1
|
Nur A, Lai JY, Ch'ng ACW, Choong YS, Wan Isa WYH, Lim TS. A review of in vitro stochastic and non-stochastic affinity maturation strategies for phage display derived monoclonal antibodies. Int J Biol Macromol 2024; 277:134217. [PMID: 39069045 DOI: 10.1016/j.ijbiomac.2024.134217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Monoclonal antibodies identified using display technologies like phage display occasionally suffers from a lack of affinity making it unsuitable for application. This drawback is circumvented with the application of affinity maturation. Affinity maturation is an essential step in the natural evolution of antibodies in the immune system. The evolution of molecular based methods has seen the development of various mutagenesis approaches. This allows for the natural evolutionary process during somatic hypermutation to be replicated in the laboratories for affinity maturation to fine-tune the affinity and selectivity of antibodies. In this review, we will discuss affinity maturation strategies for mAbs generated through phage display systems. The review will highlight various in vitro stochastic and non-stochastic affinity maturation approaches that includes but are not limited to random mutagenesis, site-directed mutagenesis, and gene synthesis.
Collapse
Affiliation(s)
- Alia Nur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Wan Yus Haniff Wan Isa
- School of Medical Sciences, Department of Medicine, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
2
|
Wang X, Li A, Li X, Cui H. Empowering Protein Engineering through Recombination of Beneficial Substitutions. Chemistry 2024; 30:e202303889. [PMID: 38288640 DOI: 10.1002/chem.202303889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Directed evolution stands as a seminal technology for generating novel protein functionalities, a cornerstone in biocatalysis, metabolic engineering, and synthetic biology. Today, with the development of various mutagenesis methods and advanced analytical machines, the challenge of diversity generation and high-throughput screening platforms is largely solved, and one of the remaining challenges is: how to empower the potential of single beneficial substitutions with recombination to achieve the epistatic effect. This review overviews experimental and computer-assisted recombination methods in protein engineering campaigns. In addition, integrated and machine learning-guided strategies were highlighted to discuss how these recombination approaches contribute to generating the screening library with better diversity, coverage, and size. A decision tree was finally summarized to guide the further selection of proper recombination strategies in practice, which was beneficial for accelerating protein engineering.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Haiyang Cui
- School of Life Sciences, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| |
Collapse
|
3
|
Kirby MB, Medina-Cucurella AV, Baumer ZT, Whitehead TA. Optimization of multi-site nicking mutagenesis for generation of large, user-defined combinatorial libraries. Protein Eng Des Sel 2021; 34:gzab017. [PMID: 34341824 PMCID: PMC8502461 DOI: 10.1093/protein/gzab017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Generating combinatorial libraries of specific sets of mutations are essential for addressing protein engineering questions involving contingency in molecular evolution, epistatic relationships between mutations, as well as functional antibody and enzyme engineering. Here we present optimization of a combinatorial mutagenesis method involving template-based nicking mutagenesis, which allows for the generation of libraries with >99% coverage for tens of thousands of user-defined variants. The non-optimized method resulted in low library coverage, which could be rationalized by a model of oligonucleotide annealing bias resulting from the nucleotide mismatch free-energy difference between mutagenic oligo and template. The optimized method mitigated this thermodynamic bias using longer primer sets and faster annealing conditions. Our updated method, applied to two antibody fragments, delivered between 99.0% (32451/32768 library members) to >99.9% coverage (32757/32768) for our desired libraries in 2 days and at an approximate 140-fold sequencing depth of coverage.
Collapse
Affiliation(s)
- Monica B Kirby
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
| | - Angélica V Medina-Cucurella
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
- GigaGen Inc., South San Francisco, CA 94080, USA
| | - Zachary T Baumer
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
| | - Timothy A Whitehead
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
| |
Collapse
|
4
|
Benítez-Mateos AI, Zeballos N, Comino N, Moreno de Redrojo L, Randelovic T, López-Gallego F. Microcompartmentalized Cell-Free Protein Synthesis in Hydrogel μ-Channels. ACS Synth Biol 2020; 9:2971-2978. [PMID: 33170665 DOI: 10.1021/acssynbio.0c00462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rapid demand for protein-based molecules has stimulated much research on cell-free protein synthesis (CFPS); however, there are still many challenges in terms of cost-efficiency, process intensification, and sustainability. Herein, we describe the microcompartmentalization of CFPS of superfolded green fluorescent protein (sGFP) in alginate hydrogels, which were casted into a μ-channel device. CFPS was optimized for the microcompartmentalized environment and characterized in terms of synthesis yield. To extend the scope of this technology, the use of other biocompatible materials (collagen, laponite, and agarose) was explored. In addition, the diffusion of sGFP from the hydrogel microenvironment to the bulk was demonstrated, opening a promising opportunity for concurrent synthesis and delivery of proteins. Finally, we provide an application for this system: the CFPS of enzymes. The present design of the hydrogel μ-channel device may enhance the potential application of microcompartmentalized CFPS in biosensing, bioprototyping, and therapeutic development.
