1
|
Xu X, Wang M, Sun J, Yu Z, Li G, Yang N, Xu RM. Structure specific DNA recognition by the SLX1-SLX4 endonuclease complex. Nucleic Acids Res 2021; 49:7740-7752. [PMID: 34181713 PMCID: PMC8287910 DOI: 10.1093/nar/gkab542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
The SLX1–SLX4 structure-specific endonuclease complex is involved in processing diverse DNA damage intermediates, including resolution of Holliday junctions, collapse of stalled replication forks and removal of DNA flaps. The nuclease subunit SLX1 is inactive on its own, but become activated upon binding to SLX4 via its conserved C-terminal domain (CCD). Yet, how the SLX1–SLX4 complex recognizes specific DNA structure and chooses cleavage sites remains unknown. Here we show, through a combination of structural, biochemical and computational analyses, that the SAP domain of SLX4 is critical for efficient and accurate processing of 5′-flap DNA. It binds the minor groove of DNA about one turn away from the flap junction, and the 5′-flap is implicated in binding the core domain of SLX1. This binding mode accounts for specific recognition of 5′-flap DNA and specification of cleavage site by the SLX1–SLX4 complex.
Collapse
Affiliation(s)
- Xiang Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin 300353, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingzhu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Jixue Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin 300353, China
| | - Zhenyu Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin 300353, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Gupta S, Sasidhar YU. Impact of Turn Propensity on the Folding Rates of Z34C Protein: Implications for the Folding of Helix-Turn-Helix Motif. J Phys Chem B 2017; 121:1268-1283. [PMID: 28094941 DOI: 10.1021/acs.jpcb.6b12219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rate-limiting step for the folding of the helix-turn-helix (HTH) protein, Z34C, involves β-turn region 20DPNL23. This reverse turn has been observed to be part of the transition state in the folding process for Z34C, influencing its folding rates. Molecular dynamics simulations were performed on this turn peptide and its two mutants, D20A and P21A, to study turn formation using GROMOS54A7 force field. We find that this region has a turn propensity of its own, and the highest turn propensity is observed for the wild-type, which correlates well with available experimental results. We also find that a slight unfavorable change in ΔG turn folding causes a drastic change in the folding rates of HTH motif and a mechanistic interpretation is given. Implications of these observations for the folding of the HTH protein Z34C are discussed.
Collapse
Affiliation(s)
- Shubhangi Gupta
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400 076, India
| | - Yellamraju U Sasidhar
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400 076, India
| |
Collapse
|
3
|
Dodson CA, Arbely E. Protein folding of the SAP domain, a naturally occurring two-helix bundle. FEBS Lett 2015; 589:1740-7. [PMID: 26073259 PMCID: PMC4509717 DOI: 10.1016/j.febslet.2015.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/01/2015] [Accepted: 06/01/2015] [Indexed: 11/25/2022]
Abstract
Thol SAP domain is one of the smallest model protein folding domains. SAP domain folds through a diffuse transition state in which helix 1 is most formed. Native state stability is dominated by contacts formed after the transition state.
The SAP domain from the Saccharomyces cerevisiae Tho1 protein is comprised of just two helices and a hydrophobic core and is one of the smallest proteins whose folding has been characterised. Φ-value analysis revealed that Tho1 SAP folds through a transition state where helix 1 is the most extensively formed element of secondary structure and flickering native-like core contacts from Leu35 are also present. The contacts that contribute most to native state stability of Tho1 SAP are not formed in the transition state.
Collapse
Affiliation(s)
- Charlotte A Dodson
- MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 0QH, UK; Molecular Medicine, National Heart & Lung Institute, Imperial College London, SAF Building, London SW7 2AZ, UK.
| | - Eyal Arbely
- MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
4
|
Kubelka GS, Kubelka J. Site-Specific Thermodynamic Stability and Unfolding of a de Novo Designed Protein Structural Motif Mapped by 13C Isotopically Edited IR Spectroscopy. J Am Chem Soc 2014; 136:6037-48. [DOI: 10.1021/ja500918k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ginka S. Kubelka
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jan Kubelka
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
5
|
Differential scanning calorimetry as a tool for protein folding and stability. Arch Biochem Biophys 2013; 531:100-9. [DOI: 10.1016/j.abb.2012.09.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/11/2012] [Accepted: 09/18/2012] [Indexed: 01/19/2023]
|
6
|
Zhuang Z, Jewett AI, Kuttimalai S, Bellesia G, Gnanakaran S, Shea JE. Assisted peptide folding by surface pattern recognition. Biophys J 2011; 100:1306-15. [PMID: 21354404 DOI: 10.1016/j.bpj.2010.12.3735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/09/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022] Open
Abstract
Natively disordered proteins belong to a unique class of biomolecules whose function is related to their flexibility and their ability to adopt desired conformations upon binding to substrates. In some cases these proteins can bind multiple partners, which can lead to distinct structures and promiscuity in functions. In other words, the capacity to recognize molecular patterns on the substrate is often essential for the folding and function of intrinsically disordered proteins. Biomolecular pattern recognition is extremely relevant both in vivo (e.g., for oligomerization, immune response, induced folding, substrate binding, and molecular switches) and in vitro (e.g., for biosensing, catalysis, chromatography, and implantation). Here, we use a minimalist computational model system to investigate how polar/nonpolar patterns on a surface can induce the folding of an otherwise unstructured peptide. We show that a model peptide that exists in the bulk as a molten globular state consisting of many interconverting structures can fold into either a helix-coil-helix or an extended helix structure in the presence of a complementary designed patterned surface at low hydrophobicity (3.7%) or a uniform surface at high hydrophobicity (50%). However, we find that a carefully chosen surface pattern can bind to and catalyze the folding of a natively unfolded protein much more readily or effectively than a surface with a noncomplementary or uniform distribution of hydrophobic residues.
Collapse
Affiliation(s)
- Zhuoyun Zhuang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | | | | | | | | | | |
Collapse
|