1
|
Pratyush P, Kc DB. Advances in Prediction of Posttranslational Modification Sites Known to Localize in Protein Supersecondary Structures. Methods Mol Biol 2025; 2870:117-151. [PMID: 39543034 DOI: 10.1007/978-1-0716-4213-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Posttranslational modifications (PTMs) play a crucial role in modulating the structure, function, localization, and interactions of proteins, with many PTMs being localized within supersecondary structures, such as helical pairs. These modifications can significantly influence the conformation and stability of these structures. For instance, phosphorylation introduces negative charges that alter electrostatic interactions, while acetylation or methylation of lysine residues affects the stability and interactions of alpha helices or beta strands. Given the pivotal role of supersecondary structures in the overall protein architecture, their modulation by PTMs is essential for protein functionality. This chapter explores the latest advancements in predicting sites for the five PTMs (phosphorylation, acetylation, glycosylation, methylation, and ubiquitination) known to be localized within supersecondary structures. The chapter highlights the recent advances in the prediction of these PTM sites, including the use of global contextualized embeddings from protein language models, integration of structural information, utilization of reliable positive and negative sites, and application of contrastive learning. These methodologies and emerging trends offer a roadmap for novel innovations in addressing PTM prediction challenges, particularly those linked to supersecondary structures.
Collapse
Affiliation(s)
- Pawel Pratyush
- Computer Science Department, Michigan Technological University, Houghton, MI, USA
- Computer Science Department, Rochester Institute of Technology, Henrietta, NY, USA
| | - Dukka B Kc
- Computer Science Department, Michigan Technological University, Houghton, MI, USA.
- Computer Science Department, Rochester Institute of Technology, Henrietta, NY, USA.
| |
Collapse
|
2
|
Zhang C, Wang Q, Li Y, Teng A, Hu G, Wuyun Q, Zheng W. The Historical Evolution and Significance of Multiple Sequence Alignment in Molecular Structure and Function Prediction. Biomolecules 2024; 14:1531. [PMID: 39766238 PMCID: PMC11673352 DOI: 10.3390/biom14121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Multiple sequence alignment (MSA) has evolved into a fundamental tool in the biological sciences, playing a pivotal role in predicting molecular structures and functions. With broad applications in protein and nucleic acid modeling, MSAs continue to underpin advancements across a range of disciplines. MSAs are not only foundational for traditional sequence comparison techniques but also increasingly important in the context of artificial intelligence (AI)-driven advancements. Recent breakthroughs in AI, particularly in protein and nucleic acid structure prediction, rely heavily on the accuracy and efficiency of MSAs to enhance remote homology detection and guide spatial restraints. This review traces the historical evolution of MSA, highlighting its significance in molecular structure and function prediction. We cover the methodologies used for protein monomers, protein complexes, and RNA, while also exploring emerging AI-based alternatives, such as protein language models, as complementary or replacement approaches to traditional MSAs in application tasks. By discussing the strengths, limitations, and applications of these methods, this review aims to provide researchers with valuable insights into MSA's evolving role, equipping them to make informed decisions in structural prediction research.
Collapse
Affiliation(s)
- Chenyue Zhang
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China; (C.Z.); (Y.L.); (G.H.)
| | - Qinxin Wang
- Suzhou New & High-Tech Innovation Service Center, Suzhou 215011, China;
| | - Yiyang Li
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China; (C.Z.); (Y.L.); (G.H.)
| | - Anqi Teng
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China;
| | - Gang Hu
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China; (C.Z.); (Y.L.); (G.H.)
| | - Qiqige Wuyun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Wei Zheng
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China; (C.Z.); (Y.L.); (G.H.)
