1
|
Graham BD, Selby CM, Forga AJ, Coles ME, Beer LC, Graham LE, Teague KD, Tellez-Isaias G, Hargis BM, Vuong CN. Development of an environmental contamination model to simulate the microbial bloom that occurs in commercial hatch cabinets. Poult Sci 2022; 101:101890. [PMID: 35512499 PMCID: PMC9079238 DOI: 10.1016/j.psj.2022.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Microbial blooms that emerge in commercial hatch cabinets consist of apathogenic and pathogenic microorganisms, including Escherichia coli, Enterococcus faecalis, and Aspergillus fumigatus. Objectives of the present study included the development of a multipathogen contamination model to mimic commercial conditions and optimization of sampling methods to quantify bacterial or fungal presence within the hatch cabinet. The pathogen challenge mix (PM) was recreated from select bacterial or fungal isolates recovered from an egg homogenate (EH) derived from the contents of infertile eggs and late embryonic mortalities. Isolates selected for PM included Enterococcus faecalis (∼108 CFU/egg), Staphylococcus aureus (∼107 CFU/egg), Staphylococcus chromogenes (∼107 CFU/egg), Aspergillus fumigatus (∼106 spores/egg), and 2 Escherichia coli (∼108 CFU/egg) isolates. Challenge (100 μL of PM or EH) was administered using a sterile loop to a 28 mm area on the blunt end of the eggshell at day 19 of embryogenesis (DOE). In 3 experiments, microbiological data were collected from environmental hatcher samples (open-agar plate method), fluff samples, postmortem whole-body chick rinse samples, and gastrointestinal tract (GIT) samples to evaluate select bacteria and fungi circulating within the hatch cabinet and colonization of GIT. Cumulative bacterial and fungal recovery from the PM hatching environment from DOE20 to hatch was higher than the nonchallenged group (NC) and EH group at ∼860 and ∼1,730 CFU, respectively. Bacterial recovery from GIT, fluff, and chick rinse samples were similar for the PM and EH group in Exp. 1. However, Aspergillus fumigatus recovery from fluff and chick rinse samples for the PM group was significantly (P < 0.001) higher than the NC and EH group. In Exp. 2 and 3, PM challenge significantly (P < 0.05) increased Gram-negative bacterial recovery from the GIT, fluff and chick rinse samples compared to both the NC and EH group. These data suggest this innovative multispecies environmental contamination model using PM could be utilized to evaluate strategies to mitigate microbial contamination in commercial hatch cabinets in a laboratory setting.
Collapse
Affiliation(s)
- B D Graham
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA.
| | - C M Selby
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - A J Forga
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - M E Coles
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - L C Beer
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - L E Graham
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - K D Teague
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - G Tellez-Isaias
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - B M Hargis
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - C N Vuong
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| |
Collapse
|
2
|
Aspergillosis, Avian Species and the One Health Perspective: The Possible Importance of Birds in Azole Resistance. Microorganisms 2020; 8:microorganisms8122037. [PMID: 33352774 PMCID: PMC7767009 DOI: 10.3390/microorganisms8122037] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
The One Health context considers health based on three pillars: humans, animals, and environment. This approach is a strong ally in the surveillance of infectious diseases and in the development of prevention strategies. Aspergillus spp. are fungi that fit substantially in this context, in view of their ubiquity, as well as their importance as plant pathogens, and potentially fatal pathogens for, particularly, humans and avian species. In addition, the emergence of azole resistance, mainly in Aspergillus fumigatus sensu stricto, and the proven role of fungicides widely used on crops, reinforces the need for a multidisciplinary approach to this problem. Avian species are involved in short and long distance travel between different types of landscapes, such as agricultural fields, natural environments and urban environments. Thus, birds can play an important role in the dispersion of Aspergillus, and of special concern, azole-resistant strains. In addition, some bird species are particularly susceptible to aspergillosis. Therefore, avian aspergillosis could be considered as an environmental health indicator. In this review, aspergillosis in humans and birds will be discussed, with focus on the presence of Aspergillus in the environment. We will relate these issues with the emergence of azole resistance on Aspergillus. These topics will be therefore considered and reviewed from the “One Health” perspective.
Collapse
|
3
|
Evaluation of the potential influence of the disinfection cycle on the efficacy of strain F Mycoplasma gallisepticum vaccine administered by in ovo injection to layer hatching eggs,,. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
4
|
Seyedmousavi S, Guillot J, Arné P, de Hoog GS, Mouton JW, Melchers WJG, Verweij PE. Aspergillus and aspergilloses in wild and domestic animals: a global health concern with parallels to human disease. Med Mycol 2015; 53:765-97. [PMID: 26316211 DOI: 10.1093/mmy/myv067] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/30/2015] [Indexed: 12/22/2022] Open
Abstract
The importance of aspergillosis in humans and various animal species has increased over the last decades. Aspergillus species are found worldwide in humans and in almost all domestic animals and birds as well as in many wild species, causing a wide range of diseases from localized infections to fatal disseminated diseases, as well as allergic responses to inhaled conidia. Some prevalent forms of animal aspergillosis are invasive fatal infections in sea fan corals, stonebrood mummification in honey bees, pulmonary and air sac infection in birds, mycotic abortion and mammary gland infections in cattle, guttural pouch mycoses in horses, sinonasal infections in dogs and cats, and invasive pulmonary and cerebral infections in marine mammals and nonhuman primates. This article represents a comprehensive overview of the most common infections reported by Aspergillus species and the corresponding diseases in various types of animals.
Collapse
Affiliation(s)
- Seyedmojtaba Seyedmousavi
- Department of Medical Microbiology and Infectious Diseases, ErasmusMC, the Netherlands Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jacques Guillot
- Department of Parasitology-Mycology, Dynamyc Research Group, EnvA, UPEC, UPE, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Pascal Arné
- Department of Animal Production, Dynamyc Research Group, EnvA, UPEC, UPE, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - G Sybren de Hoog
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands, Peking University Health Science Center, Research Center for Medical Mycology, Beijing, China, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China, and King Abdullaziz University, Jeddah, Saudi Arabia
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, ErasmusMC, the Netherlands Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|