1
|
Zhang S, Fang X, Wu R, Nie Q, Li Z. VNN1 Gene Expression and Polymorphisms Associated with Chicken Carcass Traits. Animals (Basel) 2024; 14:1888. [PMID: 38998000 PMCID: PMC11240768 DOI: 10.3390/ani14131888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to investigate the association between hepatic VNN1 expression and carcass traits in Mahuang chickens as well as to identify polymorphisms in the upstream and downstream regions of VNN1 that could potentially be associated with these carcass traits. The study revealed that VNN1 expression levels in liver correlated with various carcass traits such as dressed weight, eviscerated weight, and abdominal fat weight. A total of 39 polymorphic sites were identified, among which 23 were found to be associated with 15 different carcass traits. These polymorphic sites were organized into three distinct haplotype blocks, with BLOCK2 and BLOCK3 being associated with various eviscerated weight percentages, thigh weight, breast muscle weight, wing weight, and other traits. The study underscores the significant role of VNN1 in influencing the carcass traits of Mahuang chickens and sheds light on the genetic foundations of these traits. The findings provide valuable insights that could inform breeding strategies aimed at optimizing traits relevant to market demands and slaughtering efficiency.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.Z.); (Q.N.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xiang Fang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.Z.); (Q.N.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Ruiquan Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.Z.); (Q.N.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.Z.); (Q.N.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Zhenhui Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.Z.); (Q.N.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Yu S, Wang G, Shen X, Chen J, Liao J, Yang Y, Aikebai G. Comprehensive analysis of changes in expression of lncRNA, microRNA and mRNA in liver tissues of chickens with high or low abdominal fat deposition. Br Poult Sci 2024; 65:250-258. [PMID: 38808584 DOI: 10.1080/00071668.2024.2319779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/07/2023] [Indexed: 05/30/2024]
Abstract
1. The liver of chickens is a dominant lipid biosynthetic tissue and plays a vital role in fat deposition, particularly in the abdomen. To determine the molecular mechanisms involved in its lipid metabolism, the livers of chickens with high (H) or low (L) abdominal fat content were sampled and sequencing on long non-coding RNA (lncRNA), messenger RNA (mRNA) and small RNA (microRNA) was performed.2. In total, 351 expressed protein-coding genes for long non-coding RNA (DEL; 201 upregulated and 150 downregulated), 400 differentially expressed genes (DEG; 223 upregulated and 177 downregulated) and 10 differentially expressed miRNA (DEM; four upregulated and six downregulated) were identified between the two groups. Multiple potential signalling pathways related to lipogenesis and lipid metabolism were identified via pathway enrichment analysis. In addition, 173 lncRNA - miRNA - mRNA interaction regulatory networks were identified, including 30 lncRNA, 27 mRNA and seven miRNA.3. These networks may help regulate lipid metabolism and fat deposition. Five promising candidate genes and two lncRNA may play important roles in the regulation of adipogenesis and lipid metabolism in chickens.
Collapse
Affiliation(s)
- S Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - G Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - X Shen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - J Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - J Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - Y Yang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - G Aikebai
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| |
Collapse
|
3
|
Yang K, Cui X, Hu Y, Feng X, Chen W, Zhang W, Zhang L, Li S, Hu Y, Li T, Wang S, Luo X. Dietary manganese supplementation decreases hepatic lipid deposition by regulating gene expression and enzyme activity involved in lipid metabolism in the liver of broilers. J Anim Sci 2024; 102:skae235. [PMID: 39150014 PMCID: PMC11391614 DOI: 10.1093/jas/skae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024] Open
Abstract
This study aimed to characterize the effects of different dietary forms of supplemental manganese (Mn) on hepatic lipid deposition, gene expression, and enzyme activity in liver fat metabolism in 42-d-old broiler chickens. In total 420 one-day-old Arbor Acres (AA) broilers (rooster:hen = 1:1) were assigned randomly based on body weight and sex to 1 of 6 treatments (10 replicate cages per treatment and 7 broilers per replicate cage) in a completely randomized design using a 2 (sex) × 3 (diet) factorial arrangement. The 3 diets were basal control diets without Mn supplementation and basal diets supplemented with either Mn sulfate or Mn proteinate. No sex × diet interactions were observed in any of the measured indexes; thus, the effect of diet alone was presented in this study. Dietary Mn supplementation increased Mn content in the plasma and liver, adipose triglyceride lipase (ATGL) activity, and ATGL mRNA and its protein expression in the liver by 5.3% to 24.0% (P < 0.05), but reduced plasma triglyceride (TG), total cholesterol, and low-density lipoprotein (LDL-C) levels, liver TG content, fatty acid synthase (FAS) and malic enzyme (ME) activities, mRNA expression of sterol-regulatory element-binding protein 1 (SREBP1), FAS, stearoyl-coA desaturase (SCD), and ME, as well as the protein expression of SREBP1 and SCD in the liver by 5.5% to 22.8% (P < 0.05). No differences were observed between the 2 Mn sources in all of the determined parameters. Therefore, it was concluded that dietary Mn supplementation, regardless of Mn source, decreased hepatic lipid accumulation in broilers by inhibiting SREBP1 and SCD expression, FAS and ME activities, and enhancing ATGL expression and activity.
Collapse
Affiliation(s)
- Ke Yang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
- Hebei Normal University of Science and Technology, Qinhuangdao, People's Republic of China
- Hebei Provincial Key Laboratory of Characteristic Animal Germplasm Resources Mining and Innovation, Qinhuangdao, People's Republic of China
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Yangyang Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Xinyu Feng
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Wenpeng Chen
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Weiyun Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Liyang Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Sufen Li
- Hebei Normal University of Science and Technology, Qinhuangdao, People's Republic of China
- Hebei Provincial Key Laboratory of Characteristic Animal Germplasm Resources Mining and Innovation, Qinhuangdao, People's Republic of China
| | - Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Shengchen Wang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
4
|
Zhang J, Tian C, Zhu K, Liu Y, Zhao C, Jiang M, Zhu C, Li G. Effects of Natural and Synthetic Astaxanthin on Growth, Body Color, and Transcriptome and Metabolome Profiles in the Leopard Coral Grouper (Plectropomus leopardus). Animals (Basel) 2023; 13:ani13071252. [PMID: 37048508 PMCID: PMC10093260 DOI: 10.3390/ani13071252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
Natural and synthetic astaxanthin can promote pigmentation in fish. In this study, the effects of dietary astaxanthin on growth and pigmentation were evaluated in leopard coral grouper (Plectropomus leopardus). Fish were assigned to three groups: 0% astaxanthin (C), 0.02% natural astaxanthin (HP), and 0.02% synthetic astaxanthin (AS). Brightness (L*) was not influenced by astaxanthin. However, redness (a*) and yellowness (b*) were significantly higher for fish fed astaxanthin-containing diets than fish fed control diets and were significantly higher in the HP group than in the AS group. In a transcriptome analysis, 466, 33, and 32 differentially expressed genes (DEGs) were identified between C and HP, C and AS, and AS and HP, including various pigmentation-related genes. DEGs were enriched for carotenoid deposition and other pathways related to skin color. A metabolome analysis revealed 377, 249, and 179 differential metabolites (DMs) between C and HP, C and AS, and AS and HP, respectively. In conclusion, natural astaxanthin has a better coloration effect on P. leopardus, which is more suitable as a red colorant in aquaculture. These results improve our understanding of the effects of natural and synthetic astaxanthin on red color formation in fish.