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Blaabjerg LM, Jonsson N, Boomsma W, Stein A, Lindorff-Larsen K. SSEmb: A joint embedding of protein sequence and structure enables robust variant effect predictions. Nat Commun 2024; 15:9646. [PMID: 39511177 PMCID: PMC11544099 DOI: 10.1038/s41467-024-53982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
The ability to predict how amino acid changes affect proteins has a wide range of applications including in disease variant classification and protein engineering. Many existing methods focus on learning from patterns found in either protein sequences or protein structures. Here, we present a method for integrating information from sequence and structure in a single model that we term SSEmb (Sequence Structure Embedding). SSEmb combines a graph representation for the protein structure with a transformer model for processing multiple sequence alignments. We show that by integrating both types of information we obtain a variant effect prediction model that is robust when sequence information is scarce. We also show that SSEmb learns embeddings of the sequence and structure that are useful for other downstream tasks such as to predict protein-protein binding sites. We envisage that SSEmb may be useful both for variant effect predictions and as a representation for learning to predict protein properties that depend on sequence and structure.
Collapse
Affiliation(s)
- Lasse M Blaabjerg
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Nicolas Jonsson
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Wouter Boomsma
- Center for Basic Machine Learning Research in Life Science, Department of Computer Science, University of Copenhagen, Copenhagen N, Denmark.
| | - Amelie Stein
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
4
|
Nguyen VTD, Nguyen ND, Hy TS. ProteinReDiff: Complex-based ligand-binding proteins redesign by equivariant diffusion-based generative models. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:064102. [PMID: 39629167 PMCID: PMC11614476 DOI: 10.1063/4.0000271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Proteins, serving as the fundamental architects of biological processes, interact with ligands to perform a myriad of functions essential for life. Designing functional ligand-binding proteins is pivotal for advancing drug development and enhancing therapeutic efficacy. In this study, we introduce ProteinReDiff, an diffusion framework targeting the redesign of ligand-binding proteins. Using equivariant diffusion-based generative models, ProteinReDiff enables the creation of high-affinity ligand-binding proteins without the need for detailed structural information, leveraging instead the potential of initial protein sequences and ligand SMILES strings. Our evaluations across sequence diversity, structural preservation, and ligand binding affinity underscore ProteinReDiff's potential to advance computational drug discovery and protein engineering.
Collapse
Affiliation(s)
| | - Nhan D Nguyen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Truong Son Hy
- Department of Computer Science, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
5
|
Cheng P, Mao C, Tang J, Yang S, Cheng Y, Wang W, Gu Q, Han W, Chen H, Li S, Chen Y, Zhou J, Li W, Pan A, Zhao S, Huang X, Zhu S, Zhang J, Shu W, Wang S. Zero-shot prediction of mutation effects with multimodal deep representation learning guides protein engineering. Cell Res 2024; 34:630-647. [PMID: 38969803 PMCID: PMC11369238 DOI: 10.1038/s41422-024-00989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024] Open
Abstract
Mutations in amino acid sequences can provoke changes in protein function. Accurate and unsupervised prediction of mutation effects is critical in biotechnology and biomedicine, but remains a fundamental challenge. To resolve this challenge, here we present Protein Mutational Effect Predictor (ProMEP), a general and multiple sequence alignment-free method that enables zero-shot prediction of mutation effects. A multimodal deep representation learning model embedded in ProMEP was developed to comprehensively learn both sequence and structure contexts from ~160 million proteins. ProMEP achieves state-of-the-art performance in mutational effect prediction and accomplishes a tremendous improvement in speed, enabling efficient and intelligent protein engineering. Specifically, ProMEP accurately forecasts mutational consequences on the gene-editing enzymes TnpB and TadA, and successfully guides the development of high-performance gene-editing tools with their engineered variants. The gene-editing efficiency of a 5-site mutant of TnpB reaches up to 74.04% (vs 24.66% for the wild type); and the base editing tool developed on the basis of a TadA 15-site mutant (in addition to the A106V/D108N double mutation that renders deoxyadenosine deaminase activity to TadA) exhibits an A-to-G conversion frequency of up to 77.27% (vs 69.80% for ABE8e, a previous TadA-based adenine base editor) with significantly reduced bystander and off-target effects compared to ABE8e. ProMEP not only showcases superior performance in predicting mutational effects on proteins but also demonstrates a great capability to guide protein engineering. Therefore, ProMEP enables efficient exploration of the gigantic protein space and facilitates practical design of proteins, thereby advancing studies in biomedicine and synthetic biology.
