1
|
Rotta G, Puca E, Cazzamalli S, Neri D, Dakhel Plaza S. Cytokine Biopharmaceuticals with "Activity-on-Demand" for Cancer Therapy. Bioconjug Chem 2024; 35:1075-1088. [PMID: 38885090 DOI: 10.1021/acs.bioconjchem.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Cytokines are small proteins that modulate the activity of the immune system. Because of their potent immunomodulatory properties, some recombinant cytokines have undergone clinical development and have gained marketing authorization for the therapy of certain forms of cancer. Recombinant cytokines are typically administered at ultralow doses, as many of them can cause substantial toxicity even at submilligram quantities. In an attempt to increase the therapeutic index, fusion proteins based on tumor-homing antibodies (also called "immunocytokines") have been considered, and some products in this class have reached late-stage clinical trials. While antibody-cytokine fusions, which preferentially localize in the neoplastic mass, can activate tumor-resident leukocytes and may be more efficacious than their nontargeted counterparts, such products typically conserve an intact cytokine activity, which may prevent escalation to curative doses. To further improve tolerability, several strategies have been conceived for the development of antibody-cytokine fusions with "activity-on-demand", acting on tumors but helping spare normal tissues from undesired toxicity. In this article, we have reviewed some of the most promising strategies, outlining their potential as well as possible limitations.
Collapse
Affiliation(s)
- Giulia Rotta
- Philochem AG, CH-8112 Otelfingen, Switzerland
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | | | | | - Dario Neri
- Philogen S.p.A, 53100 Siena, Italy
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
2
|
Boersma B, Poinot H, Pommier A. Stimulating the Antitumor Immune Response Using Immunocytokines: A Preclinical and Clinical Overview. Pharmaceutics 2024; 16:974. [PMID: 39204319 PMCID: PMC11357675 DOI: 10.3390/pharmaceutics16080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Cytokines are immune modulators which can enhance the immune response and have been proven to be an effective class of immunotherapy. Nevertheless, the clinical use of cytokines in cancer treatment has faced several challenges associated with poor pharmacokinetic properties and the occurrence of adverse effects. Immunocytokines (ICKs) have emerged as a promising approach to overcome the pharmacological limitations observed with cytokines. ICKs are fusion proteins designed to deliver cytokines in the tumor microenvironment by taking advantage of the stability and specificity of immunoglobulin-based scaffolds. Several technological approaches have been developed. This review focuses on ICKs designed with the most impactful cytokines in the cancer field: IL-2, TNFα, IL-10, IL-12, IL-15, IL-21, IFNγ, GM-CSF, and IFNα. An overview of the pharmacological effects of the naked cytokines and ICKs tested for cancer therapy is detailed. A particular emphasis is given on the immunomodulatory effects of ICKs associated with their technological design. In conclusion, this review highlights active ways of development of ICKs. Their already promising results observed in clinical trials are likely to be improved with the advances in targeting technologies such as cytokine/linker engineering and the design of multispecific antibodies with tumor targeting and immunostimulatory functional properties.
Collapse
Affiliation(s)
- Bart Boersma
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland;
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Hélène Poinot
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
- Translational Research Centre in Oncohaematology, University of Geneva, 1211 Geneva, Switzerland
| | - Aurélien Pommier
- UMR1240 Imagerie Moléculaire et Stratégies Théranostiques INSERM, Université Clermont Auvergne, BP 184, F-63005 Clermont-Ferrand, France
| |
Collapse
|
3
|
Philippova J, Shevchenko J, Sennikov S. GD2-targeting therapy: a comparative analysis of approaches and promising directions. Front Immunol 2024; 15:1371345. [PMID: 38558810 PMCID: PMC10979305 DOI: 10.3389/fimmu.2024.1371345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis. Its functions include proliferation, invasion, motility, and metastasis, and its high expression and ability to transform the tumor microenvironment may be associated with a malignant phenotype. Structurally, GD2 is a glycosphingolipid that is stably expressed on the surface of tumor cells, making it a suitable candidate for targeting by antibodies or chimeric antigen receptors. Based on mouse monoclonal antibodies, chimeric and humanized antibodies and their combinations with cytokines, toxins, drugs, radionuclides, nanoparticles as well as chimeric antigen receptor have been developed. Furthermore, vaccines and photoimmunotherapy are being used to treat GD2-positive tumors, and GD2 aptamers can be used for targeting. In the field of cell therapy, allogeneic immunocompetent cells are also being utilized to enhance GD2 therapy. Efforts are currently being made to optimize the chimeric antigen receptor by modifying its design or by transducing not only αβ T cells, but also γδ T cells, NK cells, NKT cells, and macrophages. In addition, immunotherapy can combine both diagnostic and therapeutic methods, allowing for early detection of disease and minimal residual disease. This review discusses each immunotherapy method and strategy, its advantages and disadvantages, and highlights future directions for GD2 therapy.
