1
|
Dedeakayoğulları H, Valjakka J, Turunen O, Yilmazer B, Demir Ğ, Jänis J, Binay B. Application of reductive amination by heterologously expressed Thermomicrobium roseumL-alanine dehydrogenase to synthesize L-alanine derivatives. Enzyme Microb Technol 2023; 169:110265. [PMID: 37269617 DOI: 10.1016/j.enzmictec.2023.110265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Unnatural amino acids are unique building blocks in modern medicinal chemistry as they contain an amino and a carboxylic acid functional group, and a variable side chain. Synthesis of pure unnatural amino acids can be made through chemical modification of natural amino acids or by employing enzymes that can lead to novel molecules used in the manufacture of various pharmaceuticals. The NAD+ -dependent alanine dehydrogenase (AlaDH) enzyme catalyzes the conversion of pyruvate to L-alanine by transferring ammonium in a reversible reductive amination activity. Although AlaDH enzymes have been widely studied in terms of oxidative deamination activity, reductive amination activity studies have been limited to the use of pyruvate as a substrate. The reductive amination potential of heterologously expressed, highly pure Thermomicrobium roseum alanine dehydrogenase (TrAlaDH) was examined with regard to pyruvate, α-ketobutyrate, α-ketovalerate and α-ketocaproate. The biochemical properties were studied, which included the effects of 11 metal ions on enzymatic activity for both reactions. The enzyme accepted both derivatives of L-alanine (in oxidative deamination) and pyruvate (in reductive amination) as substrates. While the kinetic KM values associated with the pyruvate derivatives were similar to pyruvate values, the kinetic kcat values were significantly affected by the side chain increase. In contrast, KM values associated with the derivatives of L-alanine (L-α-aminobutyrate, L-norvaline, and L-norleucine) were approximately two orders of magnitude greater, which would indicate that they bind very poorly in a reactive way to the active site. The modeled enzyme structure revealed differences in the molecular orientation between L-alanine/pyruvate and L-norleucine/α-ketocaproate. The reductive activity observed would indicate that TrAlaDH has potential for the synthesis of pharmaceutically relevant amino acids.
Collapse
Affiliation(s)
- Huri Dedeakayoğulları
- Medical Biochemistry Department, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Jarkko Valjakka
- Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland
| | - Ossi Turunen
- School of Forest Sciences, University of Eastern Finland, FI-80101 Joensuu, Finland
| | - Berin Yilmazer
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Ğarip Demir
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, FI-80101 Joensuu, Finland
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey; BAUZYME Biotechnology Co., Gebze Technical University Technopark, Gebze, 41400 Kocaeli, Turkey.
| |
Collapse
|
2
|
Aktaş F. Heterologous Expression and Partial Characterization of a New Alanine Dehydrogenase from Amycolatopsis sulphurea. Protein J 2021; 40:342-347. [PMID: 33818657 DOI: 10.1007/s10930-021-09982-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
A novel alanine dehydrogenase (AlaDH; EC.1.4.1.1) was isolated from Amycolatopsis sulphurea and the AlaDH gene was cloned into a pET28a(+) plasmid and expressed in E. coli BL21 (DE3). The molecular mass of this enzyme was calculated as 41.09 kDa and the amino acid residues of the pure protein indicated the presence of N terminus polyhistidine tags. Its enzyme kinetic values were Km 2.03 mM, kcat 13.24 (s-1), and kcat/Km 6.53 (s-1 mM-1). AlaDH catalyzes the reversible conversion of L-alanine and pyruvate, which has an important role in the TCA energy cycle. Maximum AlaDH activity occurred at about pH 10.5 and 25 °C for the oxidative deamination of L-alanine. AlaDH retained about 10% of its relative activity at 55 °C and it remained about 90% active at 50 °C. These findings show that the AsAlaDH from A. sulphurea has the ability to produce valuable molecules for various industrial purposes and could represent a new potential biocatalyst for biotechnological applications after further characterization and improvement of its catalytic properties.
