1
|
Ohoka A, Sarkar CA. Facile Display of Homomultivalent Proteins for In Vitro Selections. ACS Synth Biol 2023; 12:634-638. [PMID: 36655840 PMCID: PMC9985468 DOI: 10.1021/acssynbio.2c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
Abstract
Low-affinity protein binders are emerging as valuable domains for therapeutic applications because of their higher specificity when presented in multivalent ligands that increase the overall strength and selectivity of receptor binding. De novo discovery of low-affinity binders would be enhanced by the large library sizes attainable with in vitro selection systems, but these platforms generally maximize recovery of high-affinity monovalent binders. Here, we present a facile technology that uses rolling circle amplification to create homomultivalent libraries. We show proof of principle of this approach in ribosome display with off-rate selections of a bivalent ligand against monovalent and bivalent targets, thereby demonstrating high enrichment (up to 166-fold) against a low-affinity target that is bivalent but not monovalent. This approach to homomultivalent library construction can be applied to any binder tolerant of N- and C-terminal fusions and provides a platform for performing in vitro display selections with controlled protein valency and orientation.
Collapse
Affiliation(s)
| | - Casim A. Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Markou GC, Sarkar CA. A cell-free approach to identify binding hotspots in plant immune receptors. Sci Rep 2022; 12:501. [PMID: 35017559 PMCID: PMC8752824 DOI: 10.1038/s41598-021-04259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
Plant immune receptors are often difficult to express heterologously, hindering study of direct interactions between these receptors and their targets with traditional biochemical approaches. The cell-free method ribosome display (RD) enables expression of such recalcitrant proteins by keeping each nascent polypeptide chain tethered to its ribosome, which can enhance protein folding by virtue of its size and solubility. Moreover, in contrast to an in planta readout of receptor activity such as a hypersensitive response that conflates binding and signaling, RD enables direct probing of the interaction between plant immune receptors and their targets. Here, we demonstrate the utility of this approach using tomato recognition of Trichoderma viride ethylene-inducing xylanase (EIX) as a case study. Leveraging the modular nature of the tomato LeEIX2 and LeEIX1 leucine-rich repeat (LRR) receptors, we applied an entropy-informed algorithm to maximize the information content in our receptor segmentation RD experiments to identify segments implicated in EIX binding. Unexpectedly, two distinct EIX-binding hotspots were discovered on LeEIX2 and both hotspots are shared with decoy LeEIX1, suggesting that their contrasting receptor functions are not due to differential modes of ligand binding. Given that most plant immune receptors are thought to engage targets via their LRR sequences, this approach should be of broad utility in rapidly identifying their binding hotspots.
Collapse
Affiliation(s)
- George C Markou
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Markou GC, Ohoka A, Sarkar CA. Engineering a Minimal Leucine-rich Repeat IgG-binding Module. Appl Biochem Biotechnol 2021; 194:1636-1644. [PMID: 34837634 DOI: 10.1007/s12010-021-03768-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022]
Abstract
Sea lamprey immunization can yield leucine-rich repeat (LRR) protein binders analogous to globular antibodies developed from mammals. A novel minimal LRR was discovered through lamprey immunization with human immunoglobulin G Fc domain (IgG Fc). Initial attempts to solubly express this LRR protein, VLRB.IgGFc, in Escherichia coli proved challenging, so it was analyzed using the cell-free method ribosome display. In ribosome display, VLRB.IgGFc was found to bind specifically to the Fc domain of IgG, with little observed cross-reactivity to IgA or IgM. The minimal repeat protein architecture of VLRB.IgGFc may facilitate modular LRR extensions to incorporate additional or augmented functionality within a continuous, structurally defined scaffold. We exploited this modularity to design a chimera of a well-characterized, soluble LRR repebody and the initially insoluble VLRB.IgGFc to produce soluble Repe-VLRB.IgGFc. The minimal IgG Fc-binding module, Repe-VLRB.IgGFc, and future-engineered variants thereof should be useful additions to the biotechnological toolbox for detecting, purifying, or targeting IgGs. More generally, this two-step approach of minimal LRR binder discovery via sea lamprey immunization followed by modular augmentation of functionality may be of general utility in protein engineering.
