1
|
Design of an artificial phage-display library based on a new scaffold improved for average stability of the randomized proteins. Sci Rep 2023; 13:1339. [PMID: 36693880 PMCID: PMC9873692 DOI: 10.1038/s41598-023-27710-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Scaffold-based protein libraries are designed to be both diverse and rich in functional/folded proteins. However, introducing an extended diversity while preserving stability of the initial scaffold remains a challenge. Here we developed an original approach to select the ensemble of folded proteins from an initial library. The thermostable CheY protein from Thermotoga maritima was chosen as scaffold. Four loops of CheY were diversified to create a new binding surface. The subset of the library giving rise to folded proteins was first selected using a natural protein partner of the template scaffold. Then, a gene shuffling approach based on a single restriction enzyme was used to recombine DNA sequences encoding these filtrated variants. Taken together, the filtration strategy and the shuffling of the filtrated sequences were shown to enrich the library in folded and stable sequences while maintaining a large diversity in the final library (Lib-Cheytins 2.1). Binders of the Oplophorus luciferase Kaz domain were then selected by phage display from the final library, showing affinities in the μM range. One of the best variants induced a loss of 92% of luminescent activity, suggesting that this Cheytin preferentially binds to the Kaz active site.
Collapse
|
2
|
Kellmann SJ, Hentrich C, Putyrski M, Hanuschka H, Cavada M, Knappik A, Ylera F. SpyDisplay: A versatile phage display selection system using SpyTag/SpyCatcher technology. MAbs 2023; 15:2177978. [PMID: 36803166 PMCID: PMC9980448 DOI: 10.1080/19420862.2023.2177978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Phage display is an established method for the in vitro selection of recombinant antibodies and other proteins or peptides from gene libraries. Here we describe SpyDisplay, a phage display method in which the display is achieved via SpyTag/SpyCatcher protein ligation instead of genetically fusing the displayed protein to a phage coat protein. In our implementation, SpyTagged antibody antigen-binding fragments (Fabs) are displayed via protein ligation on filamentous phages carrying SpyCatcher fused to the pIII coat protein. A library of genes encoding Fab antibodies was cloned in an expression vector containing an f1 replication origin, and SpyCatcher-pIII was separately expressed from a genomic locus in engineered E. coli. We demonstrate the functional, covalent display of Fab on phage, and rapidly isolate specific high-affinity clones via phage panning, confirming the robustness of this selection system. SpyTagged Fabs, the direct outcome of the panning campaign, are compatible with modular antibody assembly using prefabricated SpyCatcher modules and can be directly tested in diverse assays. Furthermore, SpyDisplay streamlines additional applications that have traditionally been challenging for phage display: we show that it can be applied to N-terminal display of the protein of interest and it enables display of cytoplasmically folding proteins exported to periplasm via the TAT pathway.
Collapse
|
3
|
Investigation of the Relation between Temperature and M13 Phage Production via ATP Expenditure. Processes (Basel) 2022. [DOI: 10.3390/pr10050962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
M13 bacteriophage is a promising biomolecule capable of various bionano and material science applications. The biomaterial can self-assemble into matrices to fabricate bioscaffolds using high phage concentration and high phage purity. Previous studies aimed to acquire these conditions in large-scale phage production and have identified the optimal culture temperature range at 28–31 °C. However, explanations as to why this temperature range was optimal for phage production is absent from the work. Therefore, in this study, we identified the relation between culture temperature and M13 phage production using ATP expenditure calculations to comprehend the high yield phage production at the optimal temperature range. We extended a coarse-grained model for the evaluation of phage protein and ribosomal protein synthesis with the premise that phage proteins (a ribosomal protein) are translated by bacterial ribosomes in E. coli through expenditure of ATP energy. By comparing the ATP energy for ribosomal protein synthesis estimated using the coarse-grained model and the experimentally calculated ATP expenditure for phage production, we interpreted the high phage yield at the optimal temperature range and recognized ATP analysis as a reasonable method that can be used to evaluate other parameters for phage production optimization.