Collapse
Affiliation(s)
- Ana I. Benítez-Mateos
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182. Edificio empresarial “C”, 20014 San Sebastián, Spain
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Nicoll Zeballos
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182. Edificio empresarial “C”, 20014 San Sebastián, Spain
| | - Natalia Comino
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182. Edificio empresarial “C”, 20014 San Sebastián, Spain
| | - Lucía Moreno de Redrojo
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Teodora Randelovic
- Tissue MicroEnvironment (TME) Lab, Institute for Health Research Aragón (IISA), Avda. San Juan Bosco 13, 50009 Zaragoza, Spain
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, Mariano Escuillor s/n, 50018 Zaragoza, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182. Edificio empresarial “C”, 20014 San Sebastián, Spain
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- ARAID, Aragon Foundation for Science, 50009 Zaragoza, Spain
| |
Collapse
|
5
|
Lim CC, Choong YS, Lim TS. Cognizance of Molecular Methods for the Generation of Mutagenic Phage Display Antibody Libraries for Affinity Maturation. Int J Mol Sci 2019; 20:E1861. [PMID: 30991723 PMCID: PMC6515083 DOI: 10.3390/ijms20081861] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Antibodies leverage on their unique architecture to bind with an array of antigens. The strength of interaction has a direct relation to the affinity of the antibodies towards the antigen. In vivo affinity maturation is performed through multiple rounds of somatic hypermutation and selection in the germinal centre. This unique process involves intricate sequence rearrangements at the gene level via molecular mechanisms. The emergence of in vitro display technologies, mainly phage display and recombinant DNA technology, has helped revolutionize the way antibody improvements are being carried out in the laboratory. The adaptation of molecular approaches in vitro to replicate the in vivo processes has allowed for improvements in the way recombinant antibodies are designed and tuned. Combinatorial libraries, consisting of a myriad of possible antibodies, are capable of replicating the diversity of the natural human antibody repertoire. The isolation of target-specific antibodies with specific affinity characteristics can also be accomplished through modification of stringent protocols. Despite the ability to screen and select for high-affinity binders, some 'fine tuning' may be required to enhance antibody binding in terms of its affinity. This review will provide a brief account of phage display technology used for antibody generation followed by a summary of different combinatorial library characteristics. The review will focus on available strategies, which include molecular approaches, next generation sequencing, and in silico approaches used for antibody affinity maturation in both therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
6
|
Kang Z, Ding W, Jin P, Du G, Chen J. Combinatorial Evolution of DNA with RECODE. Methods Mol Biol 2018; 1772:205-212. [PMID: 29754230 DOI: 10.1007/978-1-4939-7795-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In past decades, DNA engineering protocols have led to the rapid development of synthetic biology. To engineer the natural proteins, many directed evolution methods based on molecular biology have been presented for generating genetic diversity or obtaining specific properties. Here, we provide a simple (PCR operation), efficient (larger amount of products), and powerful (multiple point mutations, deletions, insertions, and combinatorial multipoint mutagenesis) RECODE method, which is capable of reediting the target DNA flexibly to restructure regulatory regions and remodel enzymes by using the combined function of the thermostable DNA polymerase and DNA ligase in one pot. RECODE is expected to be an applicable choice to create diverse mutant libraries for rapid evolution and optimization of enzymes and synthetic pathways.
Collapse
Affiliation(s)
- Zhen Kang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China.