Collapse
Affiliation(s)
| | | | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
4
|
Beig Parikhani A, Dehghan R, Talebkhan Y, Bayat E, Biglari A, Shokrgozar MA, Ahangari Cohan R, Mirabzadeh E, Ajdary S, Behdani M. A novel nanobody-based immunocytokine of a mutant interleukin-2 as a potential cancer therapeutic. AMB Express 2024; 14:19. [PMID: 38337114 PMCID: PMC10857990 DOI: 10.1186/s13568-023-01648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/26/2023] [Indexed: 02/12/2024] Open
Abstract
The immunotherapeutic application of interleukin-2 (IL-2) in cancer treatment is limited by its off-target effects on different cell populations and insufficient activation of anti-tumor effector cells at the site of the tumor upon tolerated doses. Targeting IL-2 to the tumor microenvironment by generating antibody-cytokine fusion proteins (immunocytokine) would be a promising approach to increase efficacy without associated toxicity. In this study, a novel nanobody-based immunocytokine is developed by the fusion of a mutant (m) IL-2 with a decreased affinity toward CD25 to an anti-vascular endothelial growth factor receptor-2 (VEGFR2) specific nanobody, denoted as VGRmIL2-IC. The antigen binding, cell proliferation, IFN-γ-secretion, and cytotoxicity of this new immunocytokine are evaluated and compared to mIL-2 alone. Furthermore, the pharmacokinetic properties are analyzed. Flow cytometry analysis shows that the VGRmIL2-IC molecule can selectively target VEGFR2-positive cells. The results reveal that the immunocytokine is comparable to mIL-2 alone in the stimulation of Primary Peripheral Blood Mononuclear Cells (PBMCs) and cytotoxicity in in vitro conditions. In vivo studies demonstrate improved pharmacokinetic properties of VGRmIL2-IC in comparison to the wild or mutant IL-2 proteins. The results presented here suggest VGRmIL2-IC could be considered a candidate for the treatment of VEGFR2-positive tumors.
Collapse
Affiliation(s)
- Arezoo Beig Parikhani
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Rada Dehghan
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Yeganeh Talebkhan
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Bayat
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Biglari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Esmat Mirabzadeh
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Du Y, Xu J. Engineered Bifunctional Proteins for Targeted Cancer Therapy: Prospects and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103114. [PMID: 34585802 DOI: 10.1002/adma.202103114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Bifunctional proteins (BFPs) are a class of therapeutic agents produced through genetic engineering and protein engineering, and are increasingly used to treat various human diseases, including cancer. These proteins usually have two or more biological functions-specifically recognizing different molecular targets to regulate the related signaling pathways, or mediating effector molecules/cells to kill tumor cells. Unlike conventional small-molecule or single-target drugs, BFPs possess stronger biological activity but lower systemic toxicity. Hence, BFPs are considered to offer many benefits for the treatment of heterogeneous tumors. In this review, the authors briefly describe the unique structural feature of BFP molecules and innovatively divide them into bispecific antibodies, cytokine-based BFPs (immunocytokines), and protein toxin-based BFPs (immunotoxins) according to their mode of action. In addition, the latest advances in the development of BFPs are discussed and the potential limitations or problems in clinical applications are outlined. Taken together, future studies need to be centered on understanding the characteristics of BFPs for optimizing and designing more effective such drugs.
Collapse
Affiliation(s)
- Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
6
|
Dakhel S, Lizak C, Matasci M, Mock J, Villa A, Neri D, Cazzamalli S. An Attenuated Targeted-TNF Localizes to Tumors In Vivo and Regains Activity at the Site of Disease. Int J Mol Sci 2021; 22:10020. [PMID: 34576184 PMCID: PMC8469155 DOI: 10.3390/ijms221810020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Antibody-cytokine fusion proteins (immunocytokines) are gaining importance for cancer therapy, but those products are often limited by systemic toxicity related to the activity of the cytokine payload in circulation and in secondary lymphoid organs. Tumor necrosis factor (TNF) is used as a pro-inflammatory payload to trigger haemorrhagic necrosis and boost anti-cancer immunity at the tumor site. Here we describe a depotentiated version of TNF (carrying the single point mutation I97A), which displayed reduced binding affinity to its cognate receptor tumor necrosis factor receptor 1 (TNFR-1) and lower biocidal activity. The fusion of the TNF(I97A) mutant to the L19 antibody promoted restoration of anti-tumor activity upon accumulation on the cognate antigen, the alternatively spliced EDB domain of fibronectin. In vivo administration of high doses (375 μg/Kg) of the fusion protein showed a potent anti-tumor effect without apparent toxicity compared with the wild type protein. L19-TNFI97A holds promise for the targeted delivery of TNF activity to neoplastic lesions, helping spare normal tissues.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/metabolism
- Cricetulus
- Cytokines/genetics
- Cytokines/metabolism
- Female
- Fibronectins/genetics
- Fibronectins/metabolism
- Fluorescent Antibody Technique
- Immunotherapy
- Mice, Inbred BALB C
- Mutation
- Protein Structure, Secondary
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Mice
Collapse
Affiliation(s)
- Sheila Dakhel
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| | - Christian Lizak
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| | - Mattia Matasci
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| | - Jacqueline Mock
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| | - Alessandra Villa
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| | - Dario Neri
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
- Philogen S.p.A., Piazza La Lizza, 7, 53100 Siena, Italy
| | - Samuele Cazzamalli
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| |
Collapse
|
7
|
Pires IS, Hammond PT, Irvine DJ. Engineering Strategies for Immunomodulatory Cytokine Therapies - Challenges and Clinical Progress. ADVANCED THERAPEUTICS 2021; 4:2100035. [PMID: 34734110 PMCID: PMC8562465 DOI: 10.1002/adtp.202100035] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Cytokines are immunoregulatory proteins involved in many pathological states with promising potential as therapeutic agents. A diverse array of cytokines have been studied in preclinical disease models since the 1950s, some of which became successful biopharmaceutical products with the advancement of recombinant protein technology in the 1980s. However, following these early approvals, clinical translation of these natural immune signaling molecules has been limited due to their pleiotropic action in many cell types, and the fact that they have evolved to act primarily locally in tissues. These characteristics, combined with poor pharmacokinetics, have hindered the delivery of cytokines via systemic administration routes due to dose-limiting toxicities. However, given their clinical potential and recent clinical successes in cancer immunotherapy, cytokines continue to be extensively pursued in preclinical and clinical studies, and a range of molecular and formulation engineering strategies are being applied to reduce treatment toxicity while maintaining or enhancing therapeutic efficacy. This review provides a brief background on the characteristics of cytokines and their history as clinical therapeutics, followed by a deeper discussion on the engineering strategies developed for cytokine therapies with a focus on the translational relevance of these approaches.