Collapse
Affiliation(s)
- Fatih Aktaş
- Faculty of Engineering, Düzce University, 81600, Düzce, Turkey.
| |
Collapse
|
3
|
Abstract
Cold-active enzymes increase their catalytic efficiency at low-temperature, introducing structural flexibility at or near the active sites. Inevitably, this feat seems to be accompanied by lower thermal stability. These characteristics have made cold-active enzymes into attractive targets for the industrial applications, since they could reduce the energy cost in the reaction, attenuate side-reactions, and simply be inactivated. In addition, the increased structural flexibility could result in broad substrate specificity for various non-native substrates, which is called substrate promiscuity. In this perspective, we deal with a less addressed aspect of cold-active enzymes, substrate promiscuity, which has enormous potential for semi-synthesis or enzymatic modification of fine chemicals and drugs. Further structural and directed-evolutional studies on substrate promiscuity of cold-active enzymes will provide a new workhorse in white biotechnology.
Collapse
|
4
|
He YU, Wang S, Yin X, Sun F, He B, Liu X. Comparison of Extracellular Proteins from Virulent and Avirulent Vibrio parahaemolyticus Strains To Identify Potential Virulence Factors. J Food Prot 2020; 83:155-162. [PMID: 31860395 DOI: 10.4315/0362-028x.jfp-19-188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vibrio parahaemolyticus is a leading seafood-borne pathogen that causes gastroenteritis, septicemia, and serious wound infections due to the actions of virulence-associated proteins. We compared the extracellular proteins of nonvirulent JHY20 and virulent ATCC 33847 V. parahaemolyticus reference strains. Eighteen extracellular proteins were identified from secretory profiles, and 11 (68.75%) of the 16 proteins in ATCC 33847 are associated with virulence and/or protection against adverse conditions: trigger factor, chaperone SurA, aspartate-semialdehyde dehydrogenase, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, glutamate 5-kinase, alanine dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, outer membrane protein OmpV, ribosome-associated inhibitor A, chaperone protein Skp, and universal stress protein. Two nontoxic-related proteins, amino acid ABC transporter substrate-binding protein and an uncharacterized protein, were identified in JHY20. The results provide a theoretical basis for supporting safety risk assessment of aquatic foods, illuminate the pathogenic mechanisms of V. parahaemolyticus, and assist the identification of novel vaccine candidates for foodborne pathogens.
Collapse
Affiliation(s)
- Y U He
- College of Food (Biotechnology) Engineering.,Key Construction Laboratory of Food Resources Development and the Quality Safety, Xuzhou University of Technology, Jiangsu, Xuzhou 221018, People's Republic of China
| | - Shuai Wang
- College of Food (Biotechnology) Engineering.,Key Construction Laboratory of Food Resources Development and the Quality Safety, Xuzhou University of Technology, Jiangsu, Xuzhou 221018, People's Republic of China
| | | | - Fengjiao Sun
- Logistics & Security Department, Shanghai Civil Aviation College, Shanghai 201300, People's Republic of China
| | - Bin He
- Environment Monitoring Station, Zaozhuang Municipal Bureau of Ecology and Environment, Shandong 277100, People's Republic of China
| | - Xiao Liu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
5
|
Van Wieren A, Cook R, Majumdar S. Characterization of Alanine Dehydrogenase and Its Effect on Streptomyces coelicolorA3(2) Development in Liquid Culture. J Mol Microbiol Biotechnol 2019; 29:57-65. [PMID: 31851994 DOI: 10.1159/000504709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/10/2019] [Indexed: 11/19/2022] Open
Abstract
Streptomyces, the most important group of industrial microorganisms, is harvested in liquid cultures for the production of two-thirds of all clinically relevant secondary metabolites. It is demonstrated here that the growth of Streptomyces coelicolor A3(2) is impacted by the deletion of the alanine dehydrogenase (ALD), an essential enzyme that plays a central role in the carbon and nitrogen metabolism. A long lag-phase growth followed by a slow exponential growth of S. coelicolor due to ALD gene deletion was observed in liquid yeast extract mineral salt culture. The slow lag-phase growth was replaced by the normal wild-type like growth by ALD complementation engineering. The ALD enzyme from S. coelicolor was also heterologously cloned and expressed in Escherichia coli for characterization. The optimum enzyme activity for the oxidative deamination reaction was found at 30°C, pH 9.5 with a catalytic efficiency, kcat/KM, of 2.0 ± 0.1 mM-1 s-1. The optimum enzyme activity for the reductive amination reaction was found at 30°C, pH 9.0 with a catalytic efficiency, kcat/KM, of 1.9 ± 0.1 mM-1 s-1.
