1
|
Xu T, Tong L, Zhang Z, Zhou H, Zheng P. Glycosylation in Drosophila S2 cells. Biotechnol Bioeng 2024; 121:3672-3683. [PMID: 39140464 DOI: 10.1002/bit.28827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/12/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
In recent years, there has been a remarkable surge in the approval of therapeutic protein drugs, particularly recombinant glycoproteins. Drosophila melanogaster S2 cells have become an appealing platform for the production of recombinant proteins due to their simplicity and low cost in cell culture. However, a significant limitation associated with using the S2 cell expression system is its propensity to introduce simple paucimannosidic glycosylation structures, which differs from that in the mammalian expression system. It is well established that the glycosylation patterns of glycoproteins have a profound impact on the physicochemical properties, bioactivity, and immunogenicity. Therefore, understanding the mechanisms behind these glycosylation modifications and implementing measures to address it has become a subject of considerable interest. This review aims to comprehensively summarize recent advancements in glycosylation modification in S2 cells, with a particular focus on comparing the glycosylation patterns among S2, other insect cells, and mammalian cells, as well as developing strategies for altering the glycosylation patterns of recombinant glycoproteins.
Collapse
Affiliation(s)
- Tingting Xu
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Lixiang Tong
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Zhifu Zhang
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Hairong Zhou
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Peilin Zheng
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|
2
|
Chen H, Chen JS, Paerhati P, Jakos T, Bai SY, Zhu JW, Yuan YS. Strategies and Applications of Antigen-Binding Fragment (Fab) Production in Escherichia coli. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1735145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractWith the advancement of genetic engineering, monoclonal antibodies (mAbs) have made far-reaching progress in the treatment of various human diseases. However, due to the high cost of production, the increasing demands for antibody-based therapies have not been fully met. Currently, mAb-derived alternatives, such as antigen-binding fragments (Fab), single-chain variable fragments, bispecifics, nanobodies, and conjugated mAbs have emerged as promising new therapeutic modalities. They can be readily prepared in bacterial systems with well-established fermentation technology and ease of manipulation, leading to the reduction of overall cost. This review aims to shed light on the strategies to improve the expression, purification, and yield of Fab fragments in Escherichia coli expression systems, as well as current advances in the applications of Fab fragments.
Collapse
Affiliation(s)
- Hui Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Jun-Sheng Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Pameila Paerhati
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Tanja Jakos
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Si-Yi Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Jian-Wei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Yun-Sheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Identification of a Neutralizing Epitope on TOSV Gn Glycoprotein. Vaccines (Basel) 2021; 9:vaccines9080924. [PMID: 34452049 PMCID: PMC8402642 DOI: 10.3390/vaccines9080924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging and re-emerging viral infections have been an important public health problem in recent years. We focused our attention on Toscana virus (TOSV), an emergent neurotropic negative-strand RNA virus of the Phenuiviridae family. The mechanisms of protection against phlebovirus natural infection are not known; however, it is supposed that a virus-neutralizing antibody response against viral glycoproteins would be useful to block the first stages of infection. By using an improved memory B cell immortalization method, we obtained a panel of human mAbs which reacted with TOSV antigens. We identified three epitopes of TOSV Gn glycoproteins by neutralizing mAbs using synthetic peptide arrays on membrane support (SPOT synthesis). These epitopes, separated in primary structure, might be exposed near one another as a conformational epitope in their native structure. In vivo studies were conducted to evaluate the humoral response elicited in mice immunized with the identified peptides. The results underlined the hypothesis that the first two peptides located in the NH2 terminus could form a conformational epitope, while the third, located near the transmembrane sequence in the carboxyl terminus, was necessary to strengthen neutralizing activity. Our results emphasize the importance of identifying neutralizing epitopes shared among the various phleboviruses, which could be exploited for the development of a potential epitope-based diagnostic assay or a polyvalent protective vaccine against different phleboviruses.