Collapse
|
4
|
Lin K, Zhao N, Cai Y, Lin Y, Han S, Zheng S. Genome-Scale Mining of Novel Anchor Proteins of Corynebacterium glutamicum. Front Microbiol 2022; 12:677702. [PMID: 35185806 PMCID: PMC8854784 DOI: 10.3389/fmicb.2021.677702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022] Open
Abstract
The display of recombinant proteins on the surfaces of bacteria is a research topic with many possible biotechnology applications—among which, the choice of host cell and anchoring motif is the key for efficient display. Corynebacterium glutamicum is a promising host for surface display due to its natural advantages, while single screening methods and fewer anchor proteins restrict its application. In this study, the subcellular localization (SCL) predictor LocateP and tied-mixture hidden Markov models were used to analyze all five known endogenous anchor proteins of C. glutamicum and test the accuracy of the predictions. Using these two tools, the SCLs of all proteins encoded by the genome of C. glutamicum 13032 were predicted, and 14 potential anchor proteins were screened. Compared with the positive controls NCgl1221 and NCgl1337, three anchoring proteins—NCgl1307, NCgl2775, and NCgl0717—performed better. This study also discussed the applicability of the anchor protein screening method used in this experiment to other bacteria.
Collapse
Affiliation(s)
- Kerui Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Nannan Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Youhua Cai
- Star Lake Bioscience Co. Inc., Zhaoqing Guangdong, Zhaoqing, China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Shuangyan Han,
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Suiping Zheng,
| |
Collapse
|
5
|
Plessers S, Van Deuren V, Lavigne R, Robben J. High-Throughput Sequencing of Phage Display Libraries Reveals Parasitic Enrichment of Indel Mutants Caused by Amplification Bias. Int J Mol Sci 2021; 22:5513. [PMID: 34073702 PMCID: PMC8197208 DOI: 10.3390/ijms22115513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/23/2023] Open
Abstract
The combination of phage display technology with high-throughput sequencing enables in-depth analysis of library diversity and selection-driven dynamics. We applied short-read sequencing of the mutagenized region on focused display libraries of two homologous nucleic acid modification eraser proteins-AlkB and FTO-biopanned against methylated DNA. This revealed enriched genotypes with small indels and concomitant doubtful amino acid motifs within the FTO library. Nanopore sequencing of the entire display vector showed additional enrichment of large deletions overlooked by region-specific sequencing, and further impacted the interpretation of the obtained amino acid motifs. We could attribute enrichment of these corrupted clones to amplification bias due to arduous FTO display slowing down host cell growth as well as phage production. This amplification bias appeared to be stronger than affinity-based target selection. Recommendations are provided for proper sequence analysis of phage display data, which can improve motive discovery in libraries of proteins that are difficult to display.
Collapse
Affiliation(s)
- Sander Plessers
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium; (S.P.); (V.V.D.)
| | - Vincent Van Deuren
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium; (S.P.); (V.V.D.)
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, B-3001 Heverlee, Belgium;
| | - Johan Robben
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium; (S.P.); (V.V.D.)
| |
Collapse
|
6
|
Bozovičar K, Bratkovič T. Evolving a Peptide: Library Platforms and Diversification Strategies. Int J Mol Sci 2019; 21:E215. [PMID: 31892275 PMCID: PMC6981544 DOI: 10.3390/ijms21010215] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022] Open
Abstract
Peptides are widely used in pharmaceutical industry as active pharmaceutical ingredients, versatile tools in drug discovery, and for drug delivery. They find themselves at the crossroads of small molecules and proteins, possessing favorable tissue penetration and the capability to engage into specific and high-affinity interactions with endogenous receptors. One of the commonly employed approaches in peptide discovery and design is to screen combinatorial libraries, comprising a myriad of peptide variants of either chemical or biological origin. In this review, we focus mainly on recombinant peptide libraries, discussing different platforms for their display or expression, and various diversification strategies for library design. We take a look at well-established technologies as well as new developments and future directions.