Collapse
Affiliation(s)
- Junpeng Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yong Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Can Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Mouyan Jiang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Chunhua Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| |
Collapse
|
5
|
Khosinklang W, Kubota S, Riou C, Kaewsatuan P, Molee A, Molee W. Omega-3 meat enrichment and L-FABP, PPARA, and LPL genes expression are modified by the level and period of tuna oil supplementation in slow-growing chickens. J Anim Sci 2023; 101:skad267. [PMID: 37549905 PMCID: PMC10563153 DOI: 10.1093/jas/skad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023] Open
Abstract
This study proposes a strategy to manipulate the fatty acid (FA) content in slow-growing Korat chicken (KRC) meat using tuna oil (TO). To determine the optimal level and feeding period of TO supplementation, we conducted a study investigating the effects of dietary TO levels and feeding periods on meat quality, omega-3 polyunsaturated fatty acid (n-3 PUFA) composition, and gene expression related to FA metabolism in KRC breast meat. At 3 wk of age, 700 mixed-sex KRC were assigned to seven augmented factorial treatments with a completely randomized design, each consisting of four replicate pens containing 25 chickens per pen. The control group received a corn-soybean-based diet with 4.5% rice bran oil (RBO), while varying amounts of TO (1.5%, 3.0%, or 4.5%) replaced a portion of the RBO content in the experimental diets. The chickens were fed these diets for 3 and 6 wk, respectively, before being slaughtered at 9 wk. Our results indicated no significant interactions between TO levels and feeding periods on the growth performance or meat quality of KRC (P > 0.05). However, the liver fatty acid-binding protein gene (L-FABP, also known as FABP1), responsible for FA transport and accumulation, showed significantly higher expression in the chickens supplemented with 4.5% TO (P < 0.05). The chickens supplemented with 4.5% TO for a longer period (3 to 9 wk of age) exhibited the lowest levels of n-6 PUFA and n-6 to n-3 ratio, along with the highest levels of eicosapentaenoic acid, docosahexaenoic acid, and n-3 PUFA in the breast meat (P < 0.05). However, even a short period of supplementation with 4.5% TO (6 to 9 wk of age) was adequate to enrich slow-growing chicken meat with high levels of n-3 PUFA, as recommended previously. Our findings indicated that even a short period of tuna oil supplementation could lead to desirable levels of omega-3 enrichment in slow-growing chicken meat. This finding has practical implications for the poultry industry, providing insights into optimal supplementation strategies for achieving desired FA profiles without adversely affecting growth performance or meat quality.
Collapse
Affiliation(s)
- Wichuta Khosinklang
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Satoshi Kubota
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Cindy Riou
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pramin Kaewsatuan
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Amonrat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wittawat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
6
|
Li W, Li H, Yan C, Chen S, Zhao X. The transcriptome pattern of liver, spleen and hypothalamus provides insights into genetic and biological changes in roosters in response to castration. Front Genet 2022; 13:1030886. [DOI: 10.3389/fgene.2022.1030886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Chicken is widely accepted by consumers because of its delicate taste and abundant animal protein. The rooster after castration (capon) is believed to show better flavor, however, the molecular changes of the underpinned metabolism after castration is not yet understood. In this study, we aimed to figure out the alternation of meat quality and underpinned molecular mechanism via transcriptomic profiling of liver, spleen and hypothalamus as targeted organs in response to the castration. We identified differential expressed genes and their enriched functions and pathways in these organs between capon and rooster samples through RNA-seq analysis. In the liver, the lipid metabolism with targeted FABP1gene was found significantly enriched, which may be as one of the factors contributing to increased fat deposition and thus better meat flavor in capons than roosters, as predicted by the significantly lower shear force in capons than in roosters in meat quality experiments. However, the ability to xenobiotic detoxification and excretion, vitamin metabolism, and antioxidative effect of hemoglobin evidenced of the capon may be compromised by the alternation of SULT, AOX1, CYP3A5, HBA1, HBBA, and HBAD. Besides, in both the spleen and hypothalamus, PTAFR, HPX, CTLA4, LAG3, ANPEP, CD24, ITGA2B, ITGB3, CD2, CD7, and BLB2 may play an important role in the immune system including function of platelet and T cell, development of monocyte/macrophage and B cell in capons as compared to roosters. In conclusion, our study sheds lights into the possible molecular mechanism of better meat flavor, fatty deposit, oxidative detoxification and immune response difference between capons and roosters.
