1
|
Lin Z, Tu B, Hemken PM, Muerhoff AS. Antibody engineering to generate anti-tumor-associated glycoprotein 72 mouse recombinant CC49 IgG with improved solubility, purity, and thermal stability. J Immunol Methods 2024; 525:113606. [PMID: 38145790 DOI: 10.1016/j.jim.2023.113606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Tumor-associated glycoprotein 72 (TAG-72) is a mucin that is overexpressed heterogeneously on the surface of cancer cells, and is a potential target for immunotherapies for various cancer types. As a tumor marker, TAG-72 is measured with the cancer antigen (CA) 72-4 immunoassay. The murine monoclonal antibody (mAb) CC49 is a second-generation IgG that targets an antigen on TAG-72; however, CC49 has an unfavorable propensity to aggregate, which results in antibody impurity, instability, and low solubility and thus low potency and efficacy for therapeutic and diagnostic applications. Sequence analysis of CC49 revealed aggregation-prone motifs in the variable domain of the light chain. Using antibody engineering approaches, we developed three aggregation-resistant CC49 mIgG2a mutants (CC49M1, CC49M2, and CC49M3). The engineered CC49 mIgG2a mutants retained compatible binding performance with a significantly higher thermal stability. The CC49 mIgG2a mutants also demonstrated an almost 15-fold improvement in solubility, with 97% purity vs 70% purity of the parent molecule at 0.3 mg/mL. The enhanced stability and improved solubility of engineered CC49 could have significant advantages for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Zhihong Lin
- Biologics Discovery, Abbott Diagnostics Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America
| | - Bailin Tu
- Biologics Discovery, Abbott Diagnostics Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America
| | - Philip M Hemken
- Biologics Discovery, Abbott Diagnostics Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America.
| | - A Scott Muerhoff
- Biologics Discovery, Abbott Diagnostics Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America
| |
Collapse
|
2
|
Scott AM, Akhurst T, Lee FT, Ciprotti M, Davis ID, Weickhardt AJ, Gan HK, Hicks RJ, Lee ST, Kocovski P, Guo N, Oh M, Mileshkin L, Williams S, Murphy D, Pathmaraj K, O'Keefe GJ, Gong SJ, Pedersen JS, Scott FE, Wheatcroft MP, Hudson PJ. First clinical study of a pegylated diabody 124I-labeled PEG-AVP0458 in patients with tumor-associated glycoprotein 72 positive cancers. Am J Cancer Res 2020; 10:11404-11415. [PMID: 33052222 PMCID: PMC7545991 DOI: 10.7150/thno.49422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 01/19/2023] Open
Abstract
Through protein engineering and a novel pegylation strategy, a diabody specific to tumor-associated glycoprotein 72 (TAG-72) (PEG-AVP0458) has been created to optimize pharmacokinetics and bioavailability to tumor. We report the preclinical and clinical translation of PEG-AVP0458 to a first-in-human clinical trial of a diabody. Methods: Clinical translation followed characterization of PEG-AVP0458 drug product and preclinical biodistribution and imaging assessments of Iodine-124 trace labeled PEG-AVP0458 (124I-PEG-AVP0458). The primary study objective of the first-in-human study was the safety of a single protein dose of 1.0 or 10 mg/m2 124I-PEG-AVP0458 in patients with TAG-72 positive relapsed/ metastatic prostate or ovarian cancer. Secondary study objectives were evaluation of the biodistribution, tumor uptake, pharmacokinetics and immunogenicity. Patients were infused with a single-dose of 124I labeled PEG-AVP0458 (3-5 mCi (111-185 MBq) for positron emission tomography (PET) imaging, performed sequentially over a one-week period. Safety, pharmacokinetics, biodistribution, and immunogenicity were assessed up to 28 days after infusion. Results: PEG-AVP0458 was radiolabeled with 124I and shown to retain high TAG-72 affinity and excellent targeting of TAG-72 positive xenografts by biodistribution analysis and PET imaging. In the first-in-human trial, no adverse events or toxicity attributable to 124I-PEG-AVP0458 were observed. Imaging was evaluable in 5 patients, with rapid and highly specific targeting of tumor and minimal normal organ uptake, leading to high tumor:blood ratios. Serum concentration values of 124I-PEG-AVP0458 showed consistent values between patients, and there was no significant difference in T½α and T½β between dose levels with mean (± SD) results of T½α = 5.10 ± 4.58 hours, T½β = 46.19 ± 13.06 hours. Conclusions: These data demonstrates the safety and feasibility of using pegylated diabodies for selective tumor imaging and potential delivery of therapeutic payloads in cancer patients.