Collapse
Affiliation(s)
| | - Tomaž Bratkovič
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
7
|
Abstract
Camelid-derived nanobodies are versatile tools for research, diagnostics, and therapeutics. Certain nanobodies can function as intrabodies and bind antigens within the eukaryotic cytosol. This capability is valuable for the development of intracellular probes and targeted gene therapies. Consequently, many attempts have been made to produce nanobodies that are intracellularly stable and resistant to aggregation. Pursuit of these intrabodies generally focuses on library design or nanobody selection method. Recent variations of library design have yielded diverse libraries capable of producing nanobodies against a wide variety of antigens. Novel screening methods have also been developed, yielding nanobodies with high affinity for intracellular antigens. These screening techniques can have advantages over phage display methods when nanobodies against intracellular antigens must be rapidly produced. Some intracellular screening methods convey the additional advantage of selecting for other desired intrabody characteristics, such as antiviral action or conditional stability. This review summarizes the recent developments in both library design and selection methods aimed at producing intrabodies.
Collapse
Affiliation(s)
- James Woods
- 1 Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| |
Collapse
|
8
|
Hetrick K, Walker MC, van der Donk WA. Development and Application of Yeast and Phage Display of Diverse Lanthipeptides. ACS CENTRAL SCIENCE 2018; 4:458-467. [PMID: 29721528 PMCID: PMC5920614 DOI: 10.1021/acscentsci.7b00581] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 05/09/2023]
Abstract
Peptide display has enabled identification and optimization of ligands to many targets. These ligands are usually linear or disulfide-containing peptides that are vulnerable to proteolysis or reduction. We report yeast surface and phage display of lanthipeptides, macrocyclic ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides contain multiple thioether cross-links that bestow their biological activities. We developed C-terminal yeast display of the class II lanthipeptides lacticin 481 and haloduracin β, and randomization of the C-ring of the former was used to select tight binders to αvβ3 integrin. This represents the first examples of bacterial RiPP production in Saccharomyces cerevisiae for identification of variants with new biological activities. We also report N-terminal phage display of the class I lanthipeptide nisin and randomization of its A- and B-rings to enrich binders to a small molecule, lipid II. The successful display and randomization of both class I and II lanthipeptides demonstrates the versatility and potential of RiPP display.
Collapse
Affiliation(s)
| | | | - Wilfred A. van der Donk
- 600
S. Mathews Avenue, Urbana,
Illinois 61801, United States. E-mail: . Phone: (217) 244-5360. Fax: (217) 244-8533
| |
Collapse
|
9
|
Wilton R, Ahrendt AJ, Shinde S, Sholto-Douglas DJ, Johnson JL, Brennan MB, Kemner KM. A New Suite of Plasmid Vectors for Fluorescence-Based Imaging of Root Colonizing Pseudomonads. FRONTIERS IN PLANT SCIENCE 2017; 8:2242. [PMID: 29449848 PMCID: PMC5799272 DOI: 10.3389/fpls.2017.02242] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/20/2017] [Indexed: 05/04/2023]
Abstract
In the terrestrial ecosystem, plant-microbe symbiotic associations are ecologically and economically important processes. To better understand these associations at structural and functional levels, different molecular and biochemical tools are applied. In this study, we have constructed a suite of vectors that incorporates several new elements into the rhizosphere stable, broad-host vector pME6031. The new vectors are useful for studies requiring multi-color tagging and visualization of plant-associated, Gram-negative bacterial strains such as Pseudomonas plant growth promotion and biocontrol strains. A number of genetic elements, including constitutive promoters and signal peptides that target secretion to the periplasm, have been evaluated. Several next generation fluorescent proteins, namely mTurquoise2, mNeonGreen, mRuby2, DsRed-Express2 and E2-Crimson have been incorporated into the vectors for whole cell labeling or protein tagging. Secretion of mTurquoise2 and mNeonGreen into the periplasm of Pseudomonas fluorescens SBW25 has also been demonstrated, providing a vehicle for tagging proteins in the periplasmic compartment. A higher copy number version of select plasmids has been produced by introduction of a previously described repA mutation, affording an increase in protein expression levels. The utility of these plasmids for fluorescence-based imaging is demonstrated by root colonization of Solanum lycopersicum seedlings by P. fluorescens SBW25 in a hydroponic growth system. The plasmids are stably maintained during root colonization in the absence of selective pressure for more than 2 weeks.