Collapse
Affiliation(s)
- Ivan S Pires
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
8
|
Runbeck E, Crescioli S, Karagiannis SN, Papa S. Utilizing Immunocytokines for Cancer Therapy. Antibodies (Basel) 2021; 10:antib10010010. [PMID: 33803078 PMCID: PMC8006145 DOI: 10.3390/antib10010010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Cytokine therapy for cancer has indicated efficacy in certain diseases but is generally accompanied by severe toxicity. The field of antibody-cytokine fusion proteins (immunocytokines) arose to target these effector molecules to the tumor environment in order to expand the therapeutic window of cytokine therapy. Pre-clinical evidence has shown the increased efficacy and decreased toxicity of various immunocytokines when compared to their cognate unconjugated cytokine. These anti-tumor properties are markedly enhanced when combined with other treatments such as chemotherapy, radiotherapy, and checkpoint inhibitor antibodies. Clinical trials that have continued to explore the potential of these biologics for cancer therapy have been conducted. This review covers the in vitro, in vivo, and clinical evidence for the application of immunocytokines in immuno-oncology.
Collapse
Affiliation(s)
- Erin Runbeck
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
| | - Silvia Crescioli
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophie Papa
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
- Correspondence:
| |
Collapse
|
9
|
Ongaro T, Guarino SR, Scietti L, Palamini M, Wulhfard S, Neri D, Villa A, Forneris F. Inference of molecular structure for characterization and improvement of clinical grade immunocytokines. J Struct Biol 2021; 213:107696. [PMID: 33493635 DOI: 10.1016/j.jsb.2021.107696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
The use of immunomodulatory agents for the treatment of cancer is gaining a growing biopharmaceutical interest. Antibody-cytokine fusion proteins, namely immunocytokines, represent a promising solution for the regulation of the immune system at the site of disease. The three-dimensional arrangement of these molecules can profoundly influence their biological activity and pharmacokinetic properties. Structural techniques might provide important insight in the 3D arrangement of immunocytokines. Here, we performed structure investigations on clinical grade fusion proteins L19-IL2, IL12-L19L19 and L19L19-IL2 to elucidate their quaternary organization. Crystallographic characterization of the common L19 antibody fragment at a resolution of 2.0-Å was combined with low-resolution studies of the full-length chimeric molecules using small-angle synchrotron X-ray scattering (SAXS) and negative stain electron microscopy. Characterization of the full-length quaternary structures of the immunocytokines in solution by SAXS consistently supported the diabody structure in the L19-IL2 immunocytokine and allowed generation of low-resolution models of the chimeric proteins L19L19-IL2 and IL12-L19L19. Comparison with 3D reconstructions obtained from negative-stain electron microscopy revealed marked flexibility associated to the linker regions connecting the cytokine and the antibody components of the chimeric proteins. Collectively, our results indicate that low-resolution molecular structure characterizations provide useful complementary insights for the quality control of immunocytokines, constituting a powerful tool to guide the design and the subsequent optimization steps towards clinical enhancement of these chimeric protein reagents.
Collapse
Affiliation(s)
- Tiziano Ongaro
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100 Pavia Italy; Philochem AG, Libernstrasse 3, 8112 Otelfingen, Switzerland
| | - Salvatore R Guarino
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100 Pavia Italy
| | - Luigi Scietti
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100 Pavia Italy
| | - Martina Palamini
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100 Pavia Italy
| | - Sarah Wulhfard
- Philochem AG, Libernstrasse 3, 8112 Otelfingen, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich Switzerland
| | | | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100 Pavia Italy.
| |
Collapse
|
10
|
Mock J, Stringhini M, Villa A, Weller M, Weiss T, Neri D. An engineered 4-1BBL fusion protein with "activity on demand". Proc Natl Acad Sci U S A 2020; 117:31780-31788. [PMID: 33239441 PMCID: PMC7749310 DOI: 10.1073/pnas.2013615117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Engineered cytokines are gaining importance in cancer therapy, but these products are often limited by toxicity, especially at early time points after intravenous administration. 4-1BB is a member of the tumor necrosis factor receptor superfamily, which has been considered as a target for therapeutic strategies with agonistic antibodies or using its cognate cytokine ligand, 4-1BBL. Here we describe the engineering of an antibody fusion protein, termed F8-4-1BBL, that does not exhibit cytokine activity in solution but regains biological activity on antigen binding. F8-4-1BBL bound specifically to its cognate antigen, the alternatively spliced EDA domain of fibronectin, and selectively localized to tumors in vivo, as evidenced by quantitative biodistribution experiments. The product promoted a potent antitumor activity in various mouse models of cancer without apparent toxicity at the doses used. F8-4-1BBL represents a prototype for antibody-cytokine fusion proteins, which conditionally display "activity on demand" properties at the site of disease on antigen binding and reduce toxicity to normal tissues.