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Wenwen Ding
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Peng Jin
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Point mutation Arg153-His at surface of Bacillus lipase contributing towards increased thermostability and ester synthesis: insight into molecular network. Mol Cell Biochem 2017; 443:159-168. [DOI: 10.1007/s11010-017-3220-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/26/2017] [Indexed: 01/15/2023]
|
8
|
Cárcamo E, Roldán-Salgado A, Osuna J, Bello-Sanmartin I, Yáñez JA, Saab-Rincón G, Viadiu H, Gaytán P. Spiked Genes: A Method to Introduce Random Point Nucleotide Mutations Evenly throughout an Entire Gene Using a Complete Set of Spiked Oligonucleotides for the Assembly. ACS OMEGA 2017; 2:3183-3191. [PMID: 30023688 PMCID: PMC6044943 DOI: 10.1021/acsomega.7b00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 06/08/2023]
Abstract
In vitro mutagenesis methods have revolutionized biological research and the biotechnology industry. In this study, we describe a mutagenesis method based on synthesizing a gene using a complete set of forward and reverse spiked oligonucleotides that have been modified to introduce a low ratio of mutant nucleotides at each position. This novel mutagenesis scheme named "Spiked Genes" yields a library of clones with an enhanced mutation distribution due to its unbiased nucleotide incorporation. Using the far-red fluorescent protein emKate as a model, we demonstrated that Spiked Genes yields richer libraries than those obtained via enzymatic methods. We obtained a library without bias toward any nucleotide or base pair and with even mutations, transitions, and transversion frequencies. Compared with enzymatic methods, the proposed synthetic approach for the creation of gene libraries represents an improved strategy for screening protein variants and does not require a starting template.
Collapse
Affiliation(s)
- Edson Cárcamo
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Abigail Roldán-Salgado
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Joel Osuna
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Iván Bello-Sanmartin
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Jorge A. Yáñez
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Gloria Saab-Rincón
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Héctor Viadiu
- Instituto
de Química, Universidad Nacional
Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad
de Mexico 04510, México
| | - Paul Gaytán
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| |
Collapse
|
9
|
Jin P, Kang Z, Zhang J, Zhang L, Du G, Chen J. Combinatorial Evolution of Enzymes and Synthetic Pathways Using One-Step PCR. ACS Synth Biol 2016; 5:259-68. [PMID: 26751617 DOI: 10.1021/acssynbio.5b00240] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA engineering is the fundamental motive driving the rapid development of modern biotechnology. Here, we present a versatile evolution method termed "rapidly efficient combinatorial oligonucleotides for directed evolution" (RECODE) for rapidly introducing multiple combinatorial mutations to the target DNA by combined action of a thermostable high-fidelity DNA polymerase and a thermostable DNA Ligase in one reaction system. By applying this method, we rapidly constructed a variant library of the rpoS promoters (with activity of 8-460%), generated a novel heparinase from the highly specific leech hyaluronidase (with more than 30 mutant residues) and optimized the heme biosynthetic pathway by combinatorial evolution of regulatory elements and pathway enzymes (2500 ± 120 mg L(-1) with 20-fold increase). The simple RECODE method enabled researchers the unparalleled ability to efficiently create diverse mutant libraries for rapid evolution and optimization of enzymes and synthetic pathways.
Collapse
Affiliation(s)
- Peng Jin
- The
Key Laboratory of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Synergetic
Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhen Kang
- The
Key Laboratory of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Synergetic
Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
- The
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry
of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Junli Zhang
- The
Key Laboratory of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Synergetic
Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linpei Zhang
- The
Key Laboratory of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Synergetic
Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- The
Key Laboratory of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Synergetic
Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
- The
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry
of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- The
Key Laboratory of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Synergetic
Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|
11
|
Gonzalez-Perez D, Molina-Espeja P, Garcia-Ruiz E, Alcalde M. Mutagenic Organized Recombination Process by Homologous IN vivo Grouping (MORPHING) for directed enzyme evolution. PLoS One 2014; 9:e90919. [PMID: 24614282 PMCID: PMC3948698 DOI: 10.1371/journal.pone.0090919] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/06/2014] [Indexed: 11/19/2022] Open
Abstract
Approaches that depend on directed evolution require reliable methods to generate DNA diversity so that mutant libraries can focus on specific target regions. We took advantage of the high frequency of homologous DNA recombination in Saccharomyces cerevisiae to develop a strategy for domain mutagenesis aimed at introducing and in vivo recombining random mutations in defined segments of DNA. Mutagenic Organized Recombination Process by Homologous IN vivo Grouping (MORPHING) is a one-pot random mutagenic method for short protein regions that harnesses the in vivo recombination apparatus of yeast. Using this approach, libraries can be prepared with different mutational loads in DNA segments of less than 30 amino acids so that they can be assembled into the remaining unaltered DNA regions in vivo with high fidelity. As a proof of concept, we present two eukaryotic-ligninolytic enzyme case studies: i) the enhancement of the oxidative stability of a H2O2-sensitive versatile peroxidase by independent evolution of three distinct protein segments (Leu28-Gly57, Leu149-Ala174 and Ile199-Leu268); and ii) the heterologous functional expression of an unspecific peroxygenase by exclusive evolution of its native 43-residue signal sequence.
