1
|
Viruly L, Suhartono MT, Nurilmala M, Saraswati S, Andarwulan N. Identification and characterization of antimicrobial peptide (AMP) candidate from Gonggong Sea Snail ( Leavistrombus turturella) extract. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:44-52. [PMID: 36618044 PMCID: PMC9813290 DOI: 10.1007/s13197-022-05585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/23/2022] [Accepted: 07/30/2022] [Indexed: 01/11/2023]
Abstract
This study aimed to explore the potency of Gonggong sea snail's (GSS) extract as an antimicrobial peptide (AMP) source. The results showed that the GSS meat extracts exhibited potential antimicrobial activity against Staphylococcus aureus and Escherichia coli. A peptide band with a molecular weight < 5 kDa was obtained for the characterization of AMP candidates after separating the selected extract using SDS-PAGE, and the sequences were acquired by LC-ESI-MS analysis. The results of the bioinformatics analysis showed that the AMP candidate had a molecular weight of 1.4 kDa, which consisted of 12 amino acid residues (RHPDYSVALLLR), with an α-helix structure, isoelectric point pH (pI) of 9.53, net charge + 1, a total hydrophobic ratio at 49.9%, protein-binding potential (Boman index) of 2.17 kcal/mol, and hydrophobicity of + 13.67 kcal/mol. Furthermore, MIC and MBC values of the extract and the < 10 kDa fraction on both bacteria ranged from 0.50-1.03 mg/ml. The GSS meat extract could reach the intracellular site of E. coli, while in S. aureus, it was localized in the cell membrane. These results can be baseline information for developing AMPs in natural bio-preservative exploration as food additives and pharmaceuticals.
Collapse
Affiliation(s)
- Lily Viruly
- Department of Fishery Product Technology, Faculty of Marine Science and Fisheries, Raja Ali Haji Maritime University, Tanjungpinang, 29100 Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, Bogor Agricultural University, Bogor, 16680 Indonesia
| | - Maggy T. Suhartono
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, IPB Dramaga, Bogor, 16680 Indonesia
| | - Mala Nurilmala
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, Bogor Agricultural University, Bogor, 16680 Indonesia
| | - Saraswati Saraswati
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, IPB Dramaga, Bogor, 16680 Indonesia
| | - Nuri Andarwulan
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, IPB Dramaga, Bogor, 16680 Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, Bogor Agricultural University, Bogor, 16680 Indonesia
| |
Collapse
|
2
|
Zhang S, De Leon Rodriguez LM, Li FF, Huang R, Leung IKH, Harris PWR, Brimble MA. A novel tyrosine hyperoxidation enables selective peptide cleavage. Chem Sci 2022; 13:2753-2763. [PMID: 35356671 PMCID: PMC8890263 DOI: 10.1039/d1sc06216f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
A novel tyrosine hyperoxidation enabling selective peptide cleavage is reported. The scission of the N-terminal amide bond of tyrosine was achieved with Dess-Martin periodinane under mild conditions, generating a C-terminal peptide fragment bearing the unprecedented hyperoxidized tyrosine motif, 4,5,6,7-tetraoxo-1H-indole-2-carboxamide, along with an intact N-terminal peptide fragment. This reaction proceeds with high site-selectivity for tyrosine and exhibits broad substrate scope for various peptides, including those containing post-translational modifications. More importantly, this oxidative cleavage was successfully applied to enable sequencing of three naturally occurring cyclic peptides, including one depsipeptide and one lipopeptide. The linearized peptides generated from the cleavage reaction significantly simplify cyclic peptide sequencing by MS/MS, thus providing a robust tool to facilitate rapid sequence determination of diverse cyclic peptides containing tyrosine. Furthermore, the highly electrophilic nature of the hyperoxidized tyrosine unit disclosed in this work renders it an important electrophilic target for the selective bioconjugation or synthetic manipulation of peptides containing this unit.