Collapse
Affiliation(s)
- Jacqueline Mock
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), CH-8093 Zürich, Switzerland
| | - Marco Stringhini
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), CH-8093 Zürich, Switzerland
| | - Alessandra Villa
- Antibody Research, Philochem AG, CH-8112 Otelfingen, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, University of Zurich, CH-8091 Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zurich, University of Zurich, CH-8091 Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), CH-8093 Zürich, Switzerland;
| |
Collapse
|
11
|
Mortensen MR, Mock J, Bertolini M, Stringhini M, Catalano M, Neri D. Targeting an engineered cytokine with interleukin-2 and interleukin-15 activity to the neovasculature of solid tumors. Oncotarget 2020; 11:3972-3983. [PMID: 33216834 PMCID: PMC7646832 DOI: 10.18632/oncotarget.27772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/24/2020] [Indexed: 01/07/2023] Open
Abstract
There is a growing interest in the antibody-based delivery of cytokines to the tumor environment as a means to boost the anti-cancer activity of tumor-resident T cells and NK cells. Here, we describe the expression and characterization of fusion proteins, featuring the L19 antibody (specific to the alternatively-spliced EDB domain of fibronectin) and an engineered cytokine with interleukin-2 and interleukin-15 properties. The cytokine moiety was fused either at the N-terminal or at the C-terminal extremity and both fusion proteins showed a selective tumor accumulation in a quantitative biodistribution experiment. The N-terminal fusion inhibited tumor growth in immunocompetent mice bearing F9 carcinomas or WEHI-164 sarcomas when used as single agent. The anticancer activity was compared to the one of the same cytokine payload used as recombinant protein or fused to an anti-hen egg lysozyme antibody, serving as negative control of irrelevant specificity in the mouse. These results indicate that the antibody-based delivery of engineered cytokines to the tumor neovasculature may mediate a potent anticancer activity.
Collapse
Affiliation(s)
- Michael R Mortensen
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Jacqueline Mock
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Marco Bertolini
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Marco Stringhini
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| |
Collapse
|
12
|
A novel format for recombinant antibody-interleukin-2 fusion proteins exhibits superior tumor-targeting properties in vivo. Oncotarget 2020; 11:3698-3711. [PMID: 33110477 PMCID: PMC7566808 DOI: 10.18632/oncotarget.27726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/17/2020] [Indexed: 01/13/2023] Open
Abstract
The targeted delivery of interleukin-2 to the tumor is gaining attention as an avenue to potentiate the action of T and NK cells at the site of disease. We have previously described the fusion of the L19 antibody, specific to the EDB domain of fibronectin, with human interleukin-2, using a non-covalent homodimeric diabody format. Here, we describe four novel formats for the L19-IL2 fusion, featuring different arrangements of antibody and IL2. A comparative quantitative biodistribution analysis in tumor-bearing mice using radioiodinated proteins revealed that the novel format (L19L19-IL2, with the antibody in single-chain diabody format) exhibited the best biodistribution results. In vitro assays on peripheral blood mononuclear cells showed a decrease activation of regulatory T cells when single IL2 domain was used. In vivo, both L19-IL2 and L19L19-IL2 inhibited tumor growth in immunocompetent mouse models of cancer. T-cell analysis revealed similar levels of CD4+ and FoxP3+ cells, with an expansion of the CD8+ T cell in mice treated with L19-IL2 and L19L19-IL2. The percentage of CD4+ regulatory T cells was markedly decreased with L19L19-IL2 combined with a mouse-specific PD-1 blocker. Collectively, these data indicate that the new L19L19-IL2 format exhibits favorable tumor-homing properties and mediates a potent anti-cancer activity in vivo.
Collapse
|
13
|
Neri D. Antibody-Cytokine Fusions: Versatile Products for the Modulation of Anticancer Immunity. Cancer Immunol Res 2020; 7:348-354. [PMID: 30824549 DOI: 10.1158/2326-6066.cir-18-0622] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The remarkable clinical success of immune-checkpoint inhibitors for the treatment of a growing number of cancer types has sparked interest in the discovery of novel forms of immunotherapy, which may be used alone or in combination. In this context, cytokine-based therapeutics are well poised to play a role in modern cancer therapy. This article focuses on antibody-cytokine fusion proteins (also called "immunocytokines") as one class of biopharmaceuticals that can substantially improve the therapeutic index and, thus, the applicability of cytokine products. In many preclinical settings, antibodies can be used to preferentially deliver many (but not all) types of cytokines to primary and metastatic tumor lesions. The antibody-based delivery of certain proinflammatory payloads (such as IL2, IL12, and TNF) to the tumor microenvironment can lead to a dramatic potentiation of their anticancer activity. However, although some fusion proteins have advanced to late-stage clinical trials, much work remains to be done in order to fully characterize the mechanism of action and the pharmaceutical potential of immunocytokines in the clinical setting. Various factors contribute to in vivo performance, including the target antigen, the antibody properties, the nature of the payload, the format of the fusion protein, the dose, and schedule, as well as their use in combination with other therapeutic modalities. Protein engineering opportunities and insights in cancer immunology are contributing to the development of next-generation immunocytokine products and of novel therapeutic concepts, with the goal to increase antitumor activity and reduce systemic toxicity (a common problem for cytokine-based biopharmaceuticals).
Collapse
Affiliation(s)
- Dario Neri
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
14
|
Mock J, Pellegrino C, Neri D. A universal reporter cell line for bioactivity evaluation of engineered cytokine products. Sci Rep 2020; 10:3234. [PMID: 32094407 PMCID: PMC7040017 DOI: 10.1038/s41598-020-60182-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/07/2019] [Indexed: 12/24/2022] Open
Abstract
Engineered cytokine products represent a growing class of therapeutic proteins which need to be tested for biological activity at various stages of pharmaceutical development. In most cases, dedicated biological assays are established for different products, in a process that can be time-consuming and cumbersome. Here we describe the development and implementation of a universal cell-based reporter system for various classes of immunomodulatory proteins. The novel system capitalizes on the fact that the signaling of various types of pro-inflammatory agents (e.g., cytokines, chemokines, Toll-like receptor agonists) may involve transcriptional activation by NF-κB. Using viral transduction, we generated stably-transformed cell lines of B or T lymphocyte origin and compared the new reporter cell lines with conventional bioassays. The experimental findings with various interleukins and with members of the TNF superfamily revealed that the newly-developed “universal” bioassay method yielded bioactivity data which were comparable to the ones obtained with dedicated conventional methods. The engineered cell lines with reporters for NF-κB were tested with several antibody-cytokine fusions and may be generally useful for the characterization of novel immunomodulatory products. The newly developed methodology also revealed a mechanism for cytokine potentiation, based on the antibody-mediated clustering of TNF superfamily members on tumor-associated extracellular matrix components.
