1
|
Zhou Y, Mabrouk I, Ma J, Liu Q, Song Y, Xue G, Li X, Wang S, Liu C, Hu J, Sun Y. Chromosome-level genome sequencing and multi-omics of the Hungarian White Goose (Anser anser domesticus) reveals novel miRNA-mRNA regulation mechanism of waterfowl feather follicle development. Poult Sci 2024; 103:103933. [PMID: 38943801 PMCID: PMC11261457 DOI: 10.1016/j.psj.2024.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 07/01/2024] Open
Abstract
The Hungarian White Goose (Anser anser domesticus) is an excellent European goose breed, with high feather and meat production. Despite its importance in the poultry industry, no available genome assembly information has been published. This study aimed to present Chromosome-level and functional genome sequencing of the Hungarian White Goose. The results showed that the genome assembly has a total length of 1115.82 Mb, 39 pairs of chromosomes, 92.98% of the BUSCO index, and contig N50 and scaffold N50 were up to 2.32 Mb and 60.69 Mb, respectively. Annotation of the genome assembly revealed 19550 genes, 286 miRNAs, etc. We identified 235 expanded and 1,167 contracted gene families in this breed compared with the other 16 species. We performed a positive selection analysis between this breed and four species of Anatidae to uncover the genetic information underlying feather follicle development. Further, we detected the function of miR-199-x, miR-143-y, and miR-23-z on goose embryonic skin fibroblast. In summary, we have successfully generated a highly complete genome sequence of the Hungarian white goose, which will provide a great resource to improve our understanding of gene functions and enhance the studies on feather follicle development at the genomic level.
Collapse
Affiliation(s)
- Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jingyun Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qiuyuan Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guizhen Xue
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xinyue Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Sihui Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chang Liu
- Changchun Municipal People's Government, Changchun Animal Husbandry Service, Changchun, 130062, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun, 130118, China..
| |
Collapse
|
2
|
Wang Y, Wang S, Mabrouk I, Zhou Y, Fu X, Song Y, Ma J, Hu X, Yang Z, Liu F, Hou J, Yu J, Sun Y. In ovo injection of AZD6244 suppresses feather follicle development by the inhibition of ERK and Wnt/β-catenin pathways in goose embryos ( Anser cygnoides). Br Poult Sci 2024; 65:307-314. [PMID: 38393940 DOI: 10.1080/00071668.2024.2309550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/05/2024] [Indexed: 02/25/2024]
Abstract
1. Feathers are an important product from poultry, and the state of feather growth and development plays an important role in their economic value.2. In total, 120 eggs were selected for immunoblotting and immunolocalisation experiments of ERK and β-catenin proteins in different developmental stages of goose embryos. The ERK protein was highly expressed in the early stage of goose embryo development, while β-catenin protein was highly expressed in the middle stage of embryo development.3. The 120 eggs were divided into four treatment groups, including an uninjected group (BLANK), a group injected with 100 µl of cosolvent (CK), a group injected with 100 µl of AZD6244 containing cosolvent in a dose of 5 mg/kg AZD6244 containing cosolvent (AZD5) and a group injected with 100 µl of AZD6244 containing cosolvent in a dose of 15 mg/kg AZD6244 containing cosolvent (AZD15). The eggs were injected on the ninth day of embryonic development (E9). Samples were collected at E21.5 to observe feather width, feather follicle diameter, ERK and Wnt/β-catenin pathway protein expression.4. The AZD5 and AZD15 doses were within the embryonic safety range compared to the BLANK and CK groups and had no significant effect on the survival rate and weight at the inflection point, but significantly reduced the feather width and feather follicle diameter (p < 0.05). The AZD6244 treatment inhibited ERK protein phosphorylation levels and blocked the Wnt/β-catenin pathway, which in turn significantly down-regulated the expression levels of FZD4, β-catenin, TCF4 and LEF1 (p < 0.05), with an inhibitory effect in the AZD15 group being more significant. The immunohistochemical results of β-catenin and p-ERK were consistent with Western blot results.5. The small molecule inhibitor AZD6244 regulated the growth and development of feather follicles in goose embryos by the ERK and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Y Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - S Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - I Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - X Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - X Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Z Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - F Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Hou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
3
|