Collapse
Affiliation(s)
- Shengping Zhang
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- School of Biological Sciences, The University of Auckland 3A Symonds St Auckland 1010 New Zealand
| | | | - Freda F Li
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
| | - Renjie Huang
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
| | - Ivanhoe K H Leung
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 1142 New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- School of Biological Sciences, The University of Auckland 3A Symonds St Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 1142 New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- School of Biological Sciences, The University of Auckland 3A Symonds St Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 1142 New Zealand
| |
Collapse
|
3
|
Jakob V, Zoller BG, Rinkes J, Wu Y, Kiefer AF, Hust M, Polten S, White AM, Harvey PJ, Durek T, Craik DJ, Siebert A, Kazmaier U, Empting M. Phage display-based discovery of cyclic peptides against the broad spectrum bacterial anti-virulence target CsrA. Eur J Med Chem 2022; 231:114148. [DOI: 10.1016/j.ejmech.2022.114148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
|
4
|
Li Q, Zhou R, Sun Y, Xiao D, Liu M, Zhao D, Peng S, Chen Y, Lin Y. Synthesis and Antitumor Application of Antiangiogenetic Gold Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11708-11720. [PMID: 33656845 DOI: 10.1021/acsami.1c01164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conventional antiangiogenetic inhibitors suffered from poor delivery problems that result in unsatisfactory antitumor treatment efficacy. Although the liposomes or nanomaterial-based delivery systems can improve the therapeutic efficacy of antiangiogenic molecules, the assembly process is far too complex. Herein, a nanomaterial or a new nanodrug that could work without the help of a carrier and could be easily synthesized is needed. Au nanoclusters (AuNCs) are a kind of ideal nanostructures that could spontaneously enter into the cell and could be synthesized by a relatively easy one-pot method. Here, changing the traditional ligand glutathione (GSH) into an anti-Flt1 peptide (AF) has enriched the newly synthesized AF@AuNCs with targeted antiangiogenic properties. Based on the specific binding between AF and vascular endothelial growth factor receptor 1 (VEGFR1), the interaction between VEGFR1 and its ligands could be blocked. Furthermore, the expression of VEGFR2 could be downregulated. Compared with pure AF peptide- and GSH-participated AuNCs (GSH@AuNCs), AF@AuNCs were more effective in inhibiting both tube formation and migration of the endothelial cells in vitro. Furthermore, the in vivo chick embryo chorioallantoic membrane (CAM) experiment and antitumor experiment were conducted to further verify the enhanced antiangiogenesis and tumor inhibition effect of AF@AuNCs. Our findings provide promising evidence of a carrier-free nanodrug for tumors and other vascular hyperproliferative diseases.
Collapse
Affiliation(s)
- Qirong Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- West China School of Stomatology, Oral Pathology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yue Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuanglin Peng
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- West China School of Stomatology, Oral Pathology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Wu Y, Williams J, Calder EDD, Walport LJ. Strategies to expand peptide functionality through hybridisation with a small molecule component. RSC Chem Biol 2021; 2:151-165. [PMID: 34458778 PMCID: PMC8341444 DOI: 10.1039/d0cb00167h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/09/2020] [Indexed: 02/04/2023] Open
Abstract
Combining different compound classes gives molecular hybrids that can offer access to novel chemical space and unique properties. Peptides provide ideal starting points for such molecular hybrids, which can be easily modified with a variety of molecular entities. The addition of small molecules can improve the potency, stability and cell permeability of therapeutically relevant peptides. Furthermore, they are often applied to create peptide-based tools in chemical biology. In this review, we discuss general methods that allow the discovery of this compound class and highlight key examples of peptide-small molecule hybrids categorised by the application and function of the small molecule entity.