Collapse
|
7
|
Pewan SB, Otto JR, Huerlimann R, Budd AM, Mwangi FW, Edmunds RC, Holman BWB, Henry MLE, Kinobe RT, Adegboye OA, Malau-Aduli AEO. Genetics of Omega-3 Long-Chain Polyunsaturated Fatty Acid Metabolism and Meat Eating Quality in Tattykeel Australian White Lambs. Genes (Basel) 2020; 11:E587. [PMID: 32466330 PMCID: PMC7288343 DOI: 10.3390/genes11050587] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022] Open
Abstract
Meat eating quality with a healthy composition hinges on intramuscular fat (IMF), fat melting point (FMP), tenderness, juiciness, flavour and omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) content. These health-beneficial n-3 LC-PUFA play significant roles in optimal cardiovascular, retinal, maternal and childhood brain functions, and include alpha linolenic (ALA), eicosapentaenoic (EPA), docosahexaenoic (DHA) and docosapentaenoic (DPA) acids. The primary objective of this review was to access, retrieve, synthesise and critically appraise the published literature on the synthesis, metabolism and genetics of n-3 LC-PUFA and meat eating quality. Studies on IMF content, FMP and fatty acid composition were reviewed to identify knowledge gaps that can inform future research with Tattykeel Australian White (TAW) lambs. The TAW is a new sheep breed exclusive to MARGRA brand of lamb with an outstanding low fat melting point (28-39°C), high n-3 LC-PUFA EPA+DHA content (33-69mg/100g), marbling (3.4-8.2%), tenderness (20.0-38.5N) and overall consumer liking (7.9-8.5). However, correlations between n-3 LC-PUFA profile, stearoyl-CoA desaturase (SCD), fatty acid binding protein 4 (FABP4), fatty acid synthase (FASN), other lipogenic genes and meat quality traits present major knowledge gaps. The review also identified research opportunities in nutrition-genetics interactions aimed at a greater understanding of the genetics of n-3 LC-PUFA, feedlot finishing performance, carcass traits and eating quality in the TAW sheep. It was concluded that studies on IMF, FMP and n-3 LC-PUFA profiles in parental and progeny generations of TAW sheep will be foundational for the genetic selection of healthy lamb eating qualities and provide useful insights into their correlations with SCD, FASN and FABP4 genes.
Collapse
Affiliation(s)
- Shedrach Benjamin Pewan
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
- National Veterinary Research Institute, Private Mail Bag 01, Vom, Plateau State, Nigeria
| | - John Roger Otto
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Roger Huerlimann
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; (R.H.); (A.M.B.)
| | - Alyssa Maree Budd
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; (R.H.); (A.M.B.)
| | - Felista Waithira Mwangi
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Richard Crawford Edmunds
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | | | - Michelle Lauren Elizabeth Henry
- Gundagai Meat Processors, 2916 Gocup Road, South Gundagai, New South Wales 2722, Australia;
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Robert Tumwesigye Kinobe
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Oyelola Abdulwasiu Adegboye
- Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia;
| | - Aduli Enoch Othniel Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| |
Collapse
|
8
|
Floresta G, Carotti A, Ianni F, Sorrenti V, Intagliata S, Rescifina A, Salerno L, Di Michele A, Sardella R, Pittalà V. Chromatograpic resolution of phenylethanolic-azole racemic compounds highlighted stereoselective inhibition of heme oxygenase-1 by (R)-enantiomers. Bioorg Chem 2020; 99:103777. [PMID: 32222619 DOI: 10.1016/j.bioorg.2020.103777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Heme oxygenase-1 (HO-1) has been recognized as extensively involved in the development and aggravation of cancer, cell propagation and at in the mechanism of chemoresistance development. Low micromolar HO-1 inhibitors selective towards HO-2 has been recently reported, wherein the azole core and the hydrophobic residues are linked through a phenylethanolic spacer bearing a chiral center. Since less information are known about the stereoselective requirements for HO-1 inhibition, here we report the enantiomeric resolution of 1-(biphenyl-3-yl)-2-(1H-imidazol-1-yl)ethanol (1) and 1-[4-[(4-bromobenzyl)oxy]phenyl]-2-(1H-imidazol-1-yl)ethanol (2), two among the most potent and selective HO-1 inhibitors known thus far when tested as racemates. The absolute configuration was established for 1 by a combination of experimental and in silico derived electronic circular dichroism spectra, while docking approaches were useful in the case of compound 2. Biological evaluation of pure enantiomers highlighted higher HO-1 inhibitory activity of (R)-enantiomers. Docking studies demonstrated the importance of hydrogen bond interaction, more pronounced for the (R)-enantiomers, with a consensus water molecule within the binding pocket. The present study demonstrates that differences in three-dimensional structure amongst compounds 1 and 2 enantiomers affect significantly the selectivity of these HO-1 inhibitors.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Federica Ianni
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Valeria Sorrenti
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Sebastiano Intagliata
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, 70125 Bari, Italy
| | - Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli 1, 06123 Perugia, Italy
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
9
|
Mao H, Xu X, Liu H, Cao H, Dong X, Xu N, Zou X, Yin Z. The temporal-spatial patterns, polymorphisms and association analysis with meat quality traits of FABP1 gene in domestic pigeons ( Columba livia). Br Poult Sci 2020; 61:232-241. [PMID: 32063032 DOI: 10.1080/00071668.2020.1724880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. Fatty acid-binding proteins (FABP) are members of lipid-binding proteins, which participate in the metabolism and intracellular transportation of lipids. This study was designed to investigate the expression patterns, polymorphisms and associations with meat quality traits of the FABP1 gene in pigeons. 2. The temporal-spatial expression patterns showed FABP1 was widely expressed in all eleven tissues from 0-4 weeks of age, the expression level in the liver was the highest, followed by the small intestine and subcutaneous fat. 3. Five novel SNPs were found; all of them were synonymous and in Hardy-Weinberg equilibrium. Association analysis revealed that for the SNP of G161C, the AB and BB genotypes had higher (P ≤ 0.01) inosinic acid concentrations in breast muscle than the AA genotype. The BB genotype showed the highest (P < 0.01) intramuscular fat among the three genotypes, and significantly greater FABP1 mRNA levels were observed in the breast muscle of the BB genotype than in the AA and AB genotypes (P < 0.01). In the SNP C1376T, the AB and BB genotypes showed higher (P < 0.01) intramuscular fat than the AA genotype, and the relative mRNA expression level of the BB (P < 0.01) and AB (P < 0.05) genotypes was higher than that of the AA genotype in breast muscle. Correlation analysis implied that the FABP1 mRNA expression level was closely related to the inosinic acid (P < 0.05) and intramuscular fat content (P < 0.01). Oil red O staining of frozen sections of breast muscle on d 28 for SNPs G161C and C1376T also indicated that the BB genotype had the highest intramuscular fat content in both SNPs. In addition, correlation analysis implied the FABP1 mRNA expression level was closely related to inosinic acid (P < 0.05) and intramuscular fat content (P < 0.01). 4. The results suggested that FABP1 could be a potential candidate gene in marker-assisted selection for breeding pigeons with high-quality meat.