Collapse
Affiliation(s)
- Arie Van Wieren
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA
| | - Ryan Cook
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA.,West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Sudipta Majumdar
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA,
| |
Collapse
|
6
|
Abstract
Alanine dehydrogenase (AlaDH) (E.C.1.4.1.1) is a microbial enzyme that catalyzes a reversible conversion of L-alanine to pyruvate. Inter-conversion of alanine and pyruvate by AlaDH is central to metabolism in microorganisms. Its oxidative deamination reaction produces pyruvate which plays a pivotal role in the generation of energy through the tricarboxylic acid cycle for sporulation in the microorganisms. Its reductive amination reaction provides a route for the incorporation of ammonia and produces L-alanine which is required for synthesis of the peptidoglycan layer, proteins, and other amino acids. Also, AlaDH helps in redox balancing as its deamination/amination reaction is linked to the reduction/oxidation of NAD+/NADH in microorganisms. AlaDH from a few microorganisms can also reduce glyoxylate into glycine (aminoacetate) in a nonreversible reaction. Both its oxidative and reductive reactions exhibit remarkable applications in the pharmaceutical, environmental, and food industries. The literature addressing the characteristics and applications of AlaDH from a wide range of microorganisms is summarized in the current review.
Collapse
Affiliation(s)
| | - Ravi-Kumar Kadeppagari
- b Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology Campus , Bengaluru , India
| |
Collapse
|
7
|
Zhou J, Wang Y, Chen J, Xu M, Yang T, Zheng J, Zhang X, Rao Z. Rational Engineering of Bacillus cereus
Leucine Dehydrogenase Towards α-keto Acid Reduction for Improving Unnatural Amino Acid Production. Biotechnol J 2018; 14:e1800253. [DOI: 10.1002/biot.201800253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Junping Zhou
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Yaling Wang
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Jiajie Chen
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Junxian Zheng
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| |
Collapse
|
8
|
Velasco-Lozano S, da Silva ES, Llop J, López-Gallego F. Sustainable and Continuous Synthesis of Enantiopure l-Amino Acids by Using a Versatile Immobilised Multienzyme System. Chembiochem 2017; 19:395-403. [PMID: 28990733 DOI: 10.1002/cbic.201700493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 11/08/2022]
Abstract
The enzymatic synthesis of α-amino acids is a sustainable and efficient alternative to chemical processes, through which achieving enantiopure products is difficult. To more address this synthesis efficiently, a hierarchical architecture that irreversibly co-immobilises an amino acid dehydrogenase with polyethyleneimine on porous agarose beads has been designed and fabricated. The cationic polymer acts as an irreversible anchoring layer for the formate dehydrogenase. In this architecture, the two enzymes and polymer colocalise across the whole microstructure of the porous carrier. This multifunctional heterogeneous biocatalyst was kinetically characterised and applied to the enantioselective synthesis of a variety of canonical and noncanonical α-amino acids in both discontinuous (batch) and continuous modes. The co-immobilised bienzymatic system conserves more than 50 % of its initial effectiveness after five batch cycles and 8 days of continuous operation. Additionally, the environmental impact of this process has been semiquantitatively calculated and compared with the state of the art.