Collapse
Affiliation(s)
- Rosemarie Wilton
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
- *Correspondence: Rosemarie Wilton,
| | - Angela J. Ahrendt
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| | - Shalaka Shinde
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| | - Deirdre J. Sholto-Douglas
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL, United States
| | - Jessica L. Johnson
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| | - Melissa B. Brennan
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| | - Kenneth M. Kemner
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| |
Collapse
|
10
|
Gagic D, Ciric M, Wen WX, Ng F, Rakonjac J. Exploring the Secretomes of Microbes and Microbial Communities Using Filamentous Phage Display. Front Microbiol 2016; 7:429. [PMID: 27092113 PMCID: PMC4823517 DOI: 10.3389/fmicb.2016.00429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/17/2016] [Indexed: 01/12/2023] Open
Abstract
Microbial surface and secreted proteins (the secretome) contain a large number of proteins that interact with other microbes, host and/or environment. These proteins are exported by the coordinated activities of the protein secretion machinery present in the cell. A group of bacteriophage, called filamentous phage, have the ability to hijack bacterial protein secretion machinery in order to amplify and assemble via a secretion-like process. This ability has been harnessed in the use of filamentous phage of Escherichia coli in biotechnology applications, including screening large libraries of variants for binding to “bait” of interest, from tissues in vivo to pure proteins or even inorganic substrates. In this review we discuss the roles of secretome proteins in pathogenic and non-pathogenic bacteria and corresponding secretion pathways. We describe the basics of phage display technology and its variants applied to discovery of bacterial proteins that are implicated in colonization of host tissues and pathogenesis, as well as vaccine candidates through filamentous phage display library screening. Secretome selection aided by next-generation sequence analysis was successfully applied for selective display of the secretome at a microbial community scale, the latter revealing the richness of secretome functions of interest and surprising versatility in filamentous phage display of secretome proteins from large number of Gram-negative as well as Gram-positive bacteria and archaea.
Collapse
Affiliation(s)
- Dragana Gagic
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand; Animal Science, Grasslands Research Centre, AgResearch Ltd, Palmerston NorthNew Zealand
| | - Milica Ciric
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand; Animal Science, Grasslands Research Centre, AgResearch Ltd, Palmerston NorthNew Zealand
| | - Wesley X Wen
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| | - Filomena Ng
- Animal Science, Grasslands Research Centre, AgResearch Ltd, Palmerston North New Zealand
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| |
Collapse
|
11
|
Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol 2015; 55:489-511. [PMID: 25562645 DOI: 10.1146/annurev-pharmtox-010611-134654] [Citation(s) in RCA: 421] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Designed ankyrin repeat proteins (DARPins) can recognize targets with specificities and affinities that equal or surpass those of antibodies, but because of their robustness and extreme stability, they allow a multitude of more advanced formats and applications. This review highlights recent advances in DARPin design, illustrates their properties, and gives some examples of their use. In research, they have been established as intracellular, real-time sensors of protein conformations and as crystallization chaperones. For future therapies, DARPins have been developed by advanced, structure-based protein engineering to selectively induce apoptosis in tumors by uncoupling surface receptors from their signaling cascades. They have also been used successfully for retargeting viruses. In ongoing clinical trials, DARPins have shown good safety and efficacy in macular degeneration diseases. These developments all ultimately exploit the high stability, solubility, and aggregation resistance of these molecules, permitting a wide range of conjugates and fusions to be produced and purified.