Collapse
Affiliation(s)
- Yuteng Wu
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Jack Williams
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Ewen D D Calder
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Louise J Walport
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| |
Collapse
|
6
|
Sindhikara D, Wagner M, Gkeka P, Güssregen S, Tiwari G, Hessler G, Yapici E, Li Z, Evers A. Automated Design of Macrocycles for Therapeutic Applications: From Small Molecules to Peptides and Proteins. J Med Chem 2020; 63:12100-12115. [PMID: 33017535 DOI: 10.1021/acs.jmedchem.0c01500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Macrocycles and cyclic peptides are increasingly attractive therapeutic modalities as they often have improved affinity, are able to bind to extended protein surfaces, and otherwise have favorable properties. Macrocyclization of a known binder may stabilize its bioactive conformation and improve its metabolic stability, cell permeability, and in certain cases oral bioavailability. Herein, we present implementation and application of an approach that automatically generates, evaluates, and proposes cyclizations utilizing a library of well-established chemical reactions and reagents. Using the three-dimensional (3D) conformation of the linear molecule in complex with a target protein as the starting point, this approach identifies attachment points, generates linkers, evaluates their geometric compatibility, and ranks the resulting molecules with respect to their predicted conformational stability and interactions with the target protein. As we show here with prospective and retrospective case studies, this procedure can be applied for the macrocyclization of small molecules and peptides and even PROteolysis TArgeting Chimeras (PROTACs) and proteins.
Collapse
Affiliation(s)
- Dan Sindhikara
- Schrodinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Michael Wagner
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Paraskevi Gkeka
- Integrated Drug Discovery, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Stefan Güssregen
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Garima Tiwari
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Gerhard Hessler
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Engin Yapici
- Schrodinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Ziyu Li
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Andreas Evers
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Ishina IA, Filimonova IN, Zakharova MY, Ovchinnikova LA, Mamedov AE, Lomakin YA, Belogurov AA. Exhaustive Search of the Receptor Ligands by the CyCLOPS (Cytometry Cell-Labeling Operable Phage Screening) Technique. Int J Mol Sci 2020; 21:ijms21176258. [PMID: 32872428 PMCID: PMC7504098 DOI: 10.3390/ijms21176258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023] Open
Abstract
Effective and versatile screening of the peptide ligands capable of selectively binding to diverse receptors is in high demand for the state-of-the-art technologies in life sciences, including probing of specificity of the cell surface receptors and drug development. Complex microenvironment and structure of the surface receptors significantly reduce the possibility to determine their specificity, especially when in vitro conditions are utilized. Previously, we designed a publicly available platform for the ultra-high-throughput screening (uHTS) of the specificity of surface-exposed receptors of the living eukaryotic cells, which was done by consolidating the phage display and flow cytometry techniques. Here, we significantly improved this methodology and designed the fADL-1e-based phage vectors that do not require a helper hyperphage for the virion assembly. The enhanced screening procedure was tested on soluble human leukocyte antigen (HLA) class II molecules and transgenic antigen-specific B cells that express recombinant lymphoid B-cell receptor (BCR). Our data suggest that the improved vector system may be successfully used for the comprehensive search of the receptor ligands in either cell-based or surface-immobilized assays.
Collapse
Affiliation(s)
- Irina A. Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (I.A.I.); (I.N.F.); (M.Y.Z.); (L.A.O.); (A.E.M.)
| | - Ioanna N. Filimonova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (I.A.I.); (I.N.F.); (M.Y.Z.); (L.A.O.); (A.E.M.)
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (I.A.I.); (I.N.F.); (M.Y.Z.); (L.A.O.); (A.E.M.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Leyla A. Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (I.A.I.); (I.N.F.); (M.Y.Z.); (L.A.O.); (A.E.M.)
| | - Azad E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (I.A.I.); (I.N.F.); (M.Y.Z.); (L.A.O.); (A.E.M.)
| | - Yakov A. Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (I.A.I.); (I.N.F.); (M.Y.Z.); (L.A.O.); (A.E.M.)
- Correspondence: (Y.A.L.); (A.A.B.J.)
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (I.A.I.); (I.N.F.); (M.Y.Z.); (L.A.O.); (A.E.M.)
- Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: (Y.A.L.); (A.A.B.J.)
| |
Collapse
|
8
|
Wu Y, Wang Z, Qiao X, Li J, Shu X, Qi H. Emerging Methods for Efficient and Extensive Incorporation of Non-canonical Amino Acids Using Cell-Free Systems. Front Bioeng Biotechnol 2020; 8:863. [PMID: 32793583 PMCID: PMC7387428 DOI: 10.3389/fbioe.2020.00863] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cell-free protein synthesis (CFPS) has emerged as a novel protein expression platform. Especially the incorporation of non-canonical amino acids (ncAAs) has led to the development of numerous flexible methods for efficient and extensive expression of artificial proteins. Approaches were developed to eliminate the endogenous competition for ncAAs and engineer translation factors, which significantly enhanced the incorporation efficiency. Furthermore, in vitro aminoacylation methods can be conveniently combined with cell-free systems, extensively expanding the available ncAAs with novel and unique moieties. In this review, we summarize the recent progresses on the efficient and extensive incorporation of ncAAs by different strategies based on the elimination of competition by endogenous factors, translation factors engineering and extensive incorporation of novel ncAAs coupled with in vitro aminoacylation methods in CFPS. We also aim to offer new ideas to researchers working on ncAA incorporation techniques in CFPS and applications in various emerging fields.
Collapse
Affiliation(s)
- Yang Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Zhaoguan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Xin Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Jiaojiao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Xiangrong Shu
- Department of Pharmacy, Tianjin Huanhu Hospital, Tianjin, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Kong XD, Moriya J, Carle V, Pojer F, Abriata LA, Deyle K, Heinis C. De novo development of proteolytically resistant therapeutic peptides for oral administration. Nat Biomed Eng 2020; 4:560-571. [DOI: 10.1038/s41551-020-0556-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
|
10
|
De Novo Peptide Sequencing Reveals Many Cyclopeptides in the Human Gut and Other Environments. Cell Syst 2019; 10:99-108.e5. [PMID: 31864964 DOI: 10.1016/j.cels.2019.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/18/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
Cyclic and branch cyclic peptides (cyclopeptides) represent a class of bioactive natural products that include many antibiotics and anti-tumor compounds. Despite the recent advances in metabolomics analysis, still little is known about the cyclopeptides in the human gut and their possible interactions due to a lack of computational analysis pipelines that are applicable to such compounds. Here, we introduce CycloNovo, an algorithm for automated de novo cyclopeptide analysis and sequencing that employs de Bruijn graphs, the workhorse of DNA sequencing algorithms, to identify cyclopeptides in spectral datasets. CycloNovo reconstructed 32 previously unreported cyclopeptides (to the best of our knowledge) in the human gut and reported over a hundred cyclopeptides in other environments represented by various spectra on Global Natural Products Social Molecular Network (GNPS). https://github.com/bbehsaz/cyclonovo.
Collapse
|
11
|
Abstract
With the increasing utilization of high-throughput screening for lead identification in drug discovery, the need for easily constructed and diverse libraries which cover significant chemical space is greater than ever. Cyclic peptides address this need; they combine the advantageous properties of peptides (ease of production, high diversity, high potential specificity) with increased resistance to proteolysis and often increased biological activity (due to conformational locking). There are a number of techniques for the generation and screening of cyclic peptide libraries. As drug discovery moves toward tackling challenging targets, such as protein-protein interactions, cyclic peptide libraries are expected to continue producing hits where small molecule libraries may be stymied. However, it is important to design robust systems for the generation and screening of these large libraries, and to be able to make sense of structure-activity relationships in these highly variable scaffolds. There are a plethora of possible modifications that can be made to cyclic peptides, which is both a weakness and a strength of these scaffolds; high variability will allow more precise tuning of leads to targets, but exploring the whole range of modifications may become an overwhelming challenge.
Collapse
|
12
|
Davis AM, Plowright AT, Valeur E. Directing evolution: the next revolution in drug discovery? Nat Rev Drug Discov 2017; 16:681-698. [PMID: 28935911 DOI: 10.1038/nrd.2017.146] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The strong biological rationale to pursue challenging drug targets such as protein-protein interactions has stimulated the development of novel screening strategies, such as DNA-encoded libraries, to allow broader areas of chemical space to be searched. There has also been renewed interest in screening natural products, which are the result of evolutionary selection for a function, such as interference with a key signalling pathway of a competing organism. However, recent advances in several areas, such as understanding of the biosynthetic pathways for natural products, synthetic biology and the development of biosensors to detect target molecules, are now providing new opportunities to directly harness evolutionary pressure to identify and optimize compounds with desired bioactivities. Here, we describe innovations in the key components of such strategies and highlight pioneering examples that indicate the potential of the directed-evolution concept. We also discuss the scientific gaps and challenges that remain to be addressed to realize this potential more broadly in drug discovery.