Wang S, Wang Y, Ichraf M, Zhou Y, Song Y, Fu X, Liu T, Ma J, Zhuang F, Hu X, Hou J, Yu J, Yang Z, Liu F, Sun Y. Expression of FOXO3 in the skin follicles of goose embryos during embryonic development. Br Poult Sci 2023; 64:586-593. [PMID: 37334805 DOI: 10.1080/00071668.2023.2226078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
1. The Forkhead box O3 (FOXO3) transcription factor is a crucial regulator in controlling cell metabolism, proliferation, apoptosis, migration and response to oxidative stress. However, FOXO3 has not previously been studied much in the embryonic skin follicles of geese.2. This study used Zhedong white geese (Anser cygnoides), Jilin white geese (Anser cygnoides) and Hungarian white geese (Anser anser). The feather follicle structure in the dorsal skin during embryonic stages was examined with haematoxylin and eosin (HE) and Pollak staining. The FOXO3 protein content in the embryonic dorsal skin from feather follicles was detected using western blotting and quantitative real-time PCR.3. The mRNA expression level of FOXO3 in the dorsal skin of Jilin white geese was highly expressed on embryonic day 23 (E23; P < 0.01), while mRNA expression of FOXO3 was highly expressed in the feather follicle of Hungarian white geese at E28 (P < 0.01). The expression of FOXO3 protein mainly concentrated in the early embryonic phase among these goose breeds (P < 0.05). This suggested that FOXO3 plays a crucial role in the development and growth of embryonic dorsal skin of feather follicles. The location of the FOXO3 protein was determined using the IHC technique, which further verified the effect of FOXO3 in the dorsal skin for feather follicles during embryogenesis.4. The study demonstrated the differential expression and localisation of the FOXO3 gene among different goose species. It was speculated that the gene could potentially improve goose feather follicle development and feather-related traits and provide a basis for further understanding of FOXO3 function in the dorsal tissue of goose embryos.
Collapse
Affiliation(s)
- S Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - M Ichraf
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - X Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - T Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - F Zhuang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - X Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Hou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Z Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - F Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Wang Y, Fu X, Wang S, Mabrouk I, Zhou Y, Song Y, Liu T, Ma J, Zhuang F, Zhang X, Xu K, Sun Y. Nonlinear model fitting analysis of feather growth and development curves in the embryonic stages of Jilin white geese (Anser cygnoides). J Anim Sci 2023; 101:skac373. [PMID: 36371804 PMCID: PMC9833012 DOI: 10.1093/jas/skac373] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
Abstract
Poultry is subject to varying degrees of feather loss and feather pecking during production, which seriously affects the live appearance and carcass appearance of their commercial traits and greatly reduces the production profitability of the farming enterprise. It also has an impact on down production and quality in the case of geese. In this study, mathematical models (Logistic, Gompertz, and Von Bertalanffy) were used to assess feather growth and development during the embryonic period in Jilin white geese (Anser cygnoides) predicting the weight and length of feathers from the back, chest, and belly tracts at different embryonic ages, to determine which growth model more accurately described feather growth patterns. The result first showed that the primary feather follicles of the Jilin white goose developed at E14 and secondary feather follicles at E18; primary feather follicle density increased and then decreased, whereas secondary feather follicle density increased continuously and the primary and secondary feather follicles developed independently. Secondly, the embryonic feather growth followed a slow-fast-slow pattern, with feathers growing slowly from E12 to E18, quickly from E18 to E24, and then decreasing after E24 until just before emergence (E30). In addition, before E14, feathers were concentrated in the back tracts, and no feathers were found on the head, neck, chest, abdomen, or wings. By E22, the whole body of the embryo was covered with feathers, and the back feathers were the earliest and fastest to develop. Compared to the Gompertz and von Bertalanffy models, the logistic model fit (R2 = 0.997) was the highest, while the sum of residual squares (RSS = 25661.67), Akaike's information criterion (AIC = 77.600), Bayesian information criterion (BIC = 78.191), and mean square error (MSE = 2851.296) were the lowest. Therefore, the logistic model was more suitable for describing the changes in whole-body feather growth during the embryonic period in Jilin white geese. In conclusion, using the growth curve model to explain the relationship between feather growth and embryonic age in geese will potentially speed up the process of genetic improvement in Jilin white geese (A. cygnoides) and thus provide scientific support for molecular genetic breeding.