Collapse
Affiliation(s)
- Andreas Plückthun
- Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland;
| |
Collapse
|
12
|
Rojas G, Tundidor Y, Infante YC. High throughput functional epitope mapping: revisiting phage display platform to scan target antigen surface. MAbs 2015; 6:1368-76. [PMID: 25484050 DOI: 10.4161/mabs.36144] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antibody engineering must be accompanied by mapping strategies focused on identifying the epitope recognized by each antibody to define its unique functional identity. High throughput fine specificity determination remains technically challenging. We review recent experiences aimed at revisiting the oldest and most extended display technology to develop a robust epitope mapping platform, based on the ability to manipulate target-derived molecules (ranging from the whole native antigen to antigen domains and smaller fragments) on filamentous phages. Single, multiple and combinatorial mutagenesis allowed comprehensive scanning of phage-displayed antigen surface that resulted in the identification of clusters of residues contributing to epitope formation. Functional pictures of the epitope(s) were thus delineated in the natural context. Successful mapping of antibodies against interleukin-2, epidermal growth factor and its receptor, and vascular endothelial growth factor showed the versatility of these procedures, which combine the accuracy of site-directed mutagenesis with the high throughput potential of phage display.
Collapse
Key Words
- Abs, antibodies
- Ag, antigen
- EGF
- EGF receptor
- EGF, epidermal growth factor
- EGFR, EGF receptor
- ELISA, enzyme-linked immunosorbent assay
- IL-2
- IL-2, interleukin-2
- PCR, polymerase chain reaction
- VEGF
- VEGF, vascular endothelial growth factor
- aa, amino acid
- epitope mapping
- library
- mAb, monoclonal Ab
- phage display
- site-directed mutagenesis
Collapse
Affiliation(s)
- Gertrudis Rojas
- a Systems Biology Department ; Center of Molecular Immunology ; La Habana , Cuba
| | | | | |
Collapse
|
13
|
Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc Natl Acad Sci U S A 2014; 112:112-7. [PMID: 25535392 DOI: 10.1073/pnas.1417910112] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The discovery of light-inducible protein-protein interactions has allowed for the spatial and temporal control of a variety of biological processes. To be effective, a photodimerizer should have several characteristics: it should show a large change in binding affinity upon light stimulation, it should not cross-react with other molecules in the cell, and it should be easily used in a variety of organisms to recruit proteins of interest to each other. To create a switch that meets these criteria we have embedded the bacterial SsrA peptide in the C-terminal helix of a naturally occurring photoswitch, the light-oxygen-voltage 2 (LOV2) domain from Avena sativa. In the dark the SsrA peptide is sterically blocked from binding its natural binding partner, SspB. When activated with blue light, the C-terminal helix of the LOV2 domain undocks from the protein, allowing the SsrA peptide to bind SspB. Without optimization, the switch exhibited a twofold change in binding affinity for SspB with light stimulation. Here, we describe the use of computational protein design, phage display, and high-throughput binding assays to create an improved light inducible dimer (iLID) that changes its affinity for SspB by over 50-fold with light stimulation. A crystal structure of iLID shows a critical interaction between the surface of the LOV2 domain and a phenylalanine engineered to more tightly pin the SsrA peptide against the LOV2 domain in the dark. We demonstrate the functional utility of the switch through light-mediated subcellular localization in mammalian cell culture and reversible control of small GTPase signaling.