Collapse
|
4
|
Sanchez-Velazquez R, de Lorenzo G, Tandavanitj R, Setthapramote C, Bredenbeek PJ, Bozzacco L, MacDonald MR, Clark JJ, Rice CM, Patel AH, Kohl A, Varjak M. Generation of a reporter yellow fever virus for high throughput antiviral assays. Antiviral Res 2020; 183:104939. [PMID: 32980446 PMCID: PMC7649875 DOI: 10.1016/j.antiviral.2020.104939] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 01/30/2023]
Abstract
Yellow fever virus (YFV), a member of the Flaviviridae family, is an arthropod-borne virus that can cause severe disease in humans with a lethality rate of up to 60%. Since 2017, increases in YFV activity in areas of South America and Africa have been described. Although a vaccine is available, named strain 17D (Theiler and Smith, 1937), it is contraindicated for use in the elderly, expectant mothers, immunocompromised people, among others. To this day there is no antiviral treatment against YFV to reduce the severity of viral infection. Here, we used a circular polymerase extension reaction (CPER)-based reverse genetics approach to generate a full-length reporter virus (YFVhb) by introducing a small HiBit tag in the NS1 protein. The reporter virus replicates at a similar rate to the parental YFV in HuH-7 cells. Using YFVhb, we designed a high throughput antiviral screening luciferase-based assay to identify inhibitors that target any step of the viral replication cycle. We validated our assay by using a range of inhibitors including drugs, immune sera and neutralizing single chain variable fragments (scFv). In light of the recent upsurge in YFV and a potential spread of the virus, this assay is a further tool in the development of antiviral therapy against YFV. Bacteria-free approach to rescue yellow fever virus. Novel tagged yellow fever virus that permits quantifiable assays. Usage of the novel tagged virus for screening of antivirals and immune sera. Novel antiviral compounds against YFV were identified.
Collapse
Affiliation(s)
| | | | | | | | - Peter J Bredenbeek
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Leonia Bozzacco
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Jordan J Clark
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, UK
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Arvind H Patel
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, UK
| | - Alain Kohl
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, UK
| | - Margus Varjak
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
5
|
Woelfl F, Léger P, Oreshkova N, Pahmeier F, Windhaber S, Koch J, Stanifer M, Roman Sosa G, Uckeley ZM, Rey FA, Boulant S, Kortekaas J, Wichgers Schreur PJ, Lozach PY. Novel Toscana Virus Reverse Genetics System Establishes NSs as an Antagonist of Type I Interferon Responses. Viruses 2020; 12:v12040400. [PMID: 32260371 PMCID: PMC7232479 DOI: 10.3390/v12040400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
The sand fly-borne Toscana virus (TOSV) is the major cause of human meningoencephalitis in the Mediterranean basin during the summer season. In this work, we have developed a T7 RNA polymerase-driven reverse genetics system to recover infectious particles of a lineage B strain of TOSV. The viral protein pattern and growth properties of the rescued virus (rTOSV) were found to be similar to those of the corresponding wild-type (wt) virus. Using this system, we genetically engineered a TOSV mutant lacking expression of the non-structural protein NSs (rTOSVɸNSs). Unlike rTOSV and the wt virus, rTOSVɸNSs was unable to (i) suppress interferon (IFN)-b messenger RNA induction; and (ii) grow efficiently in cells producing IFN-b. Together, our results highlight the importance of NSs for TOSV in evading the IFN response and provide a comprehensive toolbox to investigate the TOSV life cycle in mammalian and insect host cells, including several novel polyclonal antibodies.
Collapse
Affiliation(s)
- Franziska Woelfl
- CellNetworks Cluster of Excellence, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.W.); (P.L.); (F.P.); (S.W.); (J.K.); (Z.M.U.)
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Psylvia Léger
- CellNetworks Cluster of Excellence, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.W.); (P.L.); (F.P.); (S.W.); (J.K.); (Z.M.U.)
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Nadia Oreshkova
- Wageningen Bioveterinary Research, Department of Virology, 8221 RA Lelystad, The Netherlands; (N.O.); (J.K.)
| | - Felix Pahmeier
- CellNetworks Cluster of Excellence, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.W.); (P.L.); (F.P.); (S.W.); (J.K.); (Z.M.U.)
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Stefan Windhaber
- CellNetworks Cluster of Excellence, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.W.); (P.L.); (F.P.); (S.W.); (J.K.); (Z.M.U.)
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Jana Koch
- CellNetworks Cluster of Excellence, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.W.); (P.L.); (F.P.); (S.W.); (J.K.); (Z.M.U.)