Collapse
Affiliation(s)
- H Mao
- Animal Science College, Zhejiang University , Hangzhou, China
| | - X Xu
- Animal Science College, Zhejiang University , Hangzhou, China
| | - H Liu
- Animal Science College, Zhejiang University , Hangzhou, China
| | - H Cao
- Animal Science College, Zhejiang University , Hangzhou, China
| | - X Dong
- Animal Science College, Zhejiang University , Hangzhou, China
| | - N Xu
- Animal Science College, Zhejiang University , Hangzhou, China
| | - X Zou
- Animal Science College, Zhejiang University , Hangzhou, China
| | - Z Yin
- Animal Science College, Zhejiang University , Hangzhou, China
| |
Collapse
|
10
|
Mountzouris KC, Paraskeuas V, Griela E, Papadomichelakis G, Fegeros K. Effects of phytogenic inclusion level on broiler carcass yield, meat antioxidant capacity, availability of dietary energy, and expression of intestinal genes relevant for nutrient absorptive and cell growth–protein synthesis metabolic functions. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Phytogenic applications in animal nutrition currently attract worldwide scientific attention for their potential to contribute positively to sustainable and high-quality animal production. However, further understanding and substantiation of dietary phytogenic functions is required.
Aims
The inclusion level of a phytogenic premix (PP) comprising functional flavouring substances from ginger, lemon balm, oregano and thyme was studied for its effects on broiler growth performance, carcass traits, nutrient digestibility, liver and meat total antioxidant capacity (TAC), and lipid oxidation. The expression of genes for nutrient transporter proteins (SGLT1, GLUT2, PEPT1, BOAT and LAT1), for FABP2 involved in cellular fatty acid uptake and metabolism, and for the mTORC1 complex relevant for protein synthesis were profiled along the intestine.
Methods
One-day-old Cobb broiler chickens (n = 500) were assigned to four treatments with five replicates of 25 chickens each. Starter (1–10 days), grower (11–22 days) and finisher (23–42 days) basal diets were supplemented with four levels of PP inclusion as treatments: 0, 750, 1000 and 2000 mg/kg diet, termed control, PP750, PP1000 and PP2000. Feed and water were available ad libitum. Data were analysed by ANOVA, taking the treatment as fixed effect. Statistically significant (P ≤ 0.05) effects were further analysed and means were compared using Tukey’s HSD test. Polynomial contrasts tested the linear and quadratic effect of PP inclusion levels.
Key results
Growth performance responses were not improved significantly (P > 0.05) by PP inclusion level. However, carcass (P = 0.030) and breast meat yield (P = 0.023) were higher in PP1000 than in the control. In addition, PP1000 had higher (P = 0.049) apparent metabolisable energy than PP2000 and the control. Increasing PP inclusion level increased breast (P = 0.005), thigh (P = 0.002) and liver (P = 0.040) TAC. Breast and thigh meat TAC reached a plateau at PP1000, whereas liver TAC continued to increase linearly. Lipid oxidation in breast meat and liver was delayed linearly (P ≤ 0.05) with increasing PP inclusion level. Expression of genes SGLT1, GLUT2, PEPT1, BOAT and FABP2 were not affected by PP inclusion. However, PP inclusion affected the expression of LAT1 (P < 0.001) in jejunum and of mTORC1 in duodenum (P = 0.010) and ceca (P = 0.025). In particular, expression increased with increasing PP inclusion level in a linear and quadratic pattern depending on the intestinal segment.
Conclusions
Overall, PP inclusion at 1000 mg/kg diet improved carcass and breast yield, dietary available energy, and overall meat and liver TAC. Preliminary evidence was highlighted for effects of PP in promoting expression of genes relevant for muscle protein synthesis.
Implications
This study has contributed new information on effects of a phytogenic premix on broiler meat yield and antioxidant capacity, digestibility, absorption and metabolic functions, further supporting phytogenic benefits for broiler production.
Collapse
|
11
|
Wang Z, Yue YX, Liu ZM, Yang LY, Li H, Li ZJ, Li GX, Wang YB, Tian YD, Kang XT, Liu XJ. Genome-Wide Analysis of the FABP Gene Family in Liver of Chicken (Gallus gallus): Identification,Dynamic Expression Profile, and RegulatoryMechanism. Int J Mol Sci 2019; 20:E5948. [PMID: 31779219 PMCID: PMC6928644 DOI: 10.3390/ijms20235948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
The fatty acid-binding protein (FABP) gene family, which encodes a group of fatty acid-trafficking molecules that affect cellular functions, has been studied extensively in mammals. However, little is known about the gene structure, expression profile, and regulatory mechanism of the gene family in chickens. In the present study, bioinformatics-based methods were used to identify the family members and investigate their evolutionary history and features of gene structure. Real-time PCR combined with in vivo and in vitro experiments were used to examine the spatiotemporal expression pattern, and explore the regulatory mechanism of FABP genes. The results show that nine members of the FABP gene family, which branched into two clusters and shared a conserved FATTYACIDBP domain, exist in the genome of chickens. Of these, seven FABP genes, including FABP1, FABP3-7, and FABP10 were abundantly expressed in the liver of hens. The expression levels of FABP1, FABP3, and FABP10 were significantly increased, FABP5 and FABP7 were significantly decreased, and FABP4 and FABP6 remained unchanged in hens at the peak laying stage in comparison to those at the pre-laying stage. Transcription of FABP1 and FABP3 were activated by estrogen via estrogen receptor (ER) α, whilst FABP10 was activated by estrogen via ERβ. Meanwhile, the expression of FABP1 was regulated by peroxisome proliferator activated receptor (PPAR) isoforms, of which tested PPARα and PPARβ agonists significantly inhibited the expression of FABP1, while tested PPARγ agonists significantly increased the expression of FABP1, but downregulated it when the concentration of the PPARγ agonist reached 100 nM. The expression of FABP3 was upregulated via tested PPARβ and PPARγ agonists, and the expression of FABP7 was selectively promoted via PPARγ. The expression of FABP10 was activated by all of the three tested PPAR agonists, but the expression of FABP4-6 was not affected by any of the PPAR agonists. In conclusion, members of the FABP gene family in chickens shared similar functional domains, gene structures, and evolutionary histories with mammalian species, but exhibited varying expression profiles and regulatory mechanisms. The results provide a valuable resource for better understanding the biological functions of individual FABP genes in chickens.