Collapse
Affiliation(s)
- Andrew M Davis
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, 43150, Sweden
| | - Alleyn T Plowright
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Eric Valeur
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, 43150, Sweden
| |
Collapse
|
13
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. New Modalities for Challenging Targets in Drug Discovery. Angew Chem Int Ed Engl 2017; 56:10294-10323. [PMID: 28186380 DOI: 10.1002/anie.201611914] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Our ever-increasing understanding of biological systems is providing a range of exciting novel biological targets, whose modulation may enable novel therapeutic options for many diseases. These targets include protein-protein and protein-nucleic acid interactions, which are, however, often refractory to classical small-molecule approaches. Other types of molecules, or modalities, are therefore required to address these targets, which has led several academic research groups and pharmaceutical companies to increasingly use the concept of so-called "new modalities". This Review defines for the first time the scope of this term, which includes novel peptidic scaffolds, oligonucleotides, hybrids, molecular conjugates, as well as new uses of classical small molecules. We provide the most representative examples of these modalities to target large binding surface areas such as those found in protein-protein interactions and for biological processes at the center of cell regulation.
Collapse
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Stéphanie M Guéret
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany.,Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, The Netherlands
| | - Alleyn T Plowright
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| |
Collapse
|
14
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. Neue Modalitäten für schwierige Zielstrukturen in der Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611914] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Stéphanie M. Guéret
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
- Fakultät für Chemie and Chemische Biologie; Technische Universität Dortmund; Deutschland
| | - Tom N. Grossmann
- Chemical Genomics Centre der Max-Planck-Gesellschaft; Dortmund Deutschland
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; Niederlande
| | - Alleyn T. Plowright
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| |
Collapse
|
15
|
Assay development for determination of tenofovir in human plasma by solid phase analytical derivatization and LC-MS/MS. Bioanalysis 2015; 7:3085-95. [PMID: 26626536 DOI: 10.4155/bio.15.220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A novel method was developed and validated to measure tenofovir in human plasma. RESULTS/METHODOLOGY: This method employed solid phase analytical derivatization and analysis by LC-MS/MS. Stable-labeled internal standard was added to plasma samples followed by solid phase extraction. Retained analytes were derivatized on the solid phase extraction cartridges with a diazomethane solution to yield methyl-ester derivatives. Samples were analyzed using LC-MS/MS incorporating the use of a strong cation exchange column. The method was validated over a range of 5.00-750 ng/ml. The approach developed in this report for tenofovir could be applied to other analytes that share similar structural similarities. CONCLUSION The tenofovir LC-MS/MS method was used to support a clinical study of over 400 samples with a 100% success rate.
Collapse
|
16
|
Cardote TAF, Ciulli A. Cyclic and Macrocyclic Peptides as Chemical Tools To Recognise Protein Surfaces and Probe Protein-Protein Interactions. ChemMedChem 2015; 11:787-94. [PMID: 26563831 PMCID: PMC4848765 DOI: 10.1002/cmdc.201500450] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 01/25/2023]
Abstract
Targeting protein surfaces and protein-protein interactions (PPIs) with small molecules is a frontier goal of chemical biology and provides attractive therapeutic opportunities in drug discovery. The molecular properties of protein surfaces, including their shallow features and lack of deep binding pockets, pose significant challenges, and as a result have proved difficult to target. Peptides are ideal candidates for this mission due to their ability to closely mimic many structural features of protein interfaces. However, their inherently low intracellular stability and permeability and high in vivo clearance have thus far limited their biological applications. One way to improve these properties is to constrain the secondary structure of linear peptides by cyclisation. Herein we review various classes of cyclic and macrocyclic peptides as chemical probes of protein surfaces and modulators of PPIs. The growing interest in this area and recent advances provide evidence of the potential of developing peptide-like molecules that specifically target these interactions.