Collapse
Affiliation(s)
- Yudong Wang
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China
| | - Xianou Fu
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China
| | - Sihui Wang
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China
| | - Ichraf Mabrouk
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China
| | - Yuxuan Zhou
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China
| | - Yupu Song
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China
| | - Tuoya Liu
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China
| | - Jingyun Ma
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China
| | - Fangming Zhuang
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China
| | - Xue Zhang
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China
| | - Keyi Xu
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China
| | - Yongfeng Sun
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China
| |
Collapse
|
5
|
Mabrouk I, Zhou Y, Wang S, Song Y, Fu X, Xu X, Liu T, Wang Y, Feng Z, Fu J, Ma J, Zhuang F, Cao H, Jin H, Wang J, Sun Y. Transcriptional Characteristics Showed That miR-144-y/FOXO3 Participates in Embryonic Skin and Feather Follicle Development in Zhedong White Goose. Animals (Basel) 2022; 12:ani12162099. [PMID: 36009690 PMCID: PMC9405214 DOI: 10.3390/ani12162099] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Feather is one of the most valuable and economical products in goose farming and plays a crucial physiological role in birds. For avian biology and the poultry industry, it is essential to comprehend and regulate how skin and feather follicles develop during embryogenesis. This study showed that several key regulatory genes (FOXO3, CTGF, and PTCH1, among others) and miRNAs (miR-144-y) participated in the developmental process of the skin and feather follicles in Zhedong white goose. Our findings are particularly important because they will serve as a valuable resource for upcoming studies on down feathers in agricultural economic growth regarding complex molecular mechanisms and breeding techniques. Abstract Skin and feather follicle development are essential processes for goose embryonic growth. Transcriptome and next-generation sequencing (NGS) network analyses were performed to improve the genome of Zhedong White goose and discover the critical genes, miRNAs, and pathways involved in goose skin and feather follicle morphogenesis. Sequencing output generated 6,002,591,668 to 8,675,720,319 clean reads from fifteen libraries. There were 1234, 3024, 4416, and 5326 different genes showing differential expression in four stages, E10 vs. E13, E10 vs. E18, E10 vs. E23, and E10 vs. E28, respectively. The differentially expressed genes (DEGs) were found to be implicated in multiple biological processes and pathways associated with feather growth and development, such as the Wnt signaling pathway, cell adhesion molecules, ECM–receptor interaction signaling pathways, and cell cycle and DNA replication pathways, according to functional analysis. In total, 8276 DEGs were assembled into twenty gene profiles with diverse expression patterns. The reliability of transcriptome results was verified by real-time quantitative PCR by selecting seven DEGs and five miRNAs. The localization of forkhead box O3 (FOXO3), connective tissue growth factor (CTGF), protein parched homolog1 (PTCH1), and miR-144-y by in situ hybridization showed spatial-temporal expression patterns and that FOXO3 and miR-144-y have an antagonistic targeting relationship. The correlation coefficient of FOXO3 and miR-144-y was -0.948, showing a strong negative correlation. Dual-luciferase reporter assay results demonstrated that miR-144-y could bind to the expected location to suppress the expression of FOXO3, which supports that there is a targeting relationship between them. The detections in this report will provide critical insight into the complex molecular mechanisms and breeding practices underlying the developmental characteristics of skin and feather follicles in Zhedong white geese.