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Megan Stanifer
- Center for Integrative Infectious Diseases Research (CIID), Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Gleyder Roman Sosa
- Structural Virology Unit, Pasteur Institute, 75015 Paris, France; (G.R.S.); (F.A.R.)
| | - Zina M. Uckeley
- CellNetworks Cluster of Excellence, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.W.); (P.L.); (F.P.); (S.W.); (J.K.); (Z.M.U.)
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Felix A. Rey
- Structural Virology Unit, Pasteur Institute, 75015 Paris, France; (G.R.S.); (F.A.R.)
| | - Steeve Boulant
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Department of Virology, 8221 RA Lelystad, The Netherlands; (N.O.); (J.K.)
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Paul J. Wichgers Schreur
- Wageningen Bioveterinary Research, Department of Virology, 8221 RA Lelystad, The Netherlands; (N.O.); (J.K.)
- Correspondence: (P.J.W.S.); (P.-Y.L.)
| | - Pierre-Yves Lozach
- CellNetworks Cluster of Excellence, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.W.); (P.L.); (F.P.); (S.W.); (J.K.); (Z.M.U.)
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- INRAE, EPHE, Viral Infections and Comparative Pathology (IVPC), University Claude Bernard Lyon1, University of Lyon, UMR754, 69007 Lyon, France
- Correspondence: (P.J.W.S.); (P.-Y.L.)
| |
Collapse
|
6
|
Borst AJ, James ZM, Zagotta WN, Ginsberg M, Rey FA, DiMaio F, Backovic M, Veesler D. The Therapeutic Antibody LM609 Selectively Inhibits Ligand Binding to Human α Vβ 3 Integrin via Steric Hindrance. Structure 2017; 25:1732-1739.e5. [PMID: 29033288 DOI: 10.1016/j.str.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/20/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022]
Abstract
The LM609 antibody specifically recognizes αVβ3 integrin and inhibits angiogenesis, bone resorption, and viral infections in an arginine-glycine-aspartate-independent manner. LM609 entered phase II clinical trials for the treatment of several cancers and was also used for αVβ3-targeted radioimmunotherapy. To elucidate the mechanisms of recognition and inhibition of αVβ3 integrin, we solved the structure of the LM609 antigen-binding fragment by X-ray crystallography and determined its binding affinity for αVβ3. Using single-particle electron microscopy, we show that LM609 binds at the interface between the β-propeller domain of the αV chain and the βI domain of the β3 chain, near the RGD-binding site, of all observed integrin conformational states. Integrating these data with fluorescence size-exclusion chromatography, we demonstrate that LM609 sterically hinders access of large ligands to the RGD-binding pocket, without obstructing it. This work provides a structural framework to expedite future efforts utilizing LM609 as a diagnostic or therapeutic tool.
Collapse
Affiliation(s)
- Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Zachary M James
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Mark Ginsberg
- Department of Hematology and Oncology, University of California at San Diego, La Jolla, CA 92093-0726, USA
| | - Felix A Rey
- Unité de Virologie Structurale, Institut Pasteur, Paris, France; CNRS UMR 3569 Virologie, Paris, France
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marija Backovic
- Unité de Virologie Structurale, Institut Pasteur, Paris, France; CNRS UMR 3569 Virologie, Paris, France.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature 2016; 536:48-53. [PMID: 27338953 DOI: 10.1038/nature18938] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/17/2016] [Indexed: 12/12/2022]
Abstract
Zika virus is a member of the Flavivirus genus that had not been associated with severe disease in humans until the recent outbreaks, when it was linked to microcephaly in newborns in Brazil and to Guillain-Barré syndrome in adults in French Polynesia. Zika virus is related to dengue virus, and here we report that a subset of antibodies targeting a conformational epitope isolated from patients with dengue virus also potently neutralize Zika virus. The crystal structure of two of these antibodies in complex with the envelope protein of Zika virus reveals the details of a conserved epitope, which is also the site of interaction of the envelope protein dimer with the precursor membrane (prM) protein during virus maturation. Comparison of the Zika and dengue virus immunocomplexes provides a lead for rational, epitope-focused design of a universal vaccine capable of eliciting potent cross-neutralizing antibodies to protect simultaneously against both Zika and dengue virus infections.