Collapse
Affiliation(s)
- Zhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
| | - Ya-Xin Yue
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
| | - Zi-Ming Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
| | - Li-Yu Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Zhuan-Jian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Guo-Xi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Yan-Bin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Ya-Dong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Xiang-Tao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Xiao-Jun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| |
Collapse
|
12
|
Crump D, Chiu S, Williams KL. Bis-(3-allyl-4-hydroxyphenyl) sulfone decreases embryonic viability and alters hepatic mRNA expression at two distinct developmental stages in chicken embryos exposed via egg injection. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:530-537. [PMID: 28960418 DOI: 10.1002/etc.3990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/03/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Concerns surrounding the toxicological effects and environmental prevalence of bisphenol A (BPA) have increased efforts to identify suitable safer replacement alternatives. Bis-(3-allyl-4-hydroxyphenyl) sulfone (TGSH) represents a potential BPA alternative; however, exposure and ecotoxicological data are scarce. To determine effects on embryonic viability, development, and hepatic mRNA expression at 2 distinct developmental periods (midincubation [day 11] and pipping [days 20-21]), TGSH was injected into the air cell of unincubated, fertilized chicken embryos at 4 concentrations ranging from 0 to 180 μg/g egg. Concentrations of TGSH increased in a dose-dependent manner in whole-embryo homogenates, and the estimated median lethal dose (LD50) based on embryonic viability at midincubation was 66 µg/g (95% confidence interval = 31-142 µg/g), which is similar to the BPA LD50 (∼ 67 μg/g) reported in a previous study. Modulation of hepatic gene targets from a chicken ToxChip polymerase chain reaction (PCR) array was observed at both developmental stages. At midincubation, 21/43 genes on the PCR array were significantly altered (by >1.5-fold) in the 180 μg/g dose group, whereas 9 and 6/43 were altered at pipping in the 9.2 and 48 μg/g groups, respectively. Predominant toxicity pathways included xenobiotic metabolism, lipid homeostasis, bile acid synthesis, and cell cycle regulation. The estrogen-responsive gene apolipoprotein II was significantly up-regulated in liver tissue of midincubation embryos at 180 μg/g; however, neither apolipoprotein II nor vitellogenin II were altered at the other concentrations or developmental time points. Given the importance of identifying suitable BPA replacement alternatives, the present study provides novel, whole-animal toxicological data for a BPA replacement alternative that has an effect on embryonic viability similar to that of the compound it could replace. Environ Toxicol Chem 2018;37:530-537. © 2017 SETAC.
Collapse
Affiliation(s)
- Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Suzanne Chiu
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Kim L Williams
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Ma YF, Chen L, He J, Tian Y, Xu XQ, Du X, Lu LZ. Gene Expression Patterns of Geese Expression Patterns of L-FABP, Spot 14, OB and APO A1 Genes in Different Tissues of Overfed and Control Geese. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2017. [DOI: 10.1590/1806-9061-2016-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- YF Ma
- Jinhua Polytechnic, China
| | - L Chen
- Institute of Animal Husbandry and Veterinary Science, China
| | - J He
- Institute of Animal Husbandry and Veterinary Science, China
| | - Y Tian
- Institute of Animal Husbandry and Veterinary Science, China
| | - XQ Xu
- Institute of Animal Husbandry and Veterinary Science, China
| | - X Du
- Institute of Animal Husbandry and Veterinary Science, China
| | - LZ Lu
- Institute of Animal Husbandry and Veterinary Science, China
| |
Collapse
|
14
|
Genome-wide DNA methylation profiles reveal novel candidate genes associated with meat quality at different age stages in hens. Sci Rep 2017; 7:45564. [PMID: 28378745 PMCID: PMC5381223 DOI: 10.1038/srep45564] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/27/2017] [Indexed: 01/18/2023] Open
Abstract
Poultry meat quality is associated with breed, age, tissue and other factors. Many previous studies have focused on distinct breeds; however, little is known regarding the epigenetic regulatory mechanisms in different age stages, such as DNA methylation. Here, we compared the global DNA methylation profiles between juvenile (20 weeks old) and later laying-period (55 weeks old) hens and identified candidate genes related to the development and meat quality of breast muscle using whole-genome bisulfite sequencing. The results showed that the later laying-period hens, which had a higher intramuscular fat (IMF) deposition capacity and water holding capacity (WHC) and less tenderness, exhibited higher global DNA methylation levels than the juvenile hens. A total of 2,714 differentially methylated regions were identified in the present study, which corresponded to 378 differentially methylated genes, mainly affecting muscle development, lipid metabolism, and the ageing process. Hypermethylation of the promoters of the genes ABCA1, COL6A1 and GSTT1L and the resulting transcriptional down-regulation in the later laying-period hens may be the reason for the significant difference in the meat quality between the juvenile and later laying-period hens. These findings contribute to a better understanding of epigenetic regulation in the skeletal muscle development and meat quality of chicken.
Collapse
|
15
|
Zheng A, Chang W, Liu G, Yue Y, Li J, Zhang S, Cai H, Yang A, Chen Z. Molecular Differences in Hepatic Metabolism between AA Broiler and Big Bone Chickens: A Proteomic Study. PLoS One 2016; 11:e0164702. [PMID: 27760160 PMCID: PMC5070854 DOI: 10.1371/journal.pone.0164702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/29/2016] [Indexed: 11/18/2022] Open
Abstract
Identifying the metabolic differences in the livers of modern broilers and local chicken breeds is important for understanding their biological characteristics, and many proteomic changes in their livers are not well characterized. We therefore analyzed the hepatic protein profiles of a commercial breed, Arbor Acres (AA) broilers, and a local dual purpose breed, Big Bone chickens, using two-dimensional electrophoresis combined with liquid chromatography-chip/electrospray ionization-quadruple time-of-flight/mass spectrometry (LC-MS/MS). A total of 145 proteins were identified as having differential abundance in the two breeds at three growth stages. Among them, 49, 63 and 54 belonged to 2, 4, and 6 weeks of age, respectively. The higher abundance proteins in AA broilers were related to the energy production pathways suggesting enhanced energy metabolism and lipid biosynthesis. In contrast, the higher abundance proteins in Big Bone chickens showed enhanced lipid degradation, resulting in a reduction in the abdominal fat percentage. Along with the decrease in fat deposition, flavor substance synthesis in the meat of the Big Bone chickens may be improved by enhanced abundance of proteins involved in glycine metabolism. In addition, the identified proteins in nucleotide metabolism, antioxidants, cell structure, protein folding and transporters may be critically important for immune defense, gene transcription and other biological processes in the two breeds. These results indicate that selection pressure may have shaped the two lines differently resulting in different hepatic metabolic capacities and extensive metabolic differences in the liver. The results from this study may help provide the theoretical basis for chicken breeding.