Collapse
Affiliation(s)
- Teresa A F Cardote
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
17
|
Xu P, Xu M, Jiang L, Yang Q, Luo Z, Dauter Z, Huang M, Andreasen PA. Design of Specific Serine Protease Inhibitors Based on a Versatile Peptide Scaffold: Conversion of a Urokinase Inhibitor to a Plasma Kallikrein Inhibitor. J Med Chem 2015; 58:8868-76. [PMID: 26536069 DOI: 10.1021/acs.jmedchem.5b01128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
All serine proteases hydrolyze peptide bonds by the same basic mechanism and have very similar active sites, in spite of the fact that individual proteases have different physiological functions. We here report a strategy for designing high-affinity and high-specificity serine protease inhibitors using a versatile peptide scaffold, a 10-mer peptide, mupain-1 (CPAYSRYLDC). Mupain-1 was previously reported as a specific inhibitor of murine urokinase-type plasminogen activator (Ki = 0.55 μM) without measurable affinity to plasma kallikrein (Ki > 1000 μM). On the basis of a structure-based rational design, we substituted five residues of mupain-1 and converted it to a potent plasma kallikrein inhibitor (Ki = 0.014 μM). X-ray crystal structure analysis showed that the new peptide was able to adapt a new set of enzyme surface interactions by a slightly changed backbone conformation. Thus, with an appropriate re-engineering, mupain-1 can be redesigned to specific inhibitors of other serine proteases.
Collapse
Affiliation(s)
- Peng Xu
- Danish-Chinese Centre for Proteases and Cancer, Department of Molecular Biology and Genetics, Aarhus University , Aarhus, 8000, Denmark
| | - Mingming Xu
- Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, 350002, China
| | - Longguang Jiang
- Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, 350002, China
| | - Qinglan Yang
- Danish-Chinese Centre for Proteases and Cancer, Department of Molecular Biology and Genetics, Aarhus University , Aarhus, 8000, Denmark
| | - Zhipu Luo
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Mingdong Huang
- Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, 350002, China
| | - Peter A Andreasen
- Danish-Chinese Centre for Proteases and Cancer, Department of Molecular Biology and Genetics, Aarhus University , Aarhus, 8000, Denmark
| |
Collapse
|
18
|
Chua K, Fung E, Micewicz ED, Ganz T, Nemeth E, Ruchala P. Small cyclic agonists of iron regulatory hormone hepcidin. Bioorg Med Chem Lett 2015; 25:4961-4969. [PMID: 25813158 PMCID: PMC4567957 DOI: 10.1016/j.bmcl.2015.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/28/2015] [Accepted: 03/04/2015] [Indexed: 02/03/2023]
Abstract
Minihepcidins are in vitro and in vivo active mimetics of iron-regulatory hormone hepcidin. They contain various unusual amino acids including: N-substituted, β-homo-, and d-amino acids with their combination depending on particular minihepcidin. In the current study, we sought to limit the use of unusual/more expensive amino acids derivatives by peptide cyclization. Novel cyclic mimetics of hepcidin were synthesized and tested in vitro and showed activity at low nanomolar concentration. Nonetheless, the most active cyclic compound (mHS17) is approximately ten times less active than the parental minihepcidin PR73. Collectively, our findings suggest that cyclization is viable approach in the synthesis of hepcidin mimetics.