Collapse
|
14
|
Knez K, Noppe W, Geukens N, Janssen KPF, Spasic D, Heyligen J, Vriens K, Thevissen K, Cammue BPA, Petrenko V, Ulens C, Deckmyn H, Lammertyn J. Affinity Comparison of p3 and p8 Peptide Displaying Bacteriophages Using Surface Plasmon Resonance. Anal Chem 2013; 85:10075-82. [DOI: 10.1021/ac402192k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Karel Knez
- BIOSYST-MeBioS, KU Leuven, Willem De Croylaan 42, P.O. Box 2428, B-3001 Leuven, Belgium
| | - Wim Noppe
- IRF
Life Siences, KU Leuven Kulak, E. Sabbelaan 53, B-8500 Kortrijk, Belgium
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center, O&N II, Herestraat 49, P.O. Box 824, B-3000 Leuven, Belgium
| | - Kris P. F. Janssen
- BIOSYST-MeBioS, KU Leuven, Willem De Croylaan 42, P.O. Box 2428, B-3001 Leuven, Belgium
| | - Dragana Spasic
- BIOSYST-MeBioS, KU Leuven, Willem De Croylaan 42, P.O. Box 2428, B-3001 Leuven, Belgium
| | - Jeroen Heyligen
- BIOSYST-MeBioS, KU Leuven, Willem De Croylaan 42, P.O. Box 2428, B-3001 Leuven, Belgium
| | - Kim Vriens
- Centre
for Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, P.O. 2460, B-3001 Heverlee, Belgium
| | - Karin Thevissen
- Centre
for Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, P.O. 2460, B-3001 Heverlee, Belgium
| | - Bruno P. A. Cammue
- Centre
for Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, P.O. 2460, B-3001 Heverlee, Belgium
| | - Valery Petrenko
- Auburn University, College of Veterinary Medicine,
Department of Pathobiology, 269 Greene Hall, Auburn, Alabama 36849-5519, United States
| | - Chris Ulens
- Laboratory for Structural Neurobiology, KU Leuven, O&N I, Herestraat 49, P.O. Box 601, B-3000 Leuven, Belgium
| | - Hans Deckmyn
- IRF
Life Siences, KU Leuven Kulak, E. Sabbelaan 53, B-8500 Kortrijk, Belgium
- PharmAbs, The KU Leuven Antibody Center, O&N II, Herestraat 49, P.O. Box 824, B-3000 Leuven, Belgium
| | - Jeroen Lammertyn
- BIOSYST-MeBioS, KU Leuven, Willem De Croylaan 42, P.O. Box 2428, B-3001 Leuven, Belgium
| |
Collapse
|
15
|
Hart DJ, Waldo GS. Library methods for structural biology of challenging proteins and their complexes. Curr Opin Struct Biol 2013; 23:403-8. [PMID: 23602357 DOI: 10.1016/j.sbi.2013.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 02/08/2023]
Abstract
Genetic engineering of constructs to improve solubility or stability is a common approach, but it is often unclear how to obtain improvements. When the domain composition of a target is poorly understood, or if there are insufficient structure data to guide sited directed mutagenesis, long iterative phases of subcloning or mutation and expression often prove unsuccessful despite much effort. Random library approaches can offer a solution to this problem and involve construction of large libraries of construct variants that are analysed via screens or selections for the desired phenotype. Huge improvements in construct behaviour can be achieved rapidly with no requirement for prior knowledge of the target. Here we review the development of these experimental strategies and recent successes.
Collapse
Affiliation(s)
- Darren J Hart
- EMBL Grenoble Outstation and Unit of Virus Host-Cell Interactions, UMI3265 UJF-EMBL-CNRS, Grenoble, France.
| | | |
Collapse
|
16
|
Speck J, Räuber C, Kükenshöner T, Niemöller C, Mueller KJ, Schleberger P, Dondapati P, Hecky J, Arndt KM, Müller KM. TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation. Protein Eng Des Sel 2012; 26:225-42. [PMID: 23223941 DOI: 10.1093/protein/gzs098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Janina Speck
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pershad K, Wypisniak K, Kay BK. Directed evolution of the forkhead-associated domain to generate anti-phosphospecific reagents by phage display. J Mol Biol 2012; 424:88-103. [PMID: 22985966 DOI: 10.1016/j.jmb.2012.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/10/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
Abstract
While affinity reagents are valuable tools for monitoring protein phosphorylation and studying signaling events in cells, generating them through immunization of animals with phosphopeptides is expensive, laborious, and time-consuming. An attractive alternative is to use protein evolution techniques and isolate new anti-phosphopeptide binding specificities from a library of variants of a phosphopeptide-binding domain. To explore this strategy, we attempted to display on the surface of bacteriophage M13 the N-terminal Forkhead-associated (FHA1) domain of yeast Rad53p, which is a naturally occurring phosphothreonine (pT)-binding domain, and found it to be nonfunctional due to misfolding in the bacterial periplasm. To overcome this limitation, we constructed a library of FHA1 variants by mutagenic PCR and isolated functional variants after three rounds of affinity selection with its pT peptide ligand. A hydrophobic residue at position 34 in the β1 strand was discovered to be essential for phage display of a functional FHA1 domain. Additionally, by heating the phage library to 50°C prior to affinity selection with its cognate pT peptide, we identified a variant (G2) that was ~8°C more thermally stable than the wild-type domain. Using G2 as a scaffold, we constructed phage-displayed libraries of FHA1 variants and affinity selected for variants that bound selectively to five pT peptides. These reagents are renewable and have high protein yields (~20-25mg/L), when expressed in Escherichia coli. Thus, we have changed the specificity of the FHA1 domain and demonstrated that engineering phosphopeptide-binding domains is an attractive avenue for generating new anti-phosphopeptide binding specificities in vitro by phage display.