Collapse
Affiliation(s)
- Aijuan Zheng
- Feed Research Institute/Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenhuan Chang
- Feed Research Institute/Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guohua Liu
- Feed Research Institute/Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- * E-mail:
| | - Ying Yue
- Feed Research Institute/Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianke Li
- Key Laboratory of Pollinating Insect Biology of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shu Zhang
- Feed Research Institute/Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiyi Cai
- Feed Research Institute/Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aijun Yang
- CSIRO Agriculture, Brisbane 4067, Australia
| | - Zhimin Chen
- Feed Research Institute/Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
16
|
Ramiah SK, Meng GY, Ebrahimi M. Upregulation of Peroxisome Proliferator-Activated Receptors and Liver Fatty Acid Binding Protein in Hepatic Cells of Broiler Chicken Supplemented with Conjugated Linoleic Acids. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.3846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Suriya Kumari Ramiah
- Department of Animal Production, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Goh Y. Meng
- Department of Animal Production, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Veterinary Preclinical Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mahdi Ebrahimi
- Department of Veterinary Preclinical Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
17
|
Nie CX, Zhang WJ, Ge WX, Liu YF, Wang YQ, Liu JC. Effect of Cottonseed Meal Fermented with Yeast on the Lipid-related Gene Expression in Broiler Chickens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2015. [DOI: 10.1590/1516-635xspecialissuenutrition-poultryfeedingadditives057-064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- CX Nie
- Shihezi University, China
| | | | - WX Ge
- Shihezi University, China
| | - YF Liu
- Shihezi University, China
| | | | - JC Liu
- Shihezi University, China
| |
Collapse
|
18
|
Ma M, Crump D, Farmahin R, Kennedy SW. Comparing the effects of tetrabromobisphenol-A, bisphenol A, and their potential replacement alternatives, TBBPA-bis(2,3-dibromopropyl ether) and bisphenol S, on cell viability and messenger ribonucleic acid expression in chicken embryonic hepatocytes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:391-401. [PMID: 25470364 DOI: 10.1002/etc.2814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/03/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
A market for alternative brominated flame retardants (BFRs) has emerged recently due to the phase out of persistent and inherently toxic BFRs. Several of these replacement compounds have been detected in environmental matrices, including wild birds. A chicken embryonic hepatocyte (CEH) assay was utilized to assess the effects of the BFR, tetrabromobisphenol-A (TBBPA), and its replacement alternative, tetrabromobisphenol A bis(2,3-dibromopropyl ether [TBBPA-DBPE]) on cell viability and messenger ribonucleic acid (mRNA) expression. Bisphenol A (BPA) and 1 of its replacement alternatives, bisphenol S (BPS), were also screened for effects. Both TBBPA and BPA decreased CEH viability with calculated median lethal concentration (LC50) values of 40.6 μM and 61.7 μM, respectively. However, the replacement alternatives, TBBPA-DBPE and BPS, did not affect cell viability (up to 300 μM). Effects on mRNA expression were determined using an Avian ToxChip polymerse chain reaction (PCR) array and a real-time (RT)-PCR assay for the estrogen-responsive genes, apolipoproteinII (ApoII) and vitellogenin (Vtg). A luciferase reporter gene assay was used to assess dioxin-like effects. Tetrabromobisphenol-A altered mRNA levels of 4 genes from multiple toxicity pathways and increased luciferase activity in the luciferase reporter gene assay, whereas its alternative, TBBPA-DBPE, only altered 1 gene on the array, Cyp1a4, and increased luciferase activity. At 300 μM, a concentration that decreased cell viability for TBBPA and BPA, the BPA replacement, BPS, altered the greatest number of transcripts, including both ApoII and Vtg. Bisphenol A exposure did not alter any genes on the array but did up-regulate Vtg at 10 μM. Characterization of the potential toxicological and molecular-level effects of these compounds will ideally be useful to chemical regulators tasked with assessing the risk of new and existing chemicals.
Collapse
Affiliation(s)
- Melissa Ma
- National Wildlife Research Centre, Environment Canada, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
19
|
Egloff C, Crump D, Porter E, Williams KL, Letcher RJ, Gauthier LT, Kennedy SW. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos. Toxicol Appl Pharmacol 2014; 279:303-310. [DOI: 10.1016/j.taap.2014.06.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/12/2014] [Accepted: 06/22/2014] [Indexed: 12/13/2022]
|
20
|
Guo S, Liu D, Zhao X, Li C, Guo Y. Xylanase supplementation of a wheat-based diet improved nutrient digestion and mRNA expression of intestinal nutrient transporters in broiler chickens infected with Clostridium perfringens. Poult Sci 2014; 93:94-103. [DOI: 10.3382/ps.2013-03188] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Farhat A, Crump D, Chiu S, Williams KL, Letcher RJ, Gauthier LT, Kennedy SW. In Ovo Effects of Two Organophosphate Flame Retardants—TCPP and TDCPP—on Pipping Success, Development, mRNA Expression, and Thyroid Hormone Levels in Chicken Embryos. Toxicol Sci 2013; 134:92-102. [DOI: 10.1093/toxsci/kft100] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
22
|
Identification of SNPs of the L-BABP and L-FABP and their Association with Growth and Body Composition Traits in Chicken. J Poult Sci 2013. [DOI: 10.2141/jpsa.0130005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
23
|
Expression pattern of L-FABP gene in different tissues and its regulation of fat metabolism-related genes in duck. Mol Biol Rep 2012; 40:189-95. [PMID: 23065214 DOI: 10.1007/s11033-012-2048-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
Abstract
Liver fatty acid binding protein (L-FABP) is a member of intracellular lipid-binding proteins responsible for the transportation of fatty acids. The expression pattern of duck L-FABP mRNA was examined in this study by quantitative RT-PCR. The results showed that duck L-FABP gene was expressed in many tissues, including heart, lung, kidney, muscle, ovary, brain, intestine, stomach and adipocyte tissues, and highly expressed in liver. Several lipid metabolism-related genes were selected to detect the regulation of L-FABP in duck. The expression of L-FABP and lipoprotein lipase was promoted by oleic acid. The L-FABP knockdown decreased the expression levels of peroxisome proliferator-activated receptor α (PPARα), fatty acid synthase and lipoprotein lipase by 61.1, 42.3 and 53.7 %, respectively (P < 0.05), but had no influences on the mRNA levels of PPARγ and leptin receptor. L-FABP might function through the PPARα to regulate the fat metabolism-related gene expression and play important roles in lipid metabolism in duck hepatocytes.