Collapse
Affiliation(s)
- Ichraf Mabrouk
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuxuan Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Sihui Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yupu Song
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xianou Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaohui Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Tuoya Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yudong Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ziqiang Feng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jinhong Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jingyun Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Fangming Zhuang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Heng Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Honglei Jin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jingbo Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yongfeng Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China
- Correspondence:
| |
Collapse
|
6
|
Yuan X, Guo Q, Bai H, Jiang Y, Zhang Y, Liang W, Wang Z, Xu Q, Chang G, Chen G. Identification of key genes and pathways associated with duck ( Anas platyrhynchos) embryonic skin development using weighted gene co-expression network analysis. Genome 2020; 63:615-628. [PMID: 32956594 DOI: 10.1139/gen-2020-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skin and feather follicle morphogenesis are important processes for duck development; however, the mechanisms underlying morphogenesis at the embryonic stage remain unclear. To improve the understanding of these processes, we used transcriptome and weighted gene co-expression network analyses to identify the critical genes and pathways involved in duck skin development. Five modules were found to be the most related to five key stages in skin development that span from embryonic day 8 (E8) to postnatal day 7 (D7). Using STEM software, 6519 genes from five modules were clustered into 10 profiles to reveal key genes. Above all, we obtained several key module genes including WNT3A, NOTCH1, SHH, BMP2, NOG, SMAD3, and TGFβ2. Furthermore, we revealed that several pathways play critical roles throughout the skin development process, including the Wnt pathway and cytoskeletal rearrangement-related pathways, whereas others are involved in specific stages of skin development, such as the Notch, Hedgehog, and TGF-beta signaling pathways. Overall, this study identified the pathways and genes that play critical roles in skin development, which may provide a basis for high-quality down-type meat duck breeding.
Collapse
Affiliation(s)
- Xiaoya Yuan
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qixin Guo
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Yong Jiang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yi Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenshuang Liang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
7
|
Chen MJ, Xie WY, Pan NX, Wang XQ, Yan HC, Gao CQ. Methionine improves feather follicle development in chick embryos by activating Wnt/β-catenin signaling. Poult Sci 2020; 99:4479-4487. [PMID: 32867991 PMCID: PMC7598098 DOI: 10.1016/j.psj.2020.05.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 01/22/2023] Open
Abstract
This study was conducted to explore the regulatory role of methionine (Met) in feather follicle and feather development during the embryonic period of chicks. A total of 280 fertile eggs (40 eggs/group) were injected with 0, 5, 10, 20 mg of L-Met or DL-Met/per egg on embryonic day 9 (E9), and whole-body feather and skin tissues were collected on E15 and the day of hatching (DOH). The whole-body feather weight was determined to describe the feather growth, and the skin samples were subjected to hematoxylin and eosin staining and Western blotting for the evaluation of feather follicle development and the expressions of Wingless/Int (Wnt)/β-catenin signaling pathway proteins, respectively. The results showed that L- or DL-Met did not affect the embryo weight (P > 0.05), but increased the absolute and relative whole-body feather weights. Specifically, 5 and 10 mg of L-Met and 5, 10, and 20 mg of DL-Met significantly increased the absolute feather weight at E15 (P < 0.05), and 10 mg of L-Met and 5 and 10 mg of DL-Met significantly increased the absolute and relative feather weight on the DOH (P < 0.05). Moreover, a main effect analysis suggested that changes in the embryo and feather weights were related to the Met levels (P < 0.05) but not the Met source (P > 0.05). The levels of L- and DL-Met were quadratically correlated with the absolute and relative feather weights of chicks on the DOH (P < 0.05). Correspondingly, all doses of L- and DL-Met significantly increased the diameter and density of feather follicles on the DOH (P < 0.05), as well as the activity of Wnt/β-catenin on E15 and the DOH (P < 0.05). In conclusion, injection of either L- or DL-Met can improve feather follicle development by activating Wnt/β-catenin signaling, and thereby promoting feather growth; furthermore, no difference in feather growth was found between L- and DL-Met treatments. Our findings might provide a nutritional intervention for regulating feather growth in poultry production.