Collapse
Affiliation(s)
- Kritika Pershad
- Department of Biological Sciences, Laboratory for Molecular Biology (M/C 567), University of Illinois at Chicago, Molecular Biology Research Building, Chicago, IL 60607, USA.
| | | | | |
Collapse
|
18
|
Bazan J, Całkosiński I, Gamian A. Phage display--a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Hum Vaccin Immunother 2012; 8:1817-28. [PMID: 22906939 DOI: 10.4161/hv.21703] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
One of the most effective molecular diversity techniques is phage display. This technology is based on a direct linkage between phage phenotype and its encapsulated genotype, which leads to presentation of molecule libraries on the phage surface. Phage display is utilized in studying protein-ligand interactions, receptor binding sites and in improving or modifying the affinity of proteins for their binding partners. Generating monoclonal antibodies and improving their affinity, cloning antibodies from unstable hybridoma cells and identifying epitopes, mimotopes and functional or accessible sites from antigens are also important advantages of this technology. Techniques originating from phage display have been applied to transfusion medicine, neurological disorders, mapping vascular addresses and tissue homing of peptides. Phages have been applicable to immunization therapies, which may lead to development of new tools used for treating autoimmune and cancer diseases. This review describes the phage display technology and presents the recent advancements in therapeutic applications of phage display.
Collapse
Affiliation(s)
- Justyna Bazan
- Department of Medical Biochemistry; Wroclaw Medical University; Wroclaw, Poland.
| | | | | |
Collapse
|
19
|
Grieco SHH, Wong AYK, Dunbar WS, MacGillivray RTA, Curtis SB. Optimization of fermentation parameters in phage production using response surface methodology. J Ind Microbiol Biotechnol 2012; 39:1515-22. [PMID: 22714954 DOI: 10.1007/s10295-012-1148-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
Abstract
Previously, we used computer-controlled fermentation technology to improve the yield of filamentous phage produced in Escherichia coli by 10-fold (Grieco et al., Bioprocess Biosyst Eng 32:773-779, 2009). In the current study, three major fermentation parameters (temperature, dissolved oxygen [DO], and pH) were investigated using design of experiments (DOE) methodology. Response surface methodology (RSM) was employed to create a process model and determine the optimal conditions for maximal phage production. The experimental data fitted best to a quadratic model (p < 0.0001). Temperature and pH, but not DO, proved to be significant variables. The model predicted a theoretical optimal condition for maximal bacteriophage production at temperature of 28.1 °C and pH 6.9. A validation run resulted in phage production [3.49 × 10(11) transducing units (TU)/mL] comparable to the predicted value (2.86 × 10(11) TU/mL). This represented a 7-fold increase in phage production above that obtained without optimization, resulting in a 70-fold increase above that achieved by shake flask culture alone.
Collapse
Affiliation(s)
- Sung-Hye H Grieco
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Boersma YL, Plückthun A. DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr Opin Biotechnol 2011; 22:849-57. [DOI: 10.1016/j.copbio.2011.06.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/27/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
|