Collapse
|
3
|
Wang H, Liu JJ, Zhou XL. Targeting assay of a fusion protein applied in enzyme prodrug therapy. Oncol Lett 2017; 13:2698-2702. [PMID: 28454453 PMCID: PMC5403369 DOI: 10.3892/ol.2017.5768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 12/20/2016] [Indexed: 11/20/2022] Open
Abstract
Tumor growth and metastasis are dependent on angiogenesis. The overexpression of integrin αvβ3 on angiogenic vessels and on numerous malignant human tumor cells suggests that these labeled ligands of integrin are potentially suitable for molecular imaging and in targeted therapy of tumors. In previous studies, we added a β-lactamase variant with reduced immunogenicity to the cyclic peptide RGD4C, resulting in the fusion protein RGD4CβL, which is suitable for use in targeted enzyme prodrug therapy (TEPT), a promising treatment for tumors. The targeting of the aforementioned fusion protein serves an important role in TEPT. In the present study, RGD4CβL was labeled with 125I and the targeting effect on integrin-positive tumors was evaluated. The results demonstrated that the 125I-RGD4CβL protein exhibited high levels of accumulation at the tumor site and rapid renal clearance, which revealed the potency and efficiency of RGD4CβL in TEPT.
Collapse
Affiliation(s)
- Hao Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Jin-Jian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Xiao-Liang Zhou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| |
Collapse
|
4
|
Crasson O, Rhazi N, Jacquin O, Freichels A, Jérôme C, Ruth N, Galleni M, Filée P, Vandevenne M. Enzymatic functionalization of a nanobody using protein insertion technology. Protein Eng Des Sel 2015; 28:451-60. [PMID: 25852149 DOI: 10.1093/protein/gzv020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/05/2015] [Indexed: 11/14/2022] Open
Abstract
Antibody-based products constitute one of the most attractive biological molecules for diagnostic, medical imagery and therapeutic purposes with very few side effects. Their development has become a major priority of biotech and pharmaceutical industries. Recently, a growing number of modified antibody-based products have emerged including fragments, multi-specific and conjugate antibodies. In this study, using protein engineering, we have functionalized the anti-hen egg-white lysozyme (HEWL) camelid VHH antibody fragment (cAb-Lys3), by insertion into a solvent-exposed loop of the Bacillus licheniformis β-lactamase BlaP. We showed that the generated hybrid protein conserved its enzymatic activity while the displayed nanobody retains its ability to inhibit HEWL with a nanomolar affinity range. Then, we successfully implemented the functionalized cAb-Lys3 in enzyme-linked immunosorbent assay, potentiometric biosensor and drug screening assays. The hybrid protein was also expressed on the surface of phage particles and, in this context, was able to interact specifically with HEWL while the β-lactamase activity was used to monitor phage interactions. Finally, using thrombin-cleavage sites surrounding the permissive insertion site in the β-lactamase, we reported an expression system in which the nanobody can be easily separated from its carrier protein. Altogether, our study shows that insertion into the BlaP β-lactamase constitutes a suitable technology to functionalize nanobodies and allows the creation of versatile tools that can be used in innovative biotechnological assays.