Collapse
Affiliation(s)
- George C Markou
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ayako Ohoka
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Design of Experiments As a Tool for Optimization in Recombinant Protein Biotechnology: From Constructs to Crystals. Mol Biotechnol 2019; 61:873-891. [DOI: 10.1007/s12033-019-00218-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
|
5
|
Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis. Nat Commun 2019; 10:2948. [PMID: 31270316 PMCID: PMC6610086 DOI: 10.1038/s41467-019-10747-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2018] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
CRISPR-Cas systems inherently multiplex through CRISPR arrays—whether to defend against different invaders or mediate multi-target editing, regulation, imaging, or sensing. However, arrays remain difficult to generate due to their reoccurring repeat sequences. Here, we report a modular, one-pot scheme called CRATES to construct CRISPR arrays and array libraries. CRATES allows assembly of repeat-spacer subunits using defined assembly junctions within the trimmed portion of spacers. Using CRATES, we construct arrays for the single-effector nucleases Cas9, Cas12a, and Cas13a that mediated multiplexed DNA/RNA cleavage and gene regulation in cell-free systems, bacteria, and yeast. CRATES further allows the one-pot construction of array libraries and composite arrays utilized by multiple Cas nucleases. Finally, array characterization reveals processing of extraneous CRISPR RNAs from Cas12a terminal repeats and sequence- and context-dependent loss of RNA-directed nuclease activity via global RNA structure formation. CRATES thus can facilitate diverse multiplexing applications and help identify factors impacting crRNA biogenesis. CRISPR array generation is difficult due to reoccurring repeat sequences. Here the authors present CRATES—a modular, one-pot assembly method—and demonstrate the creation of arrays for Cas9, Cas12a and Cas13a for cell-free, bacterial, yeast and mammalian systems.
Collapse
|
6
|
Hartmann J, Münch RC, Freiling RT, Schneider IC, Dreier B, Samukange W, Koch J, Seeger MA, Plückthun A, Buchholz CJ. A Library-Based Screening Strategy for the Identification of DARPins as Ligands for Receptor-Targeted AAV and Lentiviral Vectors. Mol Ther Methods Clin Dev 2018; 10:128-143. [PMID: 30101151 PMCID: PMC6077149 DOI: 10.1016/j.omtm.2018.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2018] [Accepted: 07/01/2018] [Indexed: 01/01/2023]
Abstract
Delivering genes selectively to the therapeutically relevant cell type is among the prime goals of vector development. Here, we present a high-throughput selection and screening process that identifies designed ankyrin repeat proteins (DARPins) optimally suited for receptor-targeted gene delivery using adeno-associated viral (AAV) and lentiviral (LV) vectors. In particular, the process includes expression, purification, and in situ biotinylation of the extracellular domains of target receptors as Fc fusion proteins in mammalian cells and the selection of high-affinity binders by ribosome display from DARPin libraries each covering more than 1012 variants. This way, DARPins specific for the glutamate receptor subunit GluA4, the endothelial surface marker CD105, and the natural killer cell marker NKp46 were generated. The identification of DARPins best suited for gene delivery was achieved by screening small-scale vector productions. Both LV and AAV particles displaying the selected DARPins transduced only cells expressing the corresponding target receptor. The data confirm that a straightforward process for the generation of receptor-targeted viral vectors has been established. Moreover, biochemical analysis of a panel of DARPins revealed that their functional cell-surface expression as fusion proteins is more relevant for efficient gene delivery by LV particles than functional binding affinity.