Collapse
|
8
|
Rouvinski A, Guardado-Calvo P, Barba-Spaeth G, Duquerroy S, Vaney MC, Kikuti CM, Navarro Sanchez ME, Dejnirattisai W, Wongwiwat W, Haouz A, Girard-Blanc C, Petres S, Shepard WE, Desprès P, Arenzana-Seisdedos F, Dussart P, Mongkolsapaya J, Screaton GR, Rey FA. Recognition determinants of broadly neutralizing human antibodies against dengue viruses. Nature 2015; 520:109-13. [PMID: 25581790 DOI: 10.1038/nature14130] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
Dengue disease is caused by four different flavivirus serotypes, which infect 390 million people yearly with 25% symptomatic cases and for which no licensed vaccine is available. Recent phase III vaccine trials showed partial protection, and in particular no protection for dengue virus serotype 2 (refs 3, 4). Structural studies so far have characterized only epitopes recognized by serotype-specific human antibodies. We recently isolated human antibodies potently neutralizing all four dengue virus serotypes. Here we describe the X-ray structures of four of these broadly neutralizing antibodies in complex with the envelope glycoprotein E from dengue virus serotype 2, revealing that the recognition determinants are at a serotype-invariant site at the E-dimer interface, including the exposed main chain of the E fusion loop and the two conserved glycan chains. This 'E-dimer-dependent epitope' is also the binding site for the viral glycoprotein prM during virus maturation in the secretory pathway of the infected cell, explaining its conservation across serotypes and highlighting an Achilles' heel of the virus with respect to antibody neutralization. These findings will be instrumental for devising novel immunogens to protect simultaneously against all four serotypes of dengue virus.
Collapse
Affiliation(s)
- Alexander Rouvinski
- 1] Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France [2] CNRS UMR 3569 Virologie, 75724 Paris Cedex 15, France
| | - Pablo Guardado-Calvo
- 1] Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France [2] CNRS UMR 3569 Virologie, 75724 Paris Cedex 15, France
| | - Giovanna Barba-Spaeth
- 1] Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France [2] CNRS UMR 3569 Virologie, 75724 Paris Cedex 15, France
| | - Stéphane Duquerroy
- 1] Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France [2] CNRS UMR 3569 Virologie, 75724 Paris Cedex 15, France [3] Université Paris-Sud, Faculté des Sciences, 91405 Orsay, France
| | - Marie-Christine Vaney
- 1] Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France [2] CNRS UMR 3569 Virologie, 75724 Paris Cedex 15, France
| | - Carlos M Kikuti
- 1] Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France [2] CNRS UMR 3569 Virologie, 75724 Paris Cedex 15, France
| | - M Erika Navarro Sanchez
- 1] Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France [2] CNRS UMR 3569 Virologie, 75724 Paris Cedex 15, France
| | - Wanwisa Dejnirattisai
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Wiyada Wongwiwat
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Ahmed Haouz
- Institut Pasteur, Protéopôle, CNRS UMR 3528, 75724 Paris Cedex 15, France
| | | | - Stéphane Petres
- Institut Pasteur, Protéopôle, CNRS UMR 3528, 75724 Paris Cedex 15, France
| | - William E Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, 91192 Gif-sur-Yvette, France
| | - Philippe Desprès
- Institut Pasteur, Département de Virologie, Unité des Interactions Moléculaires Flavivirus-Hôtes, 75724 Paris Cedex 15, France
| | - Fernando Arenzana-Seisdedos
- Institut Pasteur, Département de Virologie, Unité de Pathogénie Virale, INSERM U1108, 75724 Paris Cedex 15, France
| | - Philippe Dussart
- Institut Pasteur de Guyane, BP 6010, 97306 Cayenne, French Guiana
| | - Juthathip Mongkolsapaya
- 1] Division of Immunology and Inflammation, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK [2] Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Gavin R Screaton
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Félix A Rey
- 1] Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France [2] CNRS UMR 3569 Virologie, 75724 Paris Cedex 15, France [3] Institut Pasteur, Protéopôle, CNRS UMR 3528, 75724 Paris Cedex 15, France
| |
Collapse
|
9
|