Collapse
Affiliation(s)
- Jacqueline Mock
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Christian Pellegrino
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| |
Collapse
|
15
|
Comparative evaluation of bolus and fractionated administration modalities for two antibody-cytokine fusions in immunocompetent tumor-bearing mice. J Control Release 2020; 317:282-290. [PMID: 31790729 DOI: 10.1016/j.jconrel.2019.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/07/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022]
Abstract
Antibody-cytokine fusion proteins are being considered as biopharmaceuticals for cancer immunotherapy. Tumor-homing cytokine fusions typically display an improved therapeutic activity compared to the corresponding unmodified cytokine products, but toxicity profiles at equivalent doses are similar, since side effects are mainly driven by the cytokine concentration in blood. In order to explore avenues to harness the therapeutic potential of antibody-cytokine fusions while decreasing potential toxicity, we compared bolus and fractionated administration modalities for two tumor-targeting antibody-cytokine fusion proteins based on human interleukin-2 (IL2) and murine tumor necrosis factor (TNF) (i.e., L19-hIL2 and L19-mTNF) in two murine immunocompetent mouse models of cancer (F9 and C51). A comparative quantitative biodistribution analysis with radio-labeled protein preparations revealed that a fractionated administration of L19-hIL2 could deliver comparable product doses to the tumor with decreased product concentration in blood and normal organs, compared to bolus injection. By contrast, L19-mTNF (a product that causes a selective vascular shutdown in the tumor) accumulated most efficiently after bolus injection. Fractionated schedules allowed the safe administration of a cumulative dose of L19-mTNF, which was 2.5-times higher than the lethal dose for bolus injection. Dose fractionation led to a prolonged tumor growth inhibition for F9 teratocarcinomas, but not for C51 colorectal tumors, which responded best to bolus injection. Thus, dose fractionation may have different outcomes for the same antibody-cytokine product in different biological contexts.
Collapse
|
16
|
Murer P, Neri D. Antibody-cytokine fusion proteins: A novel class of biopharmaceuticals for the therapy of cancer and of chronic inflammation. N Biotechnol 2019; 52:42-53. [PMID: 30991144 DOI: 10.1016/j.nbt.2019.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/23/2022]
Abstract
Antibody-cytokine fusion proteins represent a novel class of biopharmaceuticals, with the potential to increase the therapeutic index of cytokine 'payloads' and to promote leukocyte infiltration at the site of disease. In this review, we present a survey of immunocytokines that have been used in preclinical models of cancer and in clinical trials. In particular, we highlight how antibody format, choice of target antigen and cytokine engineering, as well as combination strategies, may have a profound impact on therapeutic performance. Moreover, by using anti-inflammatory cytokines, antibody fusion strategies can conveniently be employed for the treatment of auto-immune and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Patrizia Murer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland.
| |
Collapse
|
17
|
Antibody-cytokine fusion proteins: Biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv Drug Deliv Rev 2019; 141:67-91. [PMID: 30201522 DOI: 10.1016/j.addr.2018.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023]
Abstract
Cytokines have long been used for therapeutic applications in cancer patients. Substantial side effects and unfavorable pharmacokinetics limit their application and may prevent dose escalation to therapeutically active regimens. Antibody-cytokine fusion proteins (often referred to as immunocytokines) may help localize immunomodulatory cytokine payloads to the tumor, thereby activating anticancer immune responses. A variety of formats (e.g., intact IgGs or antibody fragments), molecular targets (e.g., extracellular matrix components and cell membrane antigens) and cytokine payloads have been considered for the development of this novel class of biopharmaceuticals. This review presents the basic concepts on the design and engineering of immunocytokines, reviews their potential limitations, points out emerging opportunities and summarizes key features of preclinical and clinical-stage products.
Collapse
|
18
|
Felder M, Kapur A, Rakhmilevich AL, Qu X, Sondel PM, Gillies SD, Connor J, Patankar MS. MUC16 suppresses human and murine innate immune responses. Gynecol Oncol 2019; 152:618-628. [PMID: 30626487 DOI: 10.1016/j.ygyno.2018.12.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/18/2018] [Accepted: 12/26/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE MUC16, the mucin that contains the CA125 epitopes, suppresses the cytolytic responses of human NK cells and inhibits the efficacy of therapeutic antibodies. Here, we provide further evidence of the regulatory role of MUC16 on human and murine NK cells and macrophages. METHODS Target cell cytolysis and doublet formation assays were performed to assess effects of MUC16 on human NK cells. The effect of MUC16 on ovarian tumor growth was determined in a mouse model by monitoring survival and ascites formation. Innate immune cells from spleens and peritoneal cavities of mice were isolated and stimulated in vitro with anti-CD40 antibody, lipopolysaccharide and IFN-γ and their ability to cytolyse MUC16 expressing and non-expressing cells was determined. RESULTS We confirm that MUC16 inhibits cytolysis by human NK cells as well as the formation of NK-tumor conjugates. Mice implanted with MUC16-knockdown OVCAR-3 show >2-fold increase in survival compared to controls. Murine NK cells and macrophages are more efficient at lysing MUC16-knockdown cells. In vitro cytotoxicity assays with NK cells and macrophages isolated from mice stimulated with anti-CD40 antibody showed 2-3-fold increased activity against the MUC16-knockdown cells as compared to matching target cells expressing this mucin. Finally, knockdown of MUC16 increased the susceptibility of cancer cells to ADCC by murine splenocytes. CONCLUSIONS For the first time, we demonstrate the immunoregulatory effects of MUC16 on murine NK cells and macrophages. Our study implies that the immunoregulatory role of MUC16 on murine NK cells and macrophages should be considered when examining the biology of MUC16 in mouse models.