Collapse
Affiliation(s)
- David Gonzalez-Perez
- Departmento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Patricia Molina-Espeja
- Departmento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Eva Garcia-Ruiz
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Miguel Alcalde
- Departmento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
12
|
Hidalgo A, Schließmann A, Bornscheuer UT. One-pot Simple methodology for CAssette Randomization and Recombination for focused directed evolution (OSCARR). Methods Mol Biol 2014; 1179:207-212. [PMID: 25055780 DOI: 10.1007/978-1-4939-1053-3_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The OSCARR methodology (One-pot Simple methodology for CAssette Randomization and Recombination) bridges the gap between site-directed mutagenesis and full randomization by making use of carefully designed mutagenic cassettes and an optimized one-pot megaprimer PCR. The method is especially suited to construct libraries of up to ten randomized codons for focused directed evolution, exhibits up to 97 % efficiency in the amplification of mutated over wild-type products, and is sufficiently versatile to allow mutagenesis and recombination of several cassettes within the same gene.
Collapse
|
13
|
Hwang HT, Qi F, Yuan C, Zhao X, Ramkrishna D, Liu D, Varma A. Lipase-catalyzed process for biodiesel production: Protein engineering and lipase production. Biotechnol Bioeng 2013; 111:639-53. [PMID: 24284881 DOI: 10.1002/bit.25162] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/16/2013] [Accepted: 11/20/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Hyun Tae Hwang
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| | - Feng Qi
- Department of Chemical Engineering; Institute of Applied Chemistry; Tsinghua University; Beijing China
| | - Chongli Yuan
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| | - Xuebing Zhao
- Department of Chemical Engineering; Institute of Applied Chemistry; Tsinghua University; Beijing China
| | - Doraiswami Ramkrishna
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| | - Dehua Liu
- Department of Chemical Engineering; Institute of Applied Chemistry; Tsinghua University; Beijing China
| | - Arvind Varma
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| |
Collapse
|
14
|
Tee KL, Wong TS. Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv 2013; 31:1707-21. [PMID: 24012599 DOI: 10.1016/j.biotechadv.2013.08.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/31/2013] [Accepted: 08/31/2013] [Indexed: 12/25/2022]
Abstract
Genetic diversity creation is a core technology in directed evolution where a high quality mutant library is crucial to its success. Owing to its importance, the technology in genetic diversity creation has seen rapid development over the years and its application has diversified into other fields of scientific research. The advances in molecular cloning and mutagenesis since 2008 were reviewed. Specifically, new cloning techniques were classified based on their principles of complementary overhangs, homologous sequences, overlapping PCR and megaprimers and the advantages, drawbacks and performances of these methods were highlighted. New mutagenesis methods developed for random mutagenesis, focused mutagenesis and DNA recombination were surveyed. The technical requirements of these methods and the mutational spectra were compared and discussed with references to commonly used techniques. The trends of mutant library preparation were summarised. Challenges in genetic diversity creation were discussed with emphases on creating "smart" libraries, controlling the mutagenesis spectrum and specific challenges in each group of mutagenesis methods. An outline of the wider applications of genetic diversity creation includes genome engineering, viral evolution, metagenomics and a study of protein functions. The review ends with an outlook for genetic diversity creation and the prospective developments that can have future impact in this field.