Collapse
Affiliation(s)
- Peng Cheng
- Bioinformatics Center of AMMS, Beijing, China
| | - Cong Mao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Tang
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Sen Yang
- Bioinformatics Center of AMMS, Beijing, China
| | - Yu Cheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wuke Wang
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Qiuxi Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Han
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Hao Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sihan Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | - Wuju Li
- Bioinformatics Center of AMMS, Beijing, China
| | - Aimin Pan
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingxu Huang
- Zhejiang Lab, Hangzhou, Zhejiang, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Jun Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wenjie Shu
- Bioinformatics Center of AMMS, Beijing, China.
| | | |
Collapse
|
6
|
Tan Y, Li M, Zhou B, Zhong B, Zheng L, Tan P, Zhou Z, Yu H, Fan G, Hong L. Simple, Efficient, and Scalable Structure-Aware Adapter Boosts Protein Language Models. J Chem Inf Model 2024; 64:6338-6349. [PMID: 39110130 DOI: 10.1021/acs.jcim.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Fine-tuning pretrained protein language models (PLMs) has emerged as a prominent strategy for enhancing downstream prediction tasks, often outperforming traditional supervised learning approaches. As a widely applied powerful technique in natural language processing, employing parameter-efficient fine-tuning techniques could potentially enhance the performance of PLMs. However, the direct transfer to life science tasks is nontrivial due to the different training strategies and data forms. To address this gap, we introduce SES-Adapter, a simple, efficient, and scalable adapter method for enhancing the representation learning of PLMs. SES-Adapter incorporates PLM embeddings with structural sequence embeddings to create structure-aware representations. We show that the proposed method is compatible with different PLM architectures and across diverse tasks. Extensive evaluations are conducted on 2 types of folding structures with notable quality differences, 9 state-of-the-art baselines, and 9 benchmark data sets across distinct downstream tasks. Results show that compared to vanilla PLMs, SES-Adapter improves downstream task performance by a maximum of 11% and an average of 3%, with significantly accelerated convergence speed by a maximum of 1034% and an average of 362%, the training efficiency is also improved by approximately 2 times. Moreover, positive optimization is observed even with low-quality predicted structures. The source code for SES-Adapter is available at https://github.com/tyang816/SES-Adapter.
Collapse
Affiliation(s)
- Yang Tan
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai 200240, China
| | - Mingchen Li
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai 200240, China
| | - Bingxin Zhou
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai 200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bozitao Zhong
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai 200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lirong Zheng
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Cell and Developmental Biology & Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan 48104, United States
| | - Pan Tan
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Zhou
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai 200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiqun Yu
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guisheng Fan
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Hong
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai 200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Johnson SR, Fu X, Viknander S, Goldin C, Monaco S, Zelezniak A, Yang KK. Computational scoring and experimental evaluation of enzymes generated by neural networks. Nat Biotechnol 2024:10.1038/s41587-024-02214-2. [PMID: 38653796 DOI: 10.1038/s41587-024-02214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
In recent years, generative protein sequence models have been developed to sample novel sequences. However, predicting whether generated proteins will fold and function remains challenging. We evaluate a set of 20 diverse computational metrics to assess the quality of enzyme sequences produced by three contrasting generative models: ancestral sequence reconstruction, a generative adversarial network and a protein language model. Focusing on two enzyme families, we expressed and purified over 500 natural and generated sequences with 70-90% identity to the most similar natural sequences to benchmark computational metrics for predicting in vitro enzyme activity. Over three rounds of experiments, we developed a computational filter that improved the rate of experimental success by 50-150%. The proposed metrics and models will drive protein engineering research by serving as a benchmark for generative protein sequence models and helping to select active variants for experimental testing.