Collapse
Affiliation(s)
- Kristine Chua
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Eileen Fung
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Ewa D Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Tomas Ganz
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Elizabeta Nemeth
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Piotr Ruchala
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA; The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Rational, computer-enabled peptide drug design: principles, methods, applications and future directions. Future Med Chem 2015; 7:2173-93. [PMID: 26510691 DOI: 10.4155/fmc.15.142] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Peptides provide promising templates for developing drugs to occupy a middle space between small molecules and antibodies and for targeting 'undruggable' intracellular protein-protein interactions. Importantly, rational or in cerebro design, especially when coupled with validated in silico tools, can be used to efficiently explore chemical space and identify islands of 'drug-like' peptides to satisfy diverse drug discovery program objectives. Here, we consider the underlying principles of and recent advances in rational, computer-enabled peptide drug design. In particular, we consider the impact of basic physicochemical properties, potency and ADME/Tox opportunities and challenges, and recently developed computational tools for enabling rational peptide drug design. Key principles and practices are spotlighted by recent case studies. We close with a hypothetical future case study.
Collapse
|
20
|
Werner HM, Cabalteja CC, Horne WS. Peptide Backbone Composition and Protease Susceptibility: Impact of Modification Type, Position, and Tandem Substitution. Chembiochem 2015. [PMID: 26205791 DOI: 10.1002/cbic.201500312] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The clinical utility of peptides is limited by their rapid degradation by endogenous proteases. Modification of the peptide backbone can generate functional analogues with enhanced proteolytic stability. Existing principles for the design of such oligomers have focused primarily on effective structural mimicry. A more robust strategy would incorporate a rational approach for engineering maximal proteolytic stability with minimal unnatural residue content. We report here the systematic comparison of the proteolytic resistance imparted by four backbone modifications commonly employed in the design of protease-stable analogues of peptides with complex folding patterns. The degree of protection was quantified as a function of modification type, position, and tandem substitution in the context of a long, unstructured host sequence and a canonical serine protease. These results promise to inform ongoing work to develop biostable mimics of increasingly complex peptides and proteins.
Collapse
Affiliation(s)
- Halina M Werner
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15213, USA
| | - Chino C Cabalteja
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15213, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
21
|
Micewicz ED, Sharma S, Waring AJ, Luong HT, McBride WH, Ruchala P. Bridged Analogues for p53-Dependent Cancer Therapy Obtained by S-Alkylation. Int J Pept Res Ther 2015; 22:67-81. [PMID: 26957954 DOI: 10.1007/s10989-015-9487-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A small library of anticancer, cell-permeating, stapled peptides based on potent dual-specific antagonist of p53-MDM2/MDMX interactions, PMI-N8A, was synthesized, characterized and screened for anticancer activity against human colorectal cancer cell line, HCT-116. Employed synthetic modifications included: S-alkylation-based stapling, point mutations increasing hydrophobicity in key residues as well as improvement of cell-permeability by introduction of polycationic sequence(s) that were woven into the sequence of parental peptide. Selected analogue, ArB14Co, was also tested in vivo and exhibited potent anticancer bioactivity at the low dose (3.0 mg/kg). Collectively, our findings suggest that application of stapling in combination with rational design of polycationic short analogues may be a suitable approach in the development of physiologically active p53-MDM2/MDMX peptide inhibitors.
Collapse
Affiliation(s)
- Ewa D Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Shantanu Sharma
- Materials and Process Simulation Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alan J Waring
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA, Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA
| | - Hai T Luong
- Department of Analytical Operations, Gilead Sciences, Inc., 4049 Avenida de la Plata, Oceanside CA, 92056, USA
| | - William H McBride
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Piotr Ruchala
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| |
Collapse
|
22
|
Heinis C, Winter G. Encoded libraries of chemically modified peptides. Curr Opin Chem Biol 2015; 26:89-98. [PMID: 25768886 DOI: 10.1016/j.cbpa.2015.02.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
The use of powerful technologies for generating and screening DNA-encoded protein libraries has helped drive the development of proteins as pharmaceutical ligands. However the development of peptides as pharmaceutical ligands has been more limited. Although encoded peptide libraries are typically several orders of magnitude larger than classical chemical libraries, can be more readily screened, and can give rise to higher affinity ligands, their use as pharmaceutical ligands is limited by their intrinsic properties. Two of the intrinsic limitations include the rotational flexibility of the peptide backbone and the limited number (20) of natural amino acids. However these limitations can be overcome by use of chemical modification. For example, the libraries can be modified to introduce topological constraints such as cyclization linkers, or to introduce new chemical entities such as small molecule ligands, fluorophores and photo-switchable compounds. This article reviews the chemistry involved, the properties of the peptide ligands, and the new opportunities offered by chemical modification of DNA-encoded peptide libraries.