Structural flexibility of a conserved antigenic region in hepatitis C virus glycoprotein E2 recognized by broadly neutralizing antibodies. J Virol 2014; 89:2170-81. [PMID: 25473061 DOI: 10.1128/jvi.02190-14] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Neutralizing antibodies (NAbs) targeting glycoprotein E2 are important for the control of hepatitis C virus (HCV) infection. One conserved antigenic site (amino acids 412 to 423) is disordered in the reported E2 structure, but a synthetic peptide mimicking this site forms a β-hairpin in complex with three independent NAbs. Our structure of the same peptide in complex with NAb 3/11 demonstrates a strikingly different extended conformation. We also show that residues 412 to 423 are essential for virus entry but not for E2 folding. Together with the neutralizing capacity of the 3/11 Fab fragment, this indicates an unexpected structural flexibility within this epitope. NAbs 3/11 and AP33 (recognizing the extended and β-hairpin conformations, respectively) display similar neutralizing activities despite converse binding kinetics. Our results suggest that HCV utilizes conformational flexibility as an immune evasion strategy, contributing to the limited immunogenicity of this epitope in patients, similar to the conformational flexibility described for other enveloped and nonenveloped viruses. IMPORTANCE Approximately 180 million people worldwide are infected with hepatitis C virus (HCV), and neutralizing antibodies play an important role in controlling the replication of this major human pathogen. We show here that one of the most conserved antigenic sites within the major glycoprotein E2 (amino acids 412 to 423), which is disordered in the recently reported crystal structure of an E2 core fragment, can adopt different conformations in the context of the infectious virus particle. Recombinant Fab fragments recognizing different conformations of this antigenic site have similar neutralization activities in spite of converse kinetic binding parameters. Of note, an antibody response targeting this antigenic region is less frequent than those targeting other more immunogenic regions in E2. Our results suggest that the observed conformational flexibility in this conserved antigenic region contributes to the evasion of the humoral host immune response, facilitating chronicity and the viral spread of HCV within an infected individual.
Collapse
|
10
|
Sawant SG, Fielden MR, Black KA. Evaluation of genotoxicity testing of FDA approved large molecule therapeutics. Regul Toxicol Pharmacol 2014; 70:87-97. [PMID: 24932799 DOI: 10.1016/j.yrtph.2014.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/02/2014] [Accepted: 06/06/2014] [Indexed: 11/25/2022]
Abstract
Large molecule therapeutics (MW>1000daltons) are not expected to enter the cell and thus have reduced potential to interact directly with DNA or related physiological processes. Genotoxicity studies are therefore not relevant and typically not required for large molecule therapeutic candidates. Regulatory guidance supports this approach; however there are examples of marketed large molecule therapeutics where sponsors have conducted genotoxicity studies. A retrospective analysis was performed on genotoxicity studies of United States FDA approved large molecule therapeutics since 1998 identified through the Drugs@FDA website. This information was used to provide a data-driven rationale for genotoxicity evaluations of large molecule therapeutics. Fifty-three of the 99 therapeutics identified were tested for genotoxic potential. None of the therapeutics tested showed a positive outcome in any study except the peptide glucagon (GlucaGen®) showing equivocal in vitro results, as stated in the product labeling. Scientific rationale and data from this review indicate that testing of a majority of large molecule modalities do not add value to risk assessment and support current regulatory guidance. Similarly, the data do not support testing of peptides containing only natural amino acids. Peptides containing non-natural amino acids and small molecules in conjugated products may need to be tested.
Collapse
Affiliation(s)
- Satin G Sawant
- Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA 91320, United States.
