1
|
Istomine R, Al-Aubodah TA, Alvarez F, Smith JA, Wagner C, Piccirillo CA. The eIF4EBP-eIF4E axis regulates CD4 + T cell differentiation through modulation of T cell activation and metabolism. iScience 2023; 26:106683. [PMID: 37187701 PMCID: PMC10176268 DOI: 10.1016/j.isci.2023.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/27/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
CD4+ T cells are critical for adaptive immunity, differentiating into distinct effector and regulatory subsets. Although the transcriptional programs underlying their differentiation are known, recent research has highlighted the importance of mRNA translation in determining protein abundance. We previously conducted genome-wide analysis of translation in CD4+ T cells revealing distinct translational signatures distinguishing these subsets, identifying eIF4E as a central differentially translated transcript. As eIF4E is vital for eukaryotic translation, we examined how altered eIF4E activity affected T cell function using mice lacking eIF4E-binding proteins (BP-/-). BP-/- effector T cells showed elevated Th1 responses ex vivo and upon viral challenge with enhanced Th1 differentiation observed in vitro. This was accompanied by increased TCR activation and elevated glycolytic activity. This study highlights how regulating T cell-intrinsic eIF4E activity can influence T cell activation and differentiation, suggesting the eIF4EBP-eIF4E axis as a potential therapeutic target for controlling aberrant T cell responses.
Collapse
Affiliation(s)
- Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Jacob A. Smith
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carston Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
- Corresponding author
| |
Collapse
|
2
|
Chang P, Li X, Lin J, Li C, Li S. scFv-oligopeptide chaperoning system-assisted on-column refolding and purification of human muscle creatine kinase from inclusion bodies. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1209:123410. [PMID: 35994994 DOI: 10.1016/j.jchromb.2022.123410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
The formation of inclusion bodies in bacterial hosts poses a major challenge for the large-scale recovery of bioactive proteins. The process of obtaining bioactive protein from inclusion bodies is labor intensive, and the yields of recombinant protein are often low. Here, we describe a novel method for the renaturation and purification of inclusion bodies. This method combines a scFv-oligopeptide chaperoning system and an on-column refolding system to help refold human muscle creatine kinase (HCK) inclusion bodies. This method could significantly increase the activity recovery of denatured HCK inclusion bodies and provides an effective method for the production of bioactive proteins from inclusion bodies.
Collapse
Affiliation(s)
- Peipei Chang
- College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, PR China
| | - Xiaoyun Li
- College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, PR China
| | - Jingye Lin
- College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, PR China
| | - Cong Li
- College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, PR China
| | - Sen Li
- College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, PR China.
| |
Collapse
|
3
|
Garzón DN, Castillo Y, Navas-Zuloaga MG, Darwin L, Hardin A, Culik N, Yang A, Castillo-Garsow C, Ríos-Soto K, Arriola L, Ghosh A. Dynamics of prion proliferation under combined treatment of pharmacological chaperones and interferons. J Theor Biol 2021; 527:110797. [PMID: 34090904 DOI: 10.1016/j.jtbi.2021.110797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 11/15/2022]
Abstract
Prions are proteins that cause fatal neurodegenerative diseases. The misfolded conformation adopted by prions can be transmitted to other normally folded proteins. Therapeutics to stop prion proliferation have been studied experimentally; however, it is not clear how the combination of different types of treatments can decrease the growth rate of prions in the brain. In this article, we combine the implementation of pharmacological chaperones and interferons to develop a novel model using a non-linear system of ordinary differential equations and study the quantitative effects of these two treatments on the growth rate of prions. This study aims to identify how the two treatments affect prion proliferation, both individually and in tandem. We analyze the model, and qualitative global results on the disease-free and disease equilibria are proved analytically. Numerical simulations, using parameter values from in vivo experiments that provide a pharmaceutically important demonstration of the effects of these two treatments, are presented here. This mathematical model can be used to identify and optimize the best combination of the treatments within their safe ranges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anji Yang
- University of Shanghai for Science and Technology, China
| | | | | | - Leon Arriola
- Department of Mathematics, University of Wisconsin Whitewater, Whitewater, WI 53190, USA
| | - Aditi Ghosh
- Department of Mathematics, University of Wisconsin Whitewater, Whitewater, WI 53190, USA.
| |
Collapse
|
4
|
Liu T, Sun C, Li C, Lee J, Park YD, Zhang Y, Li S. Designing an Antibody-Based Chaperoning System through Programming the Binding and Release of the Folding Intermediate. ACS Chem Biol 2016; 11:1090-7. [PMID: 26959507 DOI: 10.1021/acschembio.6b00191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The protein folding pathway consists of sequential intramolecular interactions, while chaperones exert their functions either by stabilizing folding intermediates or by preventing nonspecific intermolecular interactions, which are often associated with aggregation involving exposed hydrophobic residues in folding intermediates. As chaperones do not possess specificity for individual client proteins, we designed an antibody-based chaperoning system to mimic the sequential binding and release of client proteins undergoing folding. The single-chain variable fragment of antibody (scFv) A4 binds to human muscle creatine kinase (HCK) and prevents it from aggregating. The slow dissociation of HCK from A4 resulted in delayed but eventually high-quality refolding, as reflected by the higher recovery of enzymatic activity as well as abolished aggregation. Peptide P6, a sequence in HCK involved in A4 binding, competes with HCK, promotes its dissociation from A4, and accelerates the rate of high-quality refolding. The sequential addition of A4 and P6 is essential for the chaperoning effect. The programmed binding/release method can also be applied to refold HCK from inclusion bodies. Because the association/dissociation of the folding intermediate with the antibody is highly specific, the method can be used to design tailored refolding systems and to investigate chaperoning effects on protein folding/aggregation in a sequence-specific manner.
Collapse
Affiliation(s)
- Tingting Liu
- Department
of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, The Key
Laboratory of Cell Proliferation and Regulation Biology of Ministry
of Education, Beijing 100875, P. R. China
| | - Caixian Sun
- Department
of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, The Key
Laboratory of Cell Proliferation and Regulation Biology of Ministry
of Education, Beijing 100875, P. R. China
| | - Cong Li
- Department
of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, The Key
Laboratory of Cell Proliferation and Regulation Biology of Ministry
of Education, Beijing 100875, P. R. China
| | - Jinhyuk Lee
- Korean
Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
- Department
of Nanobiotechnology and Bioinformatics, University of Sciences and Technology, Daejeon 305-350, Korea
| | - Yong-Doo Park
- Zhejiang
Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, P. R. China
| | - Yixin Zhang
- B
CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Sen Li
- Department
of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, The Key
Laboratory of Cell Proliferation and Regulation Biology of Ministry
of Education, Beijing 100875, P. R. China
| |
Collapse
|