Collapse
|
24
|
Crump D, Chiu S, Kennedy SW. Effects of tris(1,3-dichloro-2-propyl) phosphate and tris(1-chloropropyl) phosphate on cytotoxicity and mRNA expression in primary cultures of avian hepatocytes and neuronal cells. Toxicol Sci 2012; 126:140-8. [PMID: 22268003 DOI: 10.1093/toxsci/kfs015] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and tris(1-chloropropyl) phosphate (TCPP) belong to a group of chemicals collectively known as triester organophosphate flame retardants (OPFRs). OPFRs are used in a wide range of consumer products and have been detected in biota, including free-living avian species; however, data on toxicological and molecular effects of exposure are limited. An in vitro screening approach was used to compare concentration-dependent effects of TDCPP and TCPP on cytotoxicity and messenger RNA (mRNA) expression in cultured hepatocytes and neuronal cells derived from embryonic chickens. TDCPP was toxic to hepatocytes (LC₅₀ = 60.3 ± 45.8μM) and neuronal cells (LC₅₀ = 28.7 ± 19.1μM), whereas TCPP did not affect viability in either cell type up to the highest concentration administered, 300μM. Real-time reverse transcription-PCR revealed alterations in mRNA abundance of genes associated with phase I and II metabolism, the thyroid hormone (TH) pathway, lipid regulation, and growth in hepatocytes. None of the transcripts measured in neuronal cells (D2, D3, RC3, and Oct-1) varied in response to TDCPP or TCPP exposure. Exposure to ≥ 10μM TDCPP and TCPP resulted in significant upregulation of CYP2H1 (4- to 8-fold), CYP3A37 (13- to 127-fold), and UGT1A9 (3.5- to 7-fold) mRNA levels. Transthyretin was significantly downregulated more than twofold by TCPP at 100μM; however, TDCPP did not alter its expression. Liver fatty acid-binding protein, TH-responsive spot 14-α, and insulin-like growth factor-1 were all downregulated (up to 10-fold) in hepatocytes exposed to ≥ 0.01μM TDCPP and TCPP. Taken together, our results indicate that genes associated with xenobiotic metabolism, the TH pathway, lipid regulation, and growth are vulnerable to TDCPP and TCPP administration in cultured avian hepatocytes. The mRNA expression data were similar to those from a previous study with hexabromocyclododecane.
Collapse
Affiliation(s)
- Doug Crump
- Environment Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1A 0H3.
| | | | | |
Collapse
|
25
|
A novel SNP of liver-type fatty acid-binding protein gene in duck and its associations with the intramuscular fat. Mol Biol Rep 2011; 39:1073-7. [PMID: 21573793 DOI: 10.1007/s11033-011-0833-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
Liver-type fatty acid-binding protein (L-FABP) is a member of intracellular lipid-binding proteins involved in the transportation of fatty acids. We detected the polymorphisms of duck L-FABP gene and its association with the intramuscular fat (IMF) and other fat-related traits. The complete sequence of duck L-FABP gene (four exons and three introns, 2,542 bp) was obtained in this study. The polymorphism of L-FABP gene was examined with direct DNA sequencing method in 231 individuals from different breeds, and a novel single nucleotide polymorphism in the exon 3 was detected. The polymorphism was shown to be associated with the contents of C16:0, C18:3 and the total IMF in pectoral muscle. The content of C16:0 in genotype CC was significantly higher than CT (P < 0.01) and TT (P < 0.01), and the genotype CT was higher than TT (P < 0.01). The content of C18:3 in genotype TT was significantly higher than CC and CT (P < 0.01), whereas the genotype CC and CT had no significant difference (P > 0.05). The content of IMF in genotype CC was significantly higher than CT (P < 0.01). However, no significant difference was detected between genotype CC and TT or genotype CT and TT (P > 0.05).
Collapse
|
26
|
Hu G, Wang SZ, Wang ZP, Li YM, Li H. Genetic epistasis analysis of 10 peroxisome proliferator-activated receptor γ-correlated genes in broiler lines divergently selected for abdominal fat content. Poult Sci 2010; 89:2341-50. [PMID: 20952696 DOI: 10.3382/ps.2010-00857] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chicken peroxisome proliferator-activated receptor γ (PPARγ), which is highly expressed in adipose tissues, is a key factor in fat accumulation in the abdominal fat pad. In this study, association and pairwise epistasis analyses were performed for all the polymorphisms detected in PPARγ and for 9 genes from PPARγ-correlated lipid metabolic pathways for abdominal fat weight (AFW) in 10th-generation populations of Northeast Agricultural University broiler lines divergently selected for abdominal fat content. Epistatic networks were then reconstructed with the identified epistatic effects. Single-marker association analyses showed that 5 of the 20 screened polymorphisms were significantly associated with AFW (P < 0.05), and CCAAT/enhancer-binding protein α (C/EBPα) c.552G>A was 1 of the 5 significant loci. Pairwise interaction analyses showed that 15 pairs of polymorphisms reached a significance level of P < 2.64 × 10(-4) (adjusted by Bonferroni correction) in the lean line, 41 pairs reached significance in the fat line, and 7 pairs reached significance in both lines. Interestingly, many other loci interacted with C/EBPα c.552G>A in both lines. In epistatic network analyses, C/EBPα c.552G>A seemed to behave as a hub for the epistatic network in both lines. All these results revealed that the genetic architecture of C/EBPα c.552G>A for AFW seemed to be an apparent individual main-effect QTL but that it could be dissected into a genetic epistatic network. Our results suggest that C/EBPα c.552G>A might be the most important locus contributing to phenotypic variation in AFW among all the polymorphisms detected in this study.