Collapse
Affiliation(s)
- Christian Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Greg Winter
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
23
|
Kawakami T, Ishizawa T, Murakami H. Extensive Reprogramming of the Genetic Code for Genetically Encoded Synthesis of Highly N-Alkylated Polycyclic Peptidomimetics. J Am Chem Soc 2013; 135:12297-304. [DOI: 10.1021/ja405044k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Takashi Kawakami
- Department of Life Sciences, Graduate
School of Arts
and Sciences, The University of Tokyo,
3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Takahiro Ishizawa
- Department of Life Sciences, Graduate
School of Arts
and Sciences, The University of Tokyo,
3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hiroshi Murakami
- Department of Life Sciences, Graduate
School of Arts
and Sciences, The University of Tokyo,
3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
24
|
Frost JR, Smith JM, Fasan R. Design, synthesis, and diversification of ribosomally derived peptide macrocycles. Curr Opin Struct Biol 2013; 23:571-80. [PMID: 23856642 DOI: 10.1016/j.sbi.2013.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
Ring topologies are widespread structural motifs among biologically active peptides found in nature. The recurrence of this motif is linked to the inherent advantages resulting from backbone cyclization, which include increased resistance against proteolytic degradation, improved cell permeability, and tighter and more specific interaction with the respective biomolecular target. Inspired by these natural product topologies, a number of groups have recently focused on developing methodologies that hinge upon the chemical elaboration of ribosomally derived polypeptides toward the synthesis and diversification of macrocyclic peptide structures. In this review, we highlight recent advances in this emerging new area and discuss the opportunities created by these methods toward the discovery of new functional entities.
Collapse
Affiliation(s)
- John R Frost
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
25
|
Baeriswyl V, Calzavarini S, Gerschheimer C, Diderich P, Angelillo-Scherrer A, Heinis C. Development of a Selective Peptide Macrocycle Inhibitor of Coagulation Factor XII toward the Generation of a Safe Antithrombotic Therapy. J Med Chem 2013; 56:3742-6. [DOI: 10.1021/jm400236j] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vanessa Baeriswyl
- Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sara Calzavarini
- Service and Central Laboratory
of Hematology, Lausanne University Hospital, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Christiane Gerschheimer
- Service and Central Laboratory
of Hematology, Lausanne University Hospital, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Philippe Diderich
- Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anne Angelillo-Scherrer
- Service and Central Laboratory
of Hematology, Lausanne University Hospital, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Chen S, Rentero Rebollo I, Buth SA, Morales-Sanfrutos J, Touati J, Leiman PG, Heinis C. Bicyclic peptide ligands pulled out of cysteine-rich peptide libraries. J Am Chem Soc 2013; 135:6562-9. [PMID: 23560397 DOI: 10.1021/ja400461h] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bicyclic peptide ligands were found to have good binding affinity and target specificity. However, the method applied to generate bicyclic ligands based on phage-peptide alkylation is technically complex and limits its application to specialized laboratories. Herein, we report a method that involves a simpler and more robust procedure that additionally allows screening of structurally more diverse bicyclic peptide libraries. In brief, phage-encoded combinatorial peptide libraries of the format X(m)CX(n)CX(o)CX(p) are oxidized to connect two pairs of cysteines (C). This allows the generation of 3 × (m + n + o + p) different peptide topologies because the fourth cysteine can appear in any of the (m + n + o + p) randomized amino acid positions (X). Panning of such libraries enriched strongly peptides with four cysteines and yielded tight binders to protein targets. X-ray structure analysis revealed an important structural role of the disulfide bridges. In summary, the presented approach offers facile access to bicyclic peptide ligands with good binding affinities.
Collapse
Affiliation(s)
- Shiyu Chen
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
|