Collapse
Affiliation(s)
- M J Chen
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China, 510642
| | - W Y Xie
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China, 510642
| | - N X Pan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China, 510642
| | - X Q Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China, 510642
| | - H C Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China, 510642
| | - C Q Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China, 510642.
| |
Collapse
|
8
|
Xie WY, Chen MJ, Jiang SG, Yan HC, Wang XQ, Gao CQ. Investigation of feather follicle morphogenesis and the expression of the Wnt/β-catenin signaling pathway in yellow-feathered broiler chick embryos. Br Poult Sci 2020; 61:557-565. [PMID: 32329625 DOI: 10.1080/00071668.2020.1758302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. This study investigated the pattern of feather follicle morphogenesis and the expression of the Wnt/β-catenin signalling pathway in the skin of yellow-feathered broiler chick embryos during feather development, using haematoxylin and eosin (H&E) staining and Western blot assays, respectively. 2. The results showed that the skin displayed protrusions during embryonic days E7-E9, feather buds elongated during E10-E11 with anterior-posterior and proximal-distal asymmetries, and the epidermis invaginated to form the primary feather follicles (Pfs) at E12. At E13, the formation of the feather follicle and the epidermis at the base of the feather bud further invaginated into the dermis. By E15, Pf formation was essentially complete, and secondary feather follicles (Sfs) appeared. It was speculated that Pfs and Sfs developed independently and that Pfs occurred earlier than Sfs. 3. Quantitative measurements of Pf density reached a maximum at E15 and then decreased gradually. Sf density started to increase from E15. 4. Protein expression levels of β-catenin, TCF4, cyclin D1, and c-Myc were significantly increased during E8-E12 (P < 0.05) and then decreased from E13 to the day of hatching (DOH) (P < 0.05). The result of the β-catenin immunolocalisation signal intensity assay was consistent with the result of the Western blot assay. 5. Collectively, the results indicated that the Wnt/β-catenin signalling pathway is essential for promoting the development of feather follicles, especially during E7-E15.
Collapse
Affiliation(s)
- W Y Xie
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , Guangzhou, China
| | - M J Chen
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , Guangzhou, China
| | - S G Jiang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , Guangzhou, China
| | - H C Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , Guangzhou, China
| | - X Q Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , Guangzhou, China
| | - C Q Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , Guangzhou, China
| |
Collapse
|
9
|
Chen MJ, Xie WY, Jiang SG, Wang XQ, Yan HC, Gao CQ. Molecular Signaling and Nutritional Regulation in the Context of Poultry Feather Growth and Regeneration. Front Physiol 2020; 10:1609. [PMID: 32038289 PMCID: PMC6985464 DOI: 10.3389/fphys.2019.01609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 12/23/2019] [Indexed: 12/03/2022] Open
Abstract
The normal growth and regeneration of feathers is important for improving the welfare and economic value of poultry. Feather follicle stem cells are the basis for driving feather development and are regulated by various molecular signaling pathways in the feather follicle microenvironment. To date, the roles of the Wnt, Bone Morphogenetic Protein (BMP), Notch, and Sonic Hedgehog (SHH) signaling pathways in the regulation of feather growth and regeneration are among the best understood. While these pathways regulate feather morphogenesis in different stages, their dysregulation results in a low feather growth rate, poor quality of plumage, and depilation. Additionally, exogenous nutrient intervention can affect the feather follicle cycle, promote the formation of the feather shaft and feather branches, preventing plumage abnormalities. This review focuses on our understanding of the signaling pathways involved in the transcriptional control of feather morphogenesis and explores the impact of nutritional factors on feather growth and regeneration in poultry. This work may help to develop novel mechanisms by which follicle stem cells can be manipulated to produce superior plumage that enhances poultry carcass quality.