Collapse
Affiliation(s)
- G Hu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, P. R. China
| | | | | | | | | |
Collapse
|
27
|
Crump D, Egloff C, Chiu S, Letcher RJ, Chu S, Kennedy SW. Pipping Success, Isomer-Specific Accumulation, and Hepatic mRNA Expression in Chicken Embryos Exposed to HBCD. Toxicol Sci 2010; 115:492-500. [DOI: 10.1093/toxsci/kfq068] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Huang J, Tang X, Ruan J, Ma H, Zou S. Use of Comparative Proteomics to Identify Key Proteins Related to Hepatic Lipid Metabolism in Broiler Chickens: Evidence Accounting for Differential Fat Deposition Between Strains. Lipids 2009; 45:81-9. [DOI: 10.1007/s11745-009-3373-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 10/28/2009] [Indexed: 01/10/2023]
|
29
|
Association of Polymorphisms of Chicken Adipose Differentiation-related Protein Gene with Carcass Traits. J Poult Sci 2009. [DOI: 10.2141/jpsa.46.87] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Bian LH, Wang SZ, Wang QG, Zhang S, Wang YX, Li H. Variation at the insulin-like growth factor 1 gene and its association with body weight traits in the chicken. J Anim Breed Genet 2008; 125:265-70. [PMID: 18717967 DOI: 10.1111/j.1439-0388.2008.00739.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The insulin-like growth factor 1 (IGF1) is essential for normal embryonic and postnatal growth in mammals. In this study, a total of 342 F(2) individuals, derived from Broiler crossing to Baier layer (Northeast Agricultural University Resource Population, NEAURP), were used to investigate the associations of haplotypes in the chicken IGF1 (cIGF1) gene with body weight traits. Primers for the 5'-flanking, exon 3 and 3'-flanking regions of cIGF1 were designed according to chicken genome database. Single nucleotide polymorphisms (SNPs) between parental lines were detected by sequencing, and PCR restriction fragment length polymorphism (PCR-RFLP) and PCR single-stranded-conformation polymorphism (PCR-SSCP) methods were used to genotype the SNPs in the population. Haplotypes were constructed with the three SNPs detected. The association analysis showed that haplotypes based on three cIGF1 polymorphisms (c.-366A>C, c.528G>A and c.*1024C>T) were associated with body weight traits, suggesting that cIGF1 or a tightly linked gene had effects on body weight in the chicken.
Collapse
Affiliation(s)
- L H Bian
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | | | | | | | | | | |
Collapse
|
31
|
Crump D, Chiu S, Egloff C, Kennedy SW. Effects of hexabromocyclododecane and polybrominated diphenyl ethers on mRNA expression in chicken (Gallus domesticus) hepatocytes. Toxicol Sci 2008; 106:479-87. [PMID: 18791181 DOI: 10.1093/toxsci/kfn196] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hexabromocyclododecane (HBCD) and polybrominated diphenyl ethers (PBDEs) are additive flame retardants used in a wide range of consumer products. Both compounds have been detected in free-living avian species, but toxicological and molecular end points of exposure are limited. An in vitro approach was used to compare concentration-dependent effects of HBCD and the commercial penta-brominated diphenyl ether mixture DE-71 on cytotoxicity and mRNA expression in cultured hepatocytes derived from embryonic chickens. Neither HBCD-alpha, HBCD-technical mixture (TM), nor DE-71 effected hepatocyte viability at the highest concentrations assessed (30-100 microM). Real-time RT-PCR assays were developed to quantify changes in mRNA abundance of genes associated with chicken xenobiotic-sensing orphan nuclear receptor activation, the thyroid hormone (TH) pathway, and lipid regulation. Exposure to >or= 1 microM HBCD-alpha and HBCD-TM resulted in significant upregulation of cytochrome P450 (CYP) 2H1 (fourfold to sevenfold) and CYP3A37 (5- to 30-fold) at 24 and 36 h. In contrast, 30 microM DE-71 caused a twofold increase of CYP2H1 only. UGT1A9 expression was only upregulated by HBCD-alpha to a maximum of fourfold at >or= 1 microM. Transthyretin, thyroid hormone-responsive spot 14-alpha, and liver fatty acid-binding protein were all significantly downregulated (up to sevenfold) for cells exposed to >or= 1 microM HBCD-alpha and HBCD-TM. DE-71 also downregulated these three target genes twofold to fivefold at concentrations >or= 3 microM. Taken together, our results indicate that xenobiotic-metabolizing enzymes and genes associated with the TH pathway and lipid regulation are vulnerable to HBCD and DE-71 administration in cultured avian hepatocytes and might be useful molecular markers of exposure.
Collapse
Affiliation(s)
- Doug Crump
- Environment Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
32
|
Application of genomic technologies to the improvement of meat quality of farm animals. Meat Sci 2007; 77:36-45. [DOI: 10.1016/j.meatsci.2007.03.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 03/27/2007] [Accepted: 03/27/2007] [Indexed: 11/21/2022]
|
33
|
Abasht B, Lamont SJ. Genome-wide association analysis reveals cryptic alleles as an important factor in heterosis for fatness in chicken F2 population. Anim Genet 2007; 38:491-8. [PMID: 17894563 DOI: 10.1111/j.1365-2052.2007.01642.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genome-wide association studies have become possible in the chicken because of the recent availability of the complete genome sequence, a polymorphism map and high-density single nucleotide polymorphism (SNP) genotyping platforms. We used these tools to study the genetic basis of a very high level of heterosis that was previously observed for fatness in two F(2) populations established by crossing one outbred broiler (meat-type) sire with dams from two unrelated, highly inbred, light-bodied lines (Fayoumi and Leghorn). In each F(2) population, selective genotyping was carried out using phenotypically extreme males for abdominal fat percentage (AF) and about 3000 SNPs. Single-point association analysis of about 500 informative SNPs per cross showed significant association (P < 0.01) of 15 and 24 markers with AF in the Broiler x Fayoumi and Broiler x Leghorn crosses respectively. These SNPs were on 10 chromosomes (GGA1, 2, 3, 4, 7, 8, 10, 12, 15 and 27). Interestingly, of the 39 SNPs that were significantly associated with AF, there were about twice as many homozygous genotypes associated with higher AF that traced back to the inbred lines alleles, although the broiler line had on average higher AF. These SNPs are considered to be associated with QTL with cryptic alleles. This study reveals cryptic alleles as an important factor in heterosis for fatness observed in two chicken F(2) populations, and suggests epistasis as the common underlying mechanism for heterosis and cryptic allele expression. The results of this study also demonstrate the power of high marker-density SNP association studies in discovering QTL that were not detected by previous microsatellite-based genotyping studies.
Collapse
Affiliation(s)
- B Abasht
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|