Collapse
Affiliation(s)
- Mildred Felder
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | - Arvinder Kapur
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | | | - Xiaoyi Qu
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Paul M Sondel
- Departments of Pediatrics and Human Oncology, University of Wisconsin, Madison, WI, USA
| | | | - Joseph Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53792, USA.
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
19
|
Ayuso JM, Truttschel R, Gong MM, Humayun M, Virumbrales-Munoz M, Vitek R, Felder M, Gillies SD, Sondel P, Wisinski KB, Patankar M, Beebe DJ, Skala MC. Evaluating natural killer cell cytotoxicity against solid tumors using a microfluidic model. Oncoimmunology 2018; 8:1553477. [PMID: 30723584 DOI: 10.1080/2162402x.2018.1553477] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
Immunotherapies against solid tumors face additional challenges compared with hematological cancers. In solid tumors, immune cells and antibodies need to extravasate from vasculature, find the tumor, and migrate through a dense mass of cells. These multiple steps pose significant obstacles for solid tumor immunotherapy and their study has remained difficult using classic in vitro models based on Petri dishes. In this work, a microfluidic model has been developed to study natural killer cell response. The model includes a 3D breast cancer spheroid in a 3D extracellular matrix, and two flanking lumens lined with endothelial cells, replicating key structures and components during the immune response. Natural Killer cells and antibodies targeting the tumor cells were either embedded in the matrix or perfused through the lateral blood vessels. Antibodies that were perfused through the lateral lumens extravasated out of the blood vessels and rapidly diffused through the matrix. However, tumor cell-cell junctions hindered antibody penetration within the spheroid. On the other hand, natural killer cells were able to detect the presence of the tumor spheroid several hundreds of microns away and penetrate the spheroid faster than the antibodies. Once inside the spheroid, natural killer cells were able to destroy tumor cells at the spheroid periphery and, importantly, also at the innermost layers. Finally, the combination of antibody-cytokine conjugates and natural killer cells led to an enhanced cytotoxicity located mostly at the spheroid periphery. Overall, these results demonstrate the utility of the model for informing immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Jose M Ayuso
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.,The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Regan Truttschel
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Max M Gong
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.,The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Mouhita Humayun
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.,The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Maria Virumbrales-Munoz
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.,The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.,Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA.,Provenance Biopharmaceuticals Corp., Carlisle, MA USA.,Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Ross Vitek
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.,The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Mildred Felder
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Paul Sondel
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kari B Wisinski
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Manish Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.,The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.,Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Melissa C Skala
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.,The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
20
|
De Luca R, Neri D. Potentiation of PD-L1 blockade with a potency-matched dual cytokine-antibody fusion protein leads to cancer eradication in BALB/c-derived tumors but not in other mouse strains. Cancer Immunol Immunother 2018; 67:1381-1391. [PMID: 29971465 DOI: 10.1007/s00262-018-2194-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/29/2018] [Indexed: 01/20/2023]
Abstract
We have recently described a novel therapeutic antibody product (IL2-F8-TNFmut), featuring the simultaneous fusion of murine IL2 and of a TNF mutant with scFv(F8), an antibody specific to the alternatively-spliced extra domain A of fibronectin (EDA). Here, we report on the in vivo characterization of the anti-cancer activity of IL2-F8-TNFmut in four immunocompetent murine models of cancer, CT26, WEHI-164, F9 teratocarcinoma and Lewis lung carcinoma (LLC), using the product alone or in combination with a monoclonal antibody specific to murine PD-L1. All four models exhibited a strong expression of EDA-fibronectin, which was confined to vascular structures for F9 tumors, while the other three malignancies exhibited a more stromal pattern of staining. A complete and long-lasting tumor eradication of CT26 and WEHI-164 tumors was observed in BALB/c mice when IL2-F8-TNFmut was used in combination with PD-L1 blockade. The combination treatment led to improved tumor growth inhibition in 129/SvEv mice bearing murine teratocarcinoma or in C57BL/6 mice bearing murine LLC, but those cancer cures were difficult to achieve in those models. A microscopic analysis of tumor sections, obtained 24 h after pharmacological treatment, revealed that the PD-L1 antibody had homogenously reached tumor cells in vivo and that the combination of PD-L1 blockade with IL2-F8-TNFmut stimulated an influx of NK cells and of T cells into the neoplastic mass. These data indicate that potency-matched dual-cytokine fusion proteins may be ideally suited to potentiate the therapeutic activity of immune check-point inhibitors.
Collapse
Affiliation(s)
- Roberto De Luca
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
21
|
Perez Horta Z, Saseedhar S, Rakhmilevich AL, Carmichael L, Hank JA, Boyden M, Gillies SD, Sondel PM. Human and murine IL2 receptors differentially respond to the human-IL2 component of immunocytokines. Oncoimmunology 2018; 8:e1238538. [PMID: 31069147 DOI: 10.1080/2162402x.2016.1238538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/26/2016] [Accepted: 09/14/2016] [Indexed: 10/20/2022] Open
Abstract
The humanized immunocytokine, hu14.18-IL2 (ICp), leads to the immune cell-mediated destruction of GD2-expressing tumors in mouse models, resulting in potent antitumor effects with negligible IL2-related toxicity. In contrast, when ICp is used clinically, antitumor activity is accompanied by dose-limiting IL2-related toxicities. These species-specific differences in ICp toxicity may be linked to differential binding to mouse vs. human IL2 receptors (IL2Rs). We evaluated immunocytokines genetically engineered to preferentially bind either high-affinity αβγ-IL2Rs or intermediate-affinity βγ-IL2Rs. These ICs have the IL2 fused to the C-terminus of the IgG light chains rather than the heavy chains. We found that IC35, containing intact huIL2, maintained activation of human and mouse αβγ-IL2Rs but exhibited a 20-fold reduction in the ability to stimulate human βγ-IL2Rs, with no activation of mouse βγ-IL2Rs at the concentrations tested. The reduced ability of IC35 to stimulate human βγ-IL2Rs (associated with IL2-toxicities) makes it a potential candidate for clinical trials where higher clinical IC doses might enable better tumor targeting and increased antitumor effects with less toxicity. Contrastingly, ICSK (IC with an IL2 mutein that has enhanced binding to the IL2R β-chain) showed increased activation over ICp on mouse βγ-IL2Rs, with a dose-response curve similar to that seen with IC35 on human βγ-IL2Rs. Our data suggest that ICSK might be used in mouse models to simulate the anticipated effects of IC35 in clinical testing. Understanding the differences in species-dependent IL2R activation should facilitate the design of reagents and mouse models that better simulate the potential activity of IL2-based immunotherapy in patients.