Collapse
Affiliation(s)
- Meng-Jie Chen
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Wen-Yan Xie
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Shi-Guang Jiang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
10
|
Characterization of Embryonic Skin Transcriptome in Anser cygnoides at Three Feather Follicles Developmental Stages. G3-GENES GENOMES GENETICS 2020; 10:443-454. [PMID: 31792007 PMCID: PMC7003092 DOI: 10.1534/g3.119.400875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to enrich the Anser cygnoides genome and identify the gene expression profiles of primary and secondary feather follicles development, de novo transcriptome assembly of skin tissues was established by analyzing three developmental stages at embryonic day 14, 18, and 28 (E14, E18, E28). Sequencing output generated 436,730,608 clean reads from nine libraries and de novo assembled into 56,301 unigenes. There were 2,298, 9,423 and 12,559 unigenes showing differential expression in three stages respectively. Furthermore, differentially expressed genes (DEGs) were functionally classified according to genes ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and series-cluster analysis. Relevant specific GO terms such as epithelium development, regulation of keratinocyte proliferation, morphogenesis of an epithelium were identified. In all, 15,144 DEGs were clustered into eight profiles with distinct expression patterns and 2,424 DEGs were assigned to 198 KEGG pathways. Skin development related pathways (mitogen-activated protein kinase signaling pathway, extra-cellular matrix -receptor interaction, Wingless-type signaling pathway) and genes (delta like canonical Notch ligand 1, fibroblast growth factor 2, Snail family transcriptional repressor 2, bone morphogenetic protein 6, polo like kinase 1) were identified, and eight DEGs were selected to verify the reliability of transcriptome results by real-time quantitative PCR. The findings of this study will provide the key insights into the complicated molecular mechanism and breeding techniques underlying the developmental characteristics of skin and feather follicles in Anser cygnoides.
Collapse
|
11
|
Hu X, Zhang X, Liu Z, Li S, Zheng X, Nie Y, Tao Y, Zhou X, Wu W, Yang G, Zhao Q, Zhang Y, Xu Q, Mou C. Exploration of key regulators driving primary feather follicle induction in goose skin. Gene 2020; 731:144338. [PMID: 31923576 DOI: 10.1016/j.gene.2020.144338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
The primary feather follicles are universal skin appendages widely distributed in the skin of feathered birds. The morphogenesis and development of the primary feather follicles in goose skin remain largely unknown. Here, the induction of primary feather follicles in goose embryonic skin (pre-induction vs induction) was investigated by de novo transcriptome analyses to reveal 409 differentially expressed genes (DEGs). The DEGs were characterized to potentially regulate the de novo formation of feather follicle primordia consisting of placode (4 genes) and dermal condensate (12 genes), and the thickening of epidermis (5 genes) and dermal fibroblasts (17 genes), respectively. Further analyses enriched DEGs into GO terms represented as cell adhesion and KEGG pathways including Wnt and Hedgehog signaling pathways that are highly correlated with cell communication and molecular regulation. Six selected Wnt pathway genes were detected by qPCR with up-regulation in goose skin during the induction of primary feather follicles. The localization of WNT16, SFRP1 and FRZB by in situ hybridization showed weak expression in the primary feather primordia, whereas FZD1, LEF1 and DKK1 were expressed initially in the inter-follicular skin and feather follicle primordia, then mainly restricted in the feather primordia. The spatial-temporal expression patterns indicate that Wnt pathway genes DKK1, FZD1 and LEF1 are the important regulators functioned in the induction of primary feather follicle in goose skin. The dynamic molecular changes and specific gene expression patterns revealed in this report provide the general knowledge of primary feather follicle and skin development in waterfowl, and contribute to further understand the diversity of hair and feather development beyond the mouse and chicken models.
Collapse
Affiliation(s)
- Xuewen Hu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xiaokang Zhang
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Zhiwei Liu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Shaomei Li
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xinting Zheng
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yangfan Nie
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yingfeng Tao
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xiaoliu Zhou
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Wenqing Wu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Ge Yang
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Qianqian Zhao
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yang Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Chunyan Mou
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China.
