploit structural flexibility and dynamics to stabilize MHC molecules and facilitate peptide loading.
Collapse
Affiliation(s)
- David H Margulies
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Molecular Biology Section, National Institutes of Health, Bethesda, MD, United States
| | - Daniel K Taylor
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Molecular Biology Section, National Institutes of Health, Bethesda, MD, United States
| | - Jiansheng Jiang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Molecular Biology Section, National Institutes of Health, Bethesda, MD, United States
| | - Lisa F Boyd
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Molecular Biology Section, National Institutes of Health, Bethesda, MD, United States
| | - Javeed Ahmad
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Molecular Biology Section, National Institutes of Health, Bethesda, MD, United States
| | - Michael G Mage
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Molecular Biology Section, National Institutes of Health, Bethesda, MD, United States
| | - Kannan Natarajan
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Molecular Biology Section, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Partnering for the major histocompatibility complex class II and antigenic determinant requires flexibility and chaperons. Curr Opin Immunol 2021; 70:112-121. [PMID: 34146954 DOI: 10.1016/j.coi.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
Cytotoxic, or helper T cells recognize antigen via T cell receptors (TCRs) that can see their target antigen as short sequences of peptides bound to the groove of proteins of major histocompatibility complex (MHC) class I, and class II respectively. For MHC class II epitope selection from exogenous pathogens or self-antigens, participation of several accessory proteins, molecular chaperons, processing enzymes within multiple vesicular compartments is necessary. A major contributing factor is the MHC class II structure itself that uniquely offers a dynamic and flexible groove essential for epitope selection. In this review, I have taken a historical perspective focusing on the flexibility of the MHC II molecules as the driving force in determinant selection and interactions with the accessory molecules in antigen processing, HLA-DM and HLA-DO.
Collapse
|
7
|
Truong HV, Sgourakis NG. Dynamics of MHC-I molecules in the antigen processing and presentation pathway. Curr Opin Immunol 2021; 70:122-128. [PMID: 34153556 PMCID: PMC8622473 DOI: 10.1016/j.coi.2021.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 01/07/2023]
Abstract
The endogenous antigen processing and presentation (APP) is a fundamental pathway found in jawed vertebrates, which allows for a set of epitope peptides sampled from the intracellular proteome to be assembled and displayed on class I proteins of the major histocompatibility complex (MHC-I). Peptide/MHC-I antigens enable different aspects of adaptive immunity to emerge, by providing a basis for recognition of self vs. non-self by T cells and Natural Killer (NK) cells. Pioneering studies of pMHC-I molecules and their higher-order protein complexes with molecular chaperones and membrane receptors have gleaned important insights into the peptide loading and antigen recognition mechanisms. While X-ray and cryoEM structures have provided us with static snapshots of different MHC-I assembly stages, complementary biophysical techniques have revealed that MHC-I molecules are highly mobile on a range of biologically relevant timescales, which bears importance for their assembly, peptide repertoire selection, membrane display and turnover. This review summarizes insights gained from experimental and simulation studies aimed at investigating MHC-I dynamics, and their functional implications.
Collapse
Affiliation(s)
- Hau V Truong
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
McShan AC, Devlin CA, Morozov GI, Overall SA, Moschidi D, Akella N, Procko E, Sgourakis NG. TAPBPR promotes antigen loading on MHC-I molecules using a peptide trap. Nat Commun 2021; 12:3174. [PMID: 34039964 PMCID: PMC8154891 DOI: 10.1038/s41467-021-23225-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/16/2021] [Indexed: 11/08/2022] Open
Abstract
Chaperones Tapasin and TAP-binding protein related (TAPBPR) perform the important functions of stabilizing nascent MHC-I molecules (chaperoning) and selecting high-affinity peptides in the MHC-I groove (editing). While X-ray and cryo-EM snapshots of MHC-I in complex with TAPBPR and Tapasin, respectively, have provided important insights into the peptide-deficient MHC-I groove structure, the molecular mechanism through which these chaperones influence the selection of specific amino acid sequences remains incompletely characterized. Based on structural and functional data, a loop sequence of variable lengths has been proposed to stabilize empty MHC-I molecules through direct interactions with the floor of the groove. Using deep mutagenesis on two complementary expression systems, we find that important residues for the Tapasin/TAPBPR chaperoning activity are located on a large scaffolding surface, excluding the loop. Conversely, loop mutations influence TAPBPR interactions with properly conformed MHC-I molecules, relevant for peptide editing. Detailed biophysical characterization by solution NMR, ITC and FP-based assays shows that the loop hovers above the MHC-I groove to promote the capture of incoming peptides. Our results suggest that the longer loop of TAPBPR lowers the affinity requirements for peptide selection to facilitate peptide loading under conditions and subcellular compartments of reduced ligand concentration, and to prevent disassembly of high-affinity peptide-MHC-I complexes that are transiently interrogated by TAPBPR during editing.
Collapse
Affiliation(s)
- Andrew C McShan
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christine A Devlin
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL, USA
| | - Giora I Morozov
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah A Overall
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Danai Moschidi
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Neha Akella
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL, USA
| | - Erik Procko
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL, USA.
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|