Collapse
Affiliation(s)
- Kang Lan Tee
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, England, United Kingdom
| | | |
Collapse
|
15
|
Nobili A, Gall MG, Pavlidis IV, Thompson ML, Schmidt M, Bornscheuer UT. Use of ‘small but smart’ libraries to enhance the enantioselectivity of an esterase fromBacillus stearothermophilustowards tetrahydrofuran-3-yl acetate. FEBS J 2013; 280:3084-93. [DOI: 10.1111/febs.12137] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Alberto Nobili
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Germany
| | - Markus G. Gall
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Germany
| | - Ioannis V. Pavlidis
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Germany
| | - Mark L. Thompson
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Germany
| | - Marlen Schmidt
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Germany
| |
Collapse
|
16
|
Reetz MT. The Importance of Additive and Non-Additive Mutational Effects in Protein Engineering. Angew Chem Int Ed Engl 2013; 52:2658-66. [DOI: 10.1002/anie.201207842] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/19/2012] [Indexed: 01/01/2023]
|
17
|
Die Bedeutung von additiven und nicht-additiven Mutationseffekten beim Protein-Engineering. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207842] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Kumar A, Singh S. Directed evolution: tailoring biocatalysts for industrial applications. Crit Rev Biotechnol 2012; 33:365-78. [DOI: 10.3109/07388551.2012.716810] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Wang M, Si T, Zhao H. Biocatalyst development by directed evolution. BIORESOURCE TECHNOLOGY 2012; 115:117-25. [PMID: 22310212 PMCID: PMC3351540 DOI: 10.1016/j.biortech.2012.01.054] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 05/13/2023]
Abstract
Biocatalysis has emerged as a great addition to traditional chemical processes for production of bulk chemicals and pharmaceuticals. To overcome the limitations of naturally occurring enzymes, directed evolution has become the most important tool for improving critical traits of biocatalysts such as thermostability, activity, selectivity, and tolerance towards organic solvents for industrial applications. Recent advances in mutant library creation and high-throughput screening have greatly facilitated the engineering of novel and improved biocatalysts. This review provides an update of the recent developments in the use of directed evolution to engineer biocatalysts for practical applications.
Collapse
Affiliation(s)
- Meng Wang
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Tong Si
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Departments of Chemistry, Biochemistry, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- To whom correspondence should be addressed. Phone: (217) 333-2631. Fax: (217) 333-5052.
| |
Collapse
|
20
|
Arunachalam TS, Wichert C, Appel B, Müller S. Mixed oligonucleotides for random mutagenesis: best way of making them. Org Biomol Chem 2012; 10:4641-50. [PMID: 22552713 DOI: 10.1039/c2ob25328c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The generation of proteins, especially enzymes, with pre-deliberated, novel properties is a big challenge in the field of protein engineering. This aim, over the years was critically facilitated by newly emerging methods of combinatorial and evolutionary techniques, such as combinatorial gene synthesis followed by functional screening of many structural variants generated in parallel (library). Libraries can be generated by a large number of available methods. Therein the use of mixtures of pre-formed trinucleotide blocks representing codons for the 20 canonical amino acids for oligonucleotide synthesis stands out as allowing fully controlled partial (or total) randomization individually at any number of arbitrarily chosen codon positions of a given gene. This has created substantial demand of fully protected trinucleotide synthons of good reactivity in standard oligonucleotide synthesis. We here review methods for the preparation of oligonucleotide mixtures with a strong focus on codon-specific trinucleotide blocks.
Collapse
Affiliation(s)
- Tamil Selvi Arunachalam
- Institut für Biochemie, Ernst Moritz Arndt Universität, Felix Hausdorff Strasse 4, Greifswald, D-17487, Germany
| | | | | | | |
Collapse
|
21
|
Jochens H, Hesseler M, Stiba K, Padhi SK, Kazlauskas RJ, Bornscheuer UT. Protein Engineering of α/β-Hydrolase Fold Enzymes. Chembiochem 2011; 12:1508-17. [DOI: 10.1002/cbic.201000771] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Indexed: 01/01/2023]
|
22
|
Liang J, Luo Y, Zhao H. Synthetic biology: putting synthesis into biology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:7-20. [PMID: 21064036 PMCID: PMC3057768 DOI: 10.1002/wsbm.104] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself—encompassing many branches of science and across many scales of application. New DNA synthesis and assembly techniques have made routine customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery—a self‐replicating organism—is being pursued at this moment. The aim of this article is to dissect and organize these various components of synthetic biology into a coherent picture. WIREs Syst Biol Med 2011 3 7–20 DOI: 10.1002/wsbm.104 This article is categorized under:
Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Laboratory Methods and Technologies > Metabolomics