Collapse
Affiliation(s)
- Susana Velasco-Lozano
- Heterogeneous Biocatalysis Group, CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia, Spain
| | - Eunice S da Silva
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Group, CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz Haroko Kalea 3, 48013, Bilbao, Spain
| |
Collapse
|
9
|
da Silva ES, Gómez-Vallejo V, Baz Z, Llop J, López-Gallego F. Efficient Enzymatic Preparation of (13) N-Labelled Amino Acids: Towards Multipurpose Synthetic Systems. Chemistry 2016; 22:13619-26. [PMID: 27515007 DOI: 10.1002/chem.201602471] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 01/27/2023]
Abstract
Nitrogen-13 can be efficiently produced in biomedical cyclotrons in different chemical forms, and its stable isotopes are present in the majority of biologically active molecules. Hence, it may constitute a convenient alternative to Fluorine-18 and Carbon-11 for the preparation of positron-emitter-labelled radiotracers; however, its short half-life demands for the development of simple, fast, and efficient synthetic processes. Herein, we report the one-pot, enzymatic and non-carrier-added synthesis of the (13) N-labelled amino acids l-[(13) N]alanine, [(13) N]glycine, and l-[(13) N]serine by using l-alanine dehydrogenase from Bacillus subtilis, an enzyme that catalyses the reductive amination of α-keto acids by using nicotinamide adenine dinucleotide (NADH) as the redox cofactor and ammonia as the amine source. The integration of both l-alanine dehydrogenase and formate dehydrogenase from Candida boidinii in the same reaction vessel to facilitate the in situ regeneration of NADH during the radiochemical synthesis of the amino acids allowed a 50-fold decrease in the concentration of the cofactor without compromising reaction yields. After optimization of the experimental conditions, radiochemical yields were sufficient to carry out in vivo imaging studies in small rodents.
Collapse
Affiliation(s)
- Eunice S da Silva
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Paseo Miramón 182, 20009, San Sebastián, Guipúzcoa, Spain
| | - Vanessa Gómez-Vallejo
- Radiochemistry Platform, CIC biomaGUNE, Paseo Miramón 182, 20009, San Sebastián, Guipúzcoa, Spain
| | - Zuriñe Baz
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Paseo Miramón 182, 20009, San Sebastián, Guipúzcoa, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Paseo Miramón 182, 20009, San Sebastián, Guipúzcoa, Spain.
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Group, CIC biomaGUNE, Paseo Miramón 182, 20009, San Sebastián, Guipúzcoa, Spain. .,IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain.
| |
Collapse
|
10
|
Lerchner A, Jarasch A, Skerra A. Engineering of alanine dehydrogenase from Bacillus subtilis for novel cofactor specificity. Biotechnol Appl Biochem 2015. [PMID: 26202482 DOI: 10.1002/bab.1414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The l-alanine dehydrogenase of Bacillus subtilis (BasAlaDH), which is strictly dependent on NADH as redox cofactor, efficiently catalyzes the reductive amination of pyruvate to l-alanine using ammonia as amino group donor. To enable application of BasAlaDH as regenerating enzyme in coupled reactions with NADPH-dependent alcohol dehydrogenases, we alterated its cofactor specificity from NADH to NADPH via protein engineering. By introducing two amino acid exchanges, D196A and L197R, high catalytic efficiency for NADPH was achieved, with kcat /KM = 54.1 µM-1 Min-1 (KM = 32 ± 3 µM; kcat = 1,730 ± 39 Min-1 ), almost the same as the wild-type enzyme for NADH (kcat /KM = 59.9 µM-1 Min-1 ; KM = 14 ± 2 µM; kcat = 838 ± 21 Min-1 ). Conversely, recognition of NADH was much diminished in the mutated enzyme (kcat /KM = 3 µM-1 Min-1 ). BasAlaDH(D196A/L197R) was applied in a coupled oxidation/transamination reaction of the chiral dicyclic dialcohol isosorbide to its diamines, catalyzed by Ralstonia sp. alcohol dehydrogenase and Paracoccus denitrificans ω-aminotransferase, thus allowing recycling of the two cosubstrates NADP+ and l-Ala. An excellent cofactor regeneration with recycling factors of 33 for NADP+ and 13 for l-Ala was observed with the engineered BasAlaDH in a small-scale biocatalysis experiment. This opens a biocatalytic route to novel building blocks for industrial high-performance polymers.
Collapse
Affiliation(s)
- Alexandra Lerchner
- Munich Center for integrated Protein Science (CiPSM) and Lehrstuhl für Biologische Chemie, Technische Universität München, Freising-Weihenstephan, Germany
| | - Alexander Jarasch
- Munich Center for integrated Protein Science (CiPSM) and Lehrstuhl für Biologische Chemie, Technische Universität München, Freising-Weihenstephan, Germany
| | - Arne Skerra
- Munich Center for integrated Protein Science (CiPSM) and Lehrstuhl für Biologische Chemie, Technische Universität München, Freising-Weihenstephan, Germany.
| |
Collapse
|