| | - Mark R Fielden
- Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA 91320, United States
| | - Kurt A Black
- Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA 91320, United States
| |
Collapse
|
11
|
Tarr AW, Lafaye P, Meredith L, Damier-Piolle L, Urbanowicz RA, Meola A, Jestin JL, Brown RJP, McKeating JA, Rey FA, Ball JK, Krey T. An alpaca nanobody inhibits hepatitis C virus entry and cell-to-cell transmission. Hepatology 2013; 58:932-9. [PMID: 23553604 DOI: 10.1002/hep.26430] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/25/2013] [Indexed: 12/26/2022]
Abstract
UNLABELLED Severe liver disease caused by chronic hepatitis C virus is the major indication for liver transplantation. Despite recent advances in antiviral therapy, drug toxicity and unwanted side effects render effective treatment in liver-transplanted patients a challenging task. Virus-specific therapeutic antibodies are generally safe and well-tolerated, but their potential in preventing and treating hepatitis C virus (HCV) infection has not yet been realized due to a variety of issues, not least high production costs and virus variability. Heavy-chain antibodies or nanobodies, produced by camelids, represent an exciting antiviral approach; they can target novel highly conserved epitopes that are inaccessible to normal antibodies, and they are also easy to manipulate and produce. We isolated four distinct nanobodies from a phage-display library generated from an alpaca immunized with HCV E2 glycoprotein. One of them, nanobody D03, recognized a novel epitope overlapping with the epitopes of several broadly neutralizing human monoclonal antibodies. Its crystal structure revealed a long complementarity determining region (CD3) folding over part of the framework that, in conventional antibodies, forms the interface between heavy and light chain. D03 neutralized a panel of retroviral particles pseudotyped with HCV glycoproteins from six genotypes and authentic cell culture-derived particles by interfering with the E2-CD81 interaction. In contrast to some of the most broadly neutralizing human anti-E2 monoclonal antibodies, D03 efficiently inhibited HCV cell-to-cell transmission. CONCLUSION This is the first description of a potent and broadly neutralizing HCV-specific nanobody representing a significant advance that will lead to future development of novel entry inhibitors for the treatment and prevention of HCV infection and help our understanding of HCV cell-to-cell transmission.
Collapse
Affiliation(s)
- Alexander W Tarr
- School of Molecular Medical Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol 2013; 4:217. [PMID: 23908655 PMCID: PMC3725456 DOI: 10.3389/fimmu.2013.00217] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022] Open
Abstract
Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with "human-like" post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.
Collapse
Affiliation(s)
- André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
13
|
Krey T, Meola A, Keck ZY, Damier-Piolle L, Foung SKH, Rey FA. Structural basis of HCV neutralization by human monoclonal antibodies resistant to viral neutralization escape. PLoS Pathog 2013; 9:e1003364. [PMID: 23696737 PMCID: PMC3656090 DOI: 10.1371/journal.ppat.1003364] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/02/2013] [Indexed: 01/27/2023] Open
Abstract
The high mutation rate of hepatitis C virus allows it to rapidly evade the humoral immune response. However, certain epitopes in the envelope glycoproteins cannot vary without compromising virus viability. Antibodies targeting these epitopes are resistant to viral escape from neutralization and understanding their binding-mode is important for vaccine design. Human monoclonal antibodies HC84-1 and HC84-27 target conformational epitopes overlapping the CD81 receptor-binding site, formed by segments aa434-446 and aa610-619 within the major HCV glycoprotein E2. No neutralization escape was yet observed for these antibodies. We report here the crystal structures of their Fab fragments in complex with a synthetic peptide comprising aa434-446. The structures show that the peptide adopts an α-helical conformation with the main contact residues F⁴⁴² and Y⁴⁴³ forming a hydrophobic protrusion. The peptide retained its conformation in both complexes, independently of crystal packing, indicating that it reflects a surface feature of the folded glycoprotein that is exposed similarly on the virion. The same residues of E2 are also involved in interaction with CD81, suggesting that the cellular receptor binds the same surface feature and potential escape mutants critically compromise receptor binding. In summary, our results identify a critical structural motif at the E2 surface, which is essential for virus propagation and therefore represents an ideal candidate for structure-based immunogen design for vaccine development.
Collapse
Affiliation(s)
- Thomas Krey
- Institut Pasteur, Unité de Virologie Structurale, Departement Virologie, Paris, France.