Collapse
Affiliation(s)
- Jing Liang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
23
|
Reetz MT. Gerichtete Evolution stereoselektiver Enzyme: Eine ergiebige Katalysator‐Quelle für asymmetrische Reaktionen. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000826] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Manfred T. Reetz
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Deutschland), Fax: (+49) 208‐306‐2985 http://www.mpi‐muelheim.mpg.de/mpikofo_home.html
| |
Collapse
|
24
|
Reetz MT. Laboratory Evolution of Stereoselective Enzymes: A Prolific Source of Catalysts for Asymmetric Reactions. Angew Chem Int Ed Engl 2010; 50:138-74. [DOI: 10.1002/anie.201000826] [Citation(s) in RCA: 441] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Manfred T. Reetz
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208‐306‐2985 http://www.mpi‐muelheim.mpg.de/mpikofo_home.html
| |
Collapse
|
25
|
Jochens H, Bornscheuer UT. Natural Diversity to Guide Focused Directed Evolution. Chembiochem 2010; 11:1861-6. [DOI: 10.1002/cbic.201000284] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Schliessmann A, Hidalgo A, Berenguer J, Bornscheuer UT. Increased enantioselectivity by engineering bottleneck mutants in an esterase from Pseudomonas fluorescens. Chembiochem 2010; 10:2920-3. [PMID: 19847842 DOI: 10.1002/cbic.200900563] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Four hydrophobic and bulky amino acid residues (F126, F144, F159, and I225) were identified to form a bottleneck guarding the entrance to the active site of an esterase from Pseudomonas fluorescens (PFE I). Hence, a range of nonpolar amino acids were introduced into PFE I to broaden the substrate range and to increase enantioselectivity while preserving the hydrophobicity of the tunnel. First, single variants were created and then the most enantioselective ones were combined to find cooperative effects. This resulted in several mutants, which showed substantially enhanced enantioselectivity; for instance, in the kinetic resolution of 1-phenyl-1-propyl acetate, with which the wild type only showed E=1.2, two mutants gave E>46. For 1-phenyl-1-ethyl acetate enantioselectivity increased from approximately 50 to >100 for all mutants studied. Furthermore, higher conversions could be found at shorter reaction times; this indicates that the mutations not only enhanced selectivity, but that also the entrance into the active site was indeed facilitated by these mutations. The experimental results could be explained by computer modeling.
Collapse
Affiliation(s)
- Anna Schliessmann
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Germany
| | | | | | | |
Collapse
|
27
|
Protein engineering of microbial enzymes. Curr Opin Microbiol 2010; 13:274-82. [PMID: 20171138 DOI: 10.1016/j.mib.2010.01.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 11/20/2022]
Abstract
Protein engineering has emerged as an important tool to overcome the limitations of natural enzymes as biocatalysts. Recent advances have mainly focused on applying directed evolution to enzymes, especially important for organic synthesis, such as monooxygenases, ketoreductases, lipases or aldolases in order to improve their activity, enantioselectivity, and stability. The combination of directed evolution and rational protein design using computational tools is becoming increasingly important in order to explore enzyme sequence-space and to create improved or novel enzymes. These developments should allow to further expand the application of microbial enzymes in industry.
Collapse
|
28
|
Kourist R, Brundiek H, Bornscheuer UT. Protein engineering and discovery of lipases. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.200900143] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Damborsky J, Brezovsky J. Computational tools for designing and engineering biocatalysts. Curr Opin Chem Biol 2009; 13:26-34. [PMID: 19297237 DOI: 10.1016/j.cbpa.2009.02.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/15/2009] [Accepted: 02/17/2009] [Indexed: 11/28/2022]
Abstract
Current computational tools to assist experimentalists for the design and engineering of proteins with desired catalytic properties are reviewed. The applications of these tools for de novo design of protein active sites, optimization of substrate access and product exit pathways, redesign of protein-protein interfaces, identification of neutral/advantageous/deleterious mutations in the libraries from directed evolution and stabilization of protein structures are described. Remarkable progress is seen in de novo design of enzymes catalyzing a chemical reaction for which a natural biocatalyst does not exist. Yet, constructed biocatalysts do not match natural enzymes in their efficiency, suggesting that more research is needed to capture all the important features of natural biocatalysts in theoretical designs.
Collapse
Affiliation(s)
- Jiri Damborsky
- Institute of Experimental Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.
| | | |
Collapse
|
30
|
Shivange AV, Marienhagen J, Mundhada H, Schenk A, Schwaneberg U. Advances in generating functional diversity for directed protein evolution. Curr Opin Chem Biol 2009; 13:19-25. [DOI: 10.1016/j.cbpa.2009.01.019] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/26/2009] [Accepted: 01/28/2009] [Indexed: 11/16/2022]
|