Collapse
Affiliation(s)
| | - Swetha Saseedhar
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | | | - Lakeesha Carmichael
- Department of Biostatistics and Bioinformatics, University of Wisconsin, Madison, WI, USA
| | - Jacquelyn A Hank
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Margaret Boyden
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | | | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA.,Department of Pediatrics and Genetics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
22
|
Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Antibody-Based Cancer Therapy: Successful Agents and Novel Approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:289-383. [PMID: 28325214 DOI: 10.1016/bs.ircmb.2016.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since their discovery, antibodies have been viewed as ideal candidates or "magic bullets" for use in targeted therapy in the fields of cancer, autoimmunity, and chronic inflammatory disorders. A wave of antibody-dedicated research followed, which resulted in the clinical approval of a first generation of monoclonal antibodies for cancer therapy such as rituximab (1997) and cetuximab (2004), and infliximab (2002) for the treatment of autoimmune diseases. More recently, the development of antibodies that prevent checkpoint-mediated inhibition of T cell responses invigorated the field of cancer immunotherapy. Such antibodies induced unprecedented long-term remissions in patients with advanced stage malignancies, most notably melanoma and lung cancer, that do not respond to conventional therapies. In this review, we will recapitulate the development of antibody-based therapy, and detail recent advances and new functions, particularly in the field of cancer immunotherapy. With the advent of recombinant DNA engineering, a number of rationally designed molecular formats of antibodies and antibody-derived agents have become available, and we will discuss various molecular formats including antibodies with improved effector functions, bispecific antibodies, antibody-drug conjugates, antibody-cytokine fusion proteins, and T cells genetically modified with chimeric antigen receptors. With these exciting advances, new antibody-based treatment options will likely enter clinical practice and pave the way toward more successful control of malignant diseases.
Collapse
Affiliation(s)
- D Hendriks
- Department of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - G Choi
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - M de Bruyn
- Department of Obstetrics & Gynecology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - V R Wiersma
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands.
| | - E Bremer
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands; University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
23
|
Perez Horta Z, Goldberg JL, Sondel PM. Anti-GD2 mAbs and next-generation mAb-based agents for cancer therapy. Immunotherapy 2016; 8:1097-117. [PMID: 27485082 PMCID: PMC5619016 DOI: 10.2217/imt-2016-0021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 05/11/2016] [Indexed: 12/16/2022] Open
Abstract
Tumor-specific monoclonal antibodies (mAbs) have demonstrated efficacy in the clinic, becoming an important approach for cancer immunotherapy. Due to its limited expression on normal tissue, the GD2 disialogangloside expressed on neuroblastoma cells is an excellent candidate for mAb therapy. In 2015, dinutuximab (an anti-GD2 mAb) was approved by the US FDA and is currently used in a combination immunotherapeutic regimen for the treatment of children with high-risk neuroblastoma. Here, we review the extensive preclinical and clinical development of anti-GD2 mAbs and the different mechanisms by which they mediate tumor cell killing. In addition, we discuss different mAb-based strategies that capitalize on the targeting ability of anti-GD2 mAbs to potentially deliver, as monotherapy, or in combination with other treatments, improved antitumor efficacy.
Collapse
Affiliation(s)
| | - Jacob L Goldberg
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics & Genetics, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| |
Collapse
|
24
|
Venetz D, Koovely D, Weder B, Neri D. Targeted Reconstitution of Cytokine Activity upon Antigen Binding using Split Cytokine Antibody Fusion Proteins. J Biol Chem 2016; 291:18139-47. [PMID: 27402834 PMCID: PMC5000063 DOI: 10.1074/jbc.m116.737734] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/28/2016] [Indexed: 01/05/2023] Open
Abstract
The targeted assembly of antibody products upon antigen binding represents a novel strategy for the reconstitution of potent therapeutic activity at the site of disease, sparing healthy tissues. We demonstrate that interleukin-12, a heterodimeric pro-inflammatory cytokine consisting of the disulfide-linked p40 and p35 subunits, can be reconstituted by sequential reassembly of fusion proteins based on antibody fragments and interleukin-12 subunit mutants. Analysis of the immunostimulatory properties of interleukin-12 and its derivatives surprisingly revealed that the mutated p35 subunit partially retained the activity of the parental cytokine, whereas the p40 subunit alone was not able to stimulate T cells or natural killer cells. The concept of stepwise antibody-based reassembly of split cytokines could be useful for the development of other anticancer therapeutics with improved safety and tolerability.