| | | | | | | | | | | |
Collapse
|
14
|
High yield of human monoclonal antibody produced by stably transfected Drosophila schneider 2 cells in perfusion culture using wave bioreactor. Mol Biotechnol 2013; 52:170-9. [PMID: 22198740 DOI: 10.1007/s12033-011-9484-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Since it was first introduced in late 1990s Wave bioreactor has been used for protein production by mammalian and insect cell lines. However, using Wave bioreactor to produce human monoclonal antibody by stable Drosophila Schneider 2 (S2) cell transfectants has not been reported before. In this study, S2 cells were co-transfected with an inducible vector expressing human monoclonal antibody heavy and light chains, respectively, specific for hemagglutinin (HA) of H5N1 influenza virus. Stable S2 transfectant clone was selected by limiting dilution assay. Stable S2 transfectant clone that produce the highest amount of human monoclonal antibody was inoculated into two 2-l disposable cellbags, where cell growth and antibody production were compared between batch and perfusion cultures using Wave bioreactor. Here, we report that maximum viable cell density reached 1.06 × 10(7) cells/ml in batch culture; whereas 1.04 × 10(8) cells/ml was achieved in perfusion culture. The maximum volumetric antibody productivity in batch culture was 52 mg/l/day; while perfusion culture yielded 1,437 mg/l/day. As a result, the total antibody production was 201 mg in batch culture and 8,212 mg in perfusion culture. The antibody produced by both cultures displays full neutralizing activity. Thus, our results provide strong support for using Wave bioreactor in perfusion culture for a large-scale production of human monoclonal antibody by stable S2 cell transfectants.
Collapse
|
15
|
Abstract
One of the major bottlenecks in antibody discovery for research and therapeutic applications is the need for large quantities of protein in a short amount of time. Here we describe an alternative method using the Drosophila melanogaster S2 expression system to produce high levels of antibodies (both IgG and Fab) with equivalent binding properties to antibodies produced in mammalian cell expression systems. Using the Drosophila S2 expression system for antibody production has many advantages over current mammalian systems making antibody expression, purification, and evaluation a much less time-consuming process.
Collapse
|
16
|
Recombinant Proteins and Immunotherapeutics. Mol Pharmacol 2012. [DOI: 10.1002/9781118451908.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
Gilmartin AA, Lamp B, Rümenapf T, Persson MA, Rey FA, Krey T. High-level secretion of recombinant monomeric murine and human single-chain Fv antibodies from Drosophila S2 cells. Protein Eng Des Sel 2012; 25:59-66. [PMID: 22160929 PMCID: PMC3258843 DOI: 10.1093/protein/gzr058] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 02/05/2023] Open
Abstract
Single-chain variable fragment (scFvs) antibodies are small polypeptides (∼26 kD) containing the heavy (V(H)) and light (V(L)) immunoglobulin domains of a parent antibody connected by a flexible linker. In addition to being frequently used in diagnostics and therapy for an increasing number of human diseases, scFvs are important tools for structural biology as crystallization chaperones. Although scFvs can be expressed in many different organisms, the expression level of an scFv strongly depends on its particular amino acid sequence. We report here a system allowing for easy and efficient cloning of (i) scFvs selected by phage display and (ii) individual heavy and light chain sequences from hybridoma cDNA into expression plasmids engineered for secretion of the recombinant fragment produced in Drosophila S2 cells. We validated the method by producing five scFvs derived from human and murine parent antibodies directed against various antigens. The production yields varied between 5 and 12 mg monomeric scFv per liter of supernatant, indicating a relative independence on the individual sequences. The recombinant scFvs bound their cognate antigen with high affinity, comparable with the parent antibodies. The suitability of the produced recombinant fragments for structural studies was demonstrated by crystallization and structure determination of one of the produced scFvs, derived from a broadly neutralizing antibody against the major glycoprotein E2 of the hepatitis C virus. Structural comparison with the Protein Data Bank revealed the typical spatial organization of V(H) and V(L) domains, further validating the here-reported expression system.