Collapse
Affiliation(s)
- O Crasson
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - N Rhazi
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - O Jacquin
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - A Freichels
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - C Jérôme
- Chimie des Macromolécules et des Matériaux Organiques (CERM), Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - N Ruth
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - M Galleni
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - P Filée
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium CER Groupe, Rue de la Science, n°8, Aye B6900, Belgium
| | - M Vandevenne
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| |
Collapse
|
5
|
Ju T, Aryal RP, Kudelka MR, Wang Y, Cummings RD. The Cosmc connection to the Tn antigen in cancer. Cancer Biomark 2015; 14:63-81. [PMID: 24643043 DOI: 10.3233/cbm-130375] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Tn antigen is a tumor-associated carbohydrate antigen that is not normally expressed in peripheral tissues or blood cells. Expression of this antigen, which is found in a majority of human carcinomas of all types, arises from a blockage in the normal O-glycosylation pathway in which glycans are extended from the common precursor GalNAcα1-O-Ser/Thr (Tn antigen). This precursor is generated in the Golgi apparatus on newly synthesized glycoproteins by a family of polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAcTs) and then extended to the common core 1 O-glycan Galβ1-3GalNAcα1-O-Ser/Thr (T antigen) by a single enzyme termed the T-synthase (core 1 β3-galactosyltransferase or C1GalT). Formation of the active form of the T-synthase requires a unique molecular chaperone termed Cosmc, encoded by Cosmc on the X-chromosome (Xq24 in humans, Xc3 in mice). Cosmc resides in the endoplasmic reticulum (ER) and prevents misfolding, aggregation, and proteasome-dependent degradation of newly synthesized T-synthase. Loss of expression of active T-synthase or Cosmc can lead to expression of the Tn antigen, along with its sialylated version Sialyl Tn antigen as observed in several cancers. Both genetic and epigenetic pathways, in addition to potential metabolic regulation, can result in abnormal expression of the Tn antigen. Engineered expression of the Tn antigen by disruption of either C1GalT (T-syn) or Cosmc in mice is associated with a tremendous range of pathologies and engineered expression of the Tn antigen in mouse embryos leads to embryonic death. Studies indicate that many membrane glycoproteins expressing the Tn antigen and/or truncated O-glycans may be dysfunctional, due to degradation and/or misfolding. Thus, expression of normal O-glycans is associated with health and homeostasis whereas truncation of O-glycans, e.g. the Tn and/or Sialyl Tn antigens is associated with cancer and other pathologies.
Collapse
Affiliation(s)
- Tongzhong Ju
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Rajindra P Aryal
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew R Kudelka
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Yingchun Wang
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
6
|
Dimasi N, Gao C, Fleming R, Woods RM, Yao XT, Shirinian L, Kiener PA, Wu H. The design and characterization of oligospecific antibodies for simultaneous targeting of multiple disease mediators. J Mol Biol 2009; 393:672-92. [PMID: 19699208 DOI: 10.1016/j.jmb.2009.08.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/11/2009] [Accepted: 08/13/2009] [Indexed: 11/15/2022]
Abstract
Monoclonal antibodies are traditionally used to block the function of a specific target in a given disease. However, some diseases are the consequence of multiple components or pathways and not the result of a single mediator; thus, blocking at a single point may not optimally control disease. Antibodies that simultaneously block the functions of two or more disease-associated targets are now being developed. Herein, we describe the design, expression, and characterization of several oligospecific antibody formats that are capable of binding simultaneously to two or three different antigens. These constructs were generated by genetically linking single-chain Fv fragments to the N-terminus of the antibody heavy and light chains and to the C-terminus of the antibody C(H)3 domain. The oligospecific antibodies were expressed in mammalian cells, purified to homogeneity, and characterized for binding to antigens, Fcgamma receptors, FcRn, and C1q. In addition, the oligospecific antibodies were assayed for effector function, protease susceptibility, thermal stability, and size distribution. We demonstrate that these oligospecific antibody formats maintain high expression level, thermostability, and protease resistance. The in vivo half-life, antibody-dependent cellular cytotoxicity function, and binding ability to Fcgamma receptors and C1q of the test oligospecific antibodies remain similar to the corresponding properties of their parental IgG antibodies. The excellent expression, biophysical stability, and potential manufacturing feasibility of these multispecific antibody formats suggest that they will provide a scaffold template for the construction of similar molecules to target multiple antigens in complex diseases.
Collapse
Affiliation(s)
- Nazzareno Dimasi
- Department of Antibody Discovery and Protein Engineering, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Albrecht H, DeNardo SJ. Recombinant antibodies: from the laboratory to the clinic. Cancer Biother Radiopharm 2006; 21:285-304. [PMID: 16999595 DOI: 10.1089/cbr.2006.21.285] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of recombinant antibodies has facilitated the exploitation of the Ab-Ag interaction specificity for targeted therapies. A fully human antibody, with custom integrated designs, can be obtained in one-third the time, compared to development of antibodies by hybridoma technology. Recombinant antibodies can be tailored for specific applications, "armed" with cytotoxic agents in a controllable fashion, and used for extracellular and intracellular targeting. Multitargeted and combination therapies are rapidly evolving for the treatment of cancer. Antibody therapeutics, costly to develop and produce, have proven beneficial in the clinic.
Collapse
Affiliation(s)
- Huguette Albrecht
- University of California Davis Medical Center, Sacramento, CA 95816, USA.
| | | |
Collapse
|