Collapse
Affiliation(s)
- Jessica Hartmann
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Robert C. Münch
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ruth-Therese Freiling
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Irene C. Schneider
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Washington Samukange
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Joachim Koch
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, 55131 Mainz, Germany
| | - Markus A. Seeger
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Christian J. Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
7
|
Bulutoglu B, Haghpanah J, Campbell E, Banta S. Engineered Biomolecular Recognition of RDX by Using a Thermostable Alcohol Dehydrogenase as a Protein Scaffold. Chembiochem 2018; 19:247-255. [PMID: 29165861 DOI: 10.1002/cbic.201700539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2017] [Indexed: 11/09/2022]
Abstract
There are many biotechnology applications that would benefit from simple, stable proteins with engineered biomolecular recognition. Here, we explored the hypothesis that a thermostable alcohol dehydrogenase (AdhD from Pyrococcus furiosus) could be engineered to bind a small molecule instead of a cofactor or molecules involved in the catalytic transition state. We chose the explosive molecule 1,3,5-trinitro-1,3,5-triazine (royal demolition explosive, RDX) as a proof-of-concept. Its low solubility in water was exploited for immobilization for biopanning by using ribosome display. Docking simulations were used to identify two potential binding sites in AdhD, and a randomized library focused on tyrosine or serine mutations was used to determine that RDX was binding in the substrate binding pocket of the enzyme. A fully randomized binding pocket library was selected, and affinity maturation by error-prone PCR led to the identification of a mutant (EP-16) that gained the ability to bind RDX with an affinity of (73±11) μm. These results underscore the way in which thermostable enzymes can be useful scaffolds for expanding the biomolecular recognition toolbox.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, Room 801, New York, NY, 10027, USA.,Present address: The Center for Engineering in Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jennifer Haghpanah
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, Room 801, New York, NY, 10027, USA
| | - Elliot Campbell
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, Room 801, New York, NY, 10027, USA.,Present address: Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NY, 08854, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, Room 801, New York, NY, 10027, USA
| |
Collapse
|
8
|
Ng DT, Sarkar CA. NP-Sticky: A Web Server for Optimizing DNA Ligation with Non-Palindromic Sticky Ends. J Mol Biol 2014; 426:1861-9. [DOI: 10.1016/j.jmb.2014.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2013] [Revised: 01/17/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
|
9
|
Seeger MA, Zbinden R, Flütsch A, Gutte PGM, Engeler S, Roschitzki-Voser H, Grütter MG. Design, construction, and characterization of a second-generation DARP in library with reduced hydrophobicity. Protein Sci 2013; 22:1239-57. [PMID: 23868333 DOI: 10.1002/pro.2312] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 12/18/2022]
Abstract
Designed ankyrin repeat proteins (DARPins) are well-established binding molecules based on a highly stable nonantibody scaffold. Building on 13 crystal structures of DARPin-target complexes and stability measurements of DARPin mutants, we have generated a new DARPin library containing an extended randomized surface. To counteract the enrichment of unspecific hydrophobic binders during selections against difficult targets containing hydrophobic surfaces such as membrane proteins, the frequency of apolar residues at diversified positions was drastically reduced and substituted by an increased number of tyrosines. Ribosome display selections against two human caspases and membrane transporter AcrB yielded highly enriched pools of unique and strong DARPin binders which were mainly monomeric. We noted a prominent enrichment of tryptophan residues during binder selections. A crystal structure of a representative of this library in complex with caspase-7 visualizes the key roles of both tryptophans and tyrosines in providing target contacts. These aromatic and polar side chains thus substitute the apolar residues valine, leucine, isoleucine, methionine, and phenylalanine of the original DARPins. Our work describes biophysical and structural analyses required to extend existing binder scaffolds and simplifies an existing protocol for the assembly of highly diverse synthetic binder libraries.
Collapse
Affiliation(s)
- Markus A Seeger
- Department of Biochemistry, University of Zurich, 8057, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
mRNA display is a powerful method for in vitro directed evolution of polypeptides, but its time-consuming, technically demanding nature has hindered its widespread use. We present a streamlined protocol in which lengthy mRNA purification steps are replaced with faster precipitation and ultrafiltration alternatives; additionally, other purification steps are entirely eliminated by using a reconstituted translation system and by performing reverse transcription after selection, which also protects input polypeptides from thermal denaturation. We tested this procedure by performing affinity selection against Her2 using binary libraries containing a nonspecific designed ankyrin repeat protein (DARPin) doped with a Her2-binding DARPin (dopant fraction ranging from 1:10 to 1:10 000). The Her2-binding DARPin was recovered in all cases, with an enrichment factor of up to 2 orders of magnitude per selection round. The time required for 1 round is reduced from ∼4-7 days to 2 days with our protocol, thus simplifying and accelerating mRNA display experiments.
Collapse
Affiliation(s)
| | | | - Casey N. McQuade
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S.
33 Street, Philadelphia, PA 19104-6321, United States
| | - Casim A. Sarkar
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S.
33 Street, Philadelphia, PA 19104-6321, United States
| |
Collapse
|