Collapse
Affiliation(s)
- Allissia A. Gilmartin
- Départment de Virologie, Institut Pasteur, Unité de Virologie Structurale, CNRS URA 3015, Paris, France
| | - Benjamin Lamp
- Faculty of Veterinary Medicine, Institute of Virology, Justus-Liebig-University, Giessen, Germany
| | - Till Rümenapf
- Faculty of Veterinary Medicine, Institute of Virology, Justus-Liebig-University, Giessen, Germany
| | - Mats A.A. Persson
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Félix A. Rey
- Départment de Virologie, Institut Pasteur, Unité de Virologie Structurale, CNRS URA 3015, Paris, France
| | - Thomas Krey
- Départment de Virologie, Institut Pasteur, Unité de Virologie Structurale, CNRS URA 3015, Paris, France
| |
Collapse
|
18
|
Moraes AM, Jorge SAC, Astray RM, Suazo CAT, Calderón Riquelme CE, Augusto EFP, Tonso A, Pamboukian MM, Piccoli RAM, Barral MF, Pereira CA. Drosophila melanogaster S2 cells for expression of heterologous genes: From gene cloning to bioprocess development. Biotechnol Adv 2011; 30:613-28. [PMID: 22079894 DOI: 10.1016/j.biotechadv.2011.10.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 10/07/2011] [Accepted: 10/30/2011] [Indexed: 12/16/2022]
Abstract
In the present review we discuss strategies that have been used for heterologous gene expression in Drosophila melanogaster Schneider 2 (S2) cells using plasmid vectors. Since the growth of S2 cells is not dependent on anchorage to solid substrates, these cells can be easily cultured in suspension in large volumes. The factors that most affect the growth and gene expression of S2 cells, namely cell line, cell passage, inoculum concentration, culture medium, temperature, dissolved oxygen concentration, pH, hydrodynamic forces and toxic metabolites, are discussed by comparison with other insect and mammalian cells. Gene expression, cell metabolism, culture medium formulation and parameters involved in cellular respiration are particularly emphasized. The experience of the authors with the successful expression of a biologically functional protein, the rabies virus glycoprotein (RVGP), by recombinant S2 cells is presented in the topics covered.
Collapse
Affiliation(s)
- Angela M Moraes
- Departamento de Engenharia de Materiais e de Bioprocessos, Faculdade de Engenharia Química, Universidade Estadual de Campinas, Campinas, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lima TB, Silva ON, Migliolo L, Souza-Filho CR, Gonçalves EG, Vasconcelos IM, Oliveira JTA, Amaral AC, Franco OL. A Kunitz proteinase inhibitor from corms of Xanthosoma blandum with bactericidal activity. JOURNAL OF NATURAL PRODUCTS 2011; 74:969-975. [PMID: 21520894 DOI: 10.1021/np200312r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bacterial infections directly affect the world's population, and this situation has been aggravated by indiscriminate use of antimicrobial agents, which can generate resistant microorganisms. In this report, an initial screening of proteins with antibacterial activity from corms of 15 species of the Xanthosoma genus was conducted. Since Xanthosoma blandum corms showed enhanced activity toward bacteria, a novel protein with bactericidal activity was isolated from this particular species. Edman degradation was used for protein N-termini determination; the primary structure showed similarities with Kunitz inhibitors, and this protein was named Xb-KTI. This protein was further challenged against serine proteinases from different sources, showing clear inhibitory activities. Otherwise, no hemolytic activity was observed for Xb-KTI. The results demonstrate the biotechnological potential of Xb-KTI, the first proteinase inhibitor with antimicrobial activity described in the Xanthosoma genus.
Collapse
Affiliation(s)
- Thaís B Lima
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Structure of a core fragment of glycoprotein H from pseudorabies virus in complex with antibody. Proc Natl Acad Sci U S A 2010; 107:22635-40. [PMID: 21149698 DOI: 10.1073/pnas.1011507107] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Compared with many well-studied enveloped viruses, herpesviruses use a more sophisticated molecular machinery to induce fusion of viral and cellular membranes during cell invasion. This essential function is carried out by glycoprotein B (gB), a class III viral fusion protein, together with the heterodimer of glycoproteins H and L (gH/gL). In pseudorabies virus (PrV), a porcine herpesvirus, it was shown that gH/gL can be substituted by a chimeric fusion protein gDgH, containing the receptor binding domain (RBD) of glycoprotein D fused to a truncated version of gH lacking its N-terminal domain. We report here the 2.1-Å resolution structure of the core fragment of gH present in this chimera, bound to the Fab fragment of a PrV gH-specific monoclonal antibody. The structure strongly complements the information derived from the recently reported structure of gH/gL from herpes simplex virus type 2 (HSV-2). Together with the structure of Epstein-Barr virus (EBV) gH/gL reported in parallel, it provides insight into potentially functional conserved structural features. One feature is the presence of a syntaxin motif, and the other is an extended "flap" masking a conserved hydrophobic patch in the C-terminal domain, which is closest to the viral membrane. The negative electrostatic surface potential of this domain suggests repulsive interactions with the lipid heads. The structure indicates the possible unmasking of an extended hydrophobic patch by movement of the flap during a receptor-triggered conformational change of gH, exposing a hydrophobic surface to interact with the viral membrane during the fusion process.
Collapse
|