Collapse
Affiliation(s)
| | - Xiaozhi Fu
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Sandra Viknander
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Clara Goldin
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Aleksej Zelezniak
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, Vilnius, Lithuania.
- Randall Centre for Cell & Molecular Biophysics, King's College London, Guy's Campus, London, UK.
| | | |
Collapse
|
8
|
Ertelt M, Meiler J, Schoeder CT. Combining Rosetta Sequence Design with Protein Language Model Predictions Using Evolutionary Scale Modeling (ESM) as Restraint. ACS Synth Biol 2024; 13:1085-1092. [PMID: 38568188 PMCID: PMC11036486 DOI: 10.1021/acssynbio.3c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/16/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Computational protein sequence design has the ambitious goal of modifying existing or creating new proteins; however, designing stable and functional proteins is challenging without predictability of protein dynamics and allostery. Informing protein design methods with evolutionary information limits the mutational space to more native-like sequences and results in increased stability while maintaining functions. Recently, language models, trained on millions of protein sequences, have shown impressive performance in predicting the effects of mutations. Assessing Rosetta-designed sequences with a language model showed scores that were worse than those of their original sequence. To inform Rosetta design protocols with language model predictions, we added a new metric to restrain the energy function during design using the Evolutionary Scale Modeling (ESM) model. The resulting sequences have better language model scores and similar sequence recovery, with only a minor decrease in the fitness as assessed by Rosetta energy. In conclusion, our work combines the strength of recent machine learning approaches with the Rosetta protein design toolbox.
Collapse
Affiliation(s)
- Moritz Ertelt
- Institute
for Drug Discovery, University Leipzig Medicine
Faculty, Liebigstr. 19, D-04103 Leipzig, Germany
- Center
for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, D-04105 Leipzig, Germany
| | - Jens Meiler
- Institute
for Drug Discovery, University Leipzig Medicine
Faculty, Liebigstr. 19, D-04103 Leipzig, Germany
- Center
for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, D-04105 Leipzig, Germany
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United
States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Clara T. Schoeder
- Institute
for Drug Discovery, University Leipzig Medicine
Faculty, Liebigstr. 19, D-04103 Leipzig, Germany
- Center
for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, D-04105 Leipzig, Germany
| |
Collapse
|
9
|
Chu AE, Lu T, Huang PS. Sparks of function by de novo protein design. Nat Biotechnol 2024; 42:203-215. [PMID: 38361073 PMCID: PMC11366440 DOI: 10.1038/s41587-024-02133-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
Information in proteins flows from sequence to structure to function, with each step causally driven by the preceding one. Protein design is founded on inverting this process: specify a desired function, design a structure executing this function, and find a sequence that folds into this structure. This 'central dogma' underlies nearly all de novo protein-design efforts. Our ability to accomplish these tasks depends on our understanding of protein folding and function and our ability to capture this understanding in computational methods. In recent years, deep learning-derived approaches for efficient and accurate structure modeling and enrichment of successful designs have enabled progression beyond the design of protein structures and towards the design of functional proteins. We examine these advances in the broader context of classical de novo protein design and consider implications for future challenges to come, including fundamental capabilities such as sequence and structure co-design and conformational control considering flexibility, and functional objectives such as antibody and enzyme design.
Collapse
Affiliation(s)
- Alexander E Chu
- Biophysics Program, Stanford University, Palo Alto, CA, USA
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
- Google DeepMind, London, UK
| | - Tianyu Lu
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
| | - Po-Ssu Huang
- Biophysics Program, Stanford University, Palo Alto, CA, USA.
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
10
|
Ferruz N, Stein A. Computational methods for protein design. Protein Eng Des Sel 2024; 37:gzae011. [PMID: 38984793 DOI: 10.1093/protein/gzae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Affiliation(s)
- Noelia Ferruz
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader, 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Amelie Stein
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| |
Collapse
|