Collapse
Affiliation(s)
- Dario Venetz
- From the Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Danil Koovely
- From the Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Bruce Weder
- From the Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Dario Neri
- From the Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| |
Collapse
|
25
|
Targeted erythropoietin selectively stimulates red blood cell expansion in vivo. Proc Natl Acad Sci U S A 2016; 113:5245-50. [PMID: 27114509 DOI: 10.1073/pnas.1525388113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The design of cell-targeted protein therapeutics can be informed by natural protein-protein interactions that use cooperative physical contacts to achieve cell type specificity. Here we applied this approach in vivo to the anemia drug erythropoietin (EPO), to direct its activity to EPO receptors (EPO-Rs) on red blood cell (RBC) precursors and prevent interaction with EPO-Rs on nonerythroid cells, such as platelets. Our engineered EPO molecule was mutated to weaken its affinity for EPO-R, but its avidity for RBC precursors was rescued via tethering to an antibody fragment that specifically binds the human RBC marker glycophorin A (huGYPA). We systematically tested the impact of these engineering steps on in vivo markers of efficacy, side effects, and pharmacokinetics. huGYPA transgenic mice dosed with targeted EPO exhibited elevated RBC levels, with only minimal platelet effects. This in vivo selectivity depended on the weakening EPO mutation, fusion to the RBC-specific antibody, and expression of huGYPA. The terminal plasma half-life of targeted EPO was ∼28.3 h in transgenic mice vs. ∼15.5 h in nontransgenic mice, indicating that huGYPA on mature RBCs acted as a significant drug sink but did not inhibit efficacy. In a therapeutic context, our targeting approach may allow higher restorative doses of EPO without platelet-mediated side effects, and also may improve drug pharmacokinetics. These results demonstrate how rational drug design can improve in vivo specificity, with potential application to diverse protein therapeutics.
Collapse
|
26
|
Neri D, Sondel PM. Immunocytokines for cancer treatment: past, present and future. Curr Opin Immunol 2016; 40:96-102. [PMID: 27060634 DOI: 10.1016/j.coi.2016.03.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
Immunocytokines are antibody-cytokine fusion proteins, with the potential to preferentially localize on tumor lesions and to activate anticancer immunity at the site of disease. Various tumor targets (e.g., cell membrane antigens and extracellular matrix components) and antibody formats (e.g., intact IgG and antibody fragments) have been considered for immunocytokine development and some products have advanced to clinical trials. In this review, we present relevant concepts and strategies for the design and use of anticancer immunocytokine products. In addition, we discuss emerging strategies for the pharmaceutical development and clinical application of this promising class of biopharmaceuticals.
Collapse
Affiliation(s)
- Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland.
| | - Paul M Sondel
- Departments of Pediatrics, Human Oncology and Genetics, and UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
27
|
Bootz F, Neri D. Immunocytokines: a novel class of products for the treatment of chronic inflammation and autoimmune conditions. Drug Discov Today 2016; 21:180-189. [PMID: 26526566 PMCID: PMC5144993 DOI: 10.1016/j.drudis.2015.10.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/21/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022]
Abstract
Antibody-cytokine fusion proteins, often referred to as immunocytokines, represent a novel class of biopharmaceutical agents that combine the disease-homing activity of certain antibodies with the immunomodulatory properties of cytokine payloads. Originally, immunocytokines were mainly developed for cancer therapy applications. More recently, however, the use of anti-inflammatory cytokines for the treatment of chronic inflammatory conditions and to treat autoimmune diseases has been considered. This review analyzes basic principles in the design of immunocytokines and describes the most advanced products in preclinical and clinical development.
Collapse
Affiliation(s)
- Franziska Bootz
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir Prelog Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir Prelog Weg 1-5/10, CH-8093 Zürich, Switzerland.
| |
Collapse
|
28
|
Noy-Porat T, Cohen O, Ehrlich S, Epstein E, Alcalay R, Mazor O. Acetylcholinesterase-Fc Fusion Protein (AChE-Fc): A Novel Potential Organophosphate Bioscavenger with Extended Plasma Half-Life. Bioconjug Chem 2015; 26:1753-8. [DOI: 10.1021/acs.bioconjchem.5b00305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Tal Noy-Porat
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ofer Cohen
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Sharon Ehrlich
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Eyal Epstein
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ron Alcalay
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ohad Mazor
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
29
|
Antigen specificity can be irrelevant to immunocytokine efficacy and biodistribution. Proc Natl Acad Sci U S A 2015; 112:3320-5. [PMID: 25733854 DOI: 10.1073/pnas.1416159112] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cytokine therapy can activate potent, sustained antitumor responses, but collateral toxicity often limits dosages. Although antibody-cytokine fusions (immunocytokines) have been designed with the intent to localize cytokine activity, systemic dose-limiting side effects are not fully ameliorated by attempted tumor targeting. Using the s.c. B16F10 melanoma model, we found that a nontoxic dose of IL-2 immunocytokine synergized with tumor-specific antibody to significantly enhance therapeutic outcomes compared with immunocytokine monotherapy, concomitant with increased tumor saturation and intratumoral cytokine responses. Examination of cell subset biodistribution showed that the immunocytokine associated mainly with IL-2R-expressing innate immune cells, with more bound immunocytokine present in systemic organs than the tumor microenvironment. More surprisingly, immunocytokine antigen specificity and Fcγ receptor interactions did not seem necessary for therapeutic efficacy or biodistribution patterns because immunocytokines with irrelevant specificity and/or inactive mutant Fc domains behaved similarly to tumor-specific immunocytokine. IL-2-IL-2R interactions, rather than antibody-antigen targeting, dictated immunocytokine localization; however, the lack of tumor targeting did not preclude successful antibody combination therapy. Mathematical modeling revealed immunocytokine size as another driver of antigen targeting efficiency. This work presents a safe, straightforward strategy for augmenting immunocytokine efficacy by supplementary antibody dosing and explores underappreciated factors that can subvert efforts to purposefully alter cytokine biodistribution.
Collapse
|