| |
Collapse
|
12
|
Ji H, Guo W, Niu C, Li Y, Lian S, Zhan X, Guo J, Zhen L, Yang H, Li S, Wang J. Metabonomics analysis of Zi goose follicular granulosa cells using ENO1 gene expression interference. J Anim Physiol Anim Nutr (Berl) 2019; 104:838-846. [PMID: 31821655 DOI: 10.1111/jpn.13254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
The Zi goose is native to North-east China and is noted for its high egg production. Alpha enolase (ENO1) is a glycolytic enzyme which functions as a plasminogen receptor in follicular granulosa cells (FGCs), with several studies showing that FGCs can support follicular development. By transfecting the ENO1 interfering plasmid (shRNA) into FGCs, ENO1 expression in these cells was downregulated, suggesting the successful knock-down of ENO1 in these cells. In this knock-down model, we detected 13 metabolites from FGCs using LC/MS. When compared with the non-coding shRNA (NC) group, the lower level metabolites were (R)-(+)-citronellic acid, altretamine, 3-hydroxycaproic acid, heptadecanoic acid, cholecalciferol vitamin D3, indole, benzoic acid, capric acid, caffeic acid, azelaic acid, 3,4-dihydroxyhydrocinnamic acid and cholic acid, while oleic acid was detected at high levels. To further examine the results of metabolomics, six key metabolites were verified by gas chromatography-mass spectrometry (GC-MS). We found that vitamin D3, indole, benzoic acid, capric acid and cholic acid were significantly downregulated in the shRNA group, while oleic acid was significantly upregulated. This observation was consistent with the metabolomics data. Through these studies, we found that decreased ENO1 levels altered certain metabolite levels in FGCs.
Collapse
Affiliation(s)
- Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chunyang Niu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yue Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xuelong Zhan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Li Zhen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
13
|
Li S, Bai S, Qin X, Zhang J, Irwin DM, Zhang S, Wang Z. Comparison of whole embryonic development in the duck (Anas platyrhynchos) and goose (Anser cygnoides) with the chicken (Gallus gallus). Poult Sci 2019; 98:3278-3291. [DOI: 10.3382/ps/pez133] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/06/2019] [Indexed: 11/20/2022] Open
|
14
|
Sello CT, Liu C, Sun Y, Msuthwana P, Hu J, Sui Y, Chen S, Zhou Y, Lu H, Xu C, Sun Y, Liu J, Li S, Yang W. De Novo Assembly and Comparative Transcriptome Profiling of Anser anser and Anser cygnoides Geese Species' Embryonic Skin Feather Follicles. Genes (Basel) 2019; 10:genes10050351. [PMID: 31072014 PMCID: PMC6562822 DOI: 10.3390/genes10050351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022] Open
Abstract
Geese feather production and the quality of downy feathers are additional economically important traits in the geese industry. However, little information is available about the molecular mechanisms fundamental to feather formation and the quality of feathers in geese. This study conducted de novo transcriptome sequencing analysis of two related geese species using the Illumina 4000 platform to determine the genes involved in embryonic skin feather follicle development. A total of 165,564,278 for Anser anser and 144,595,262 for Anser cygnoides clean reads were generated, which were further assembled into 77,134 unigenes with an average length of 906 base pairs in Anser anser and 66,041 unigenes with an average length of 922 base pairs in Anser cygnoides. To recognize the potential regulatory roles of differentially expressed genes (DEGs) during geese embryonic skin feather follicle development, the obtained unigenes were annotated to Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) for functional analysis. In both species, GO and KOG had shown similar distribution patterns during functional annotation except for KEGG, which showed significant variation in signaling enrichment. Anser asnser was significantly enriched in the calcium signaling pathway, whereas Anser cygnoides was significantly enriched with glycerolipid metabolism. Further analysis indicated that 14,227 gene families were conserved between the species, among which a total of 20,715 specific gene families were identified. Comparative RNA-Seq data analysis may reveal inclusive knowledge to assist in the identification of genetic regulators at a molecular level to improve feather quality production in geese and other poultry species.
Collapse
Affiliation(s)
- Cornelius Tlotliso Sello
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Chang Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
- Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Changchun 130118, China.
| | - Petunia Msuthwana
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Yujian Sui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Shaokang Chen
- Beijing General Station of Animal Husbandry, Beijing 100107, China.
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Hongtao Lu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Chenguang Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Yue Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Jing Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Shengyi Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Wei Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
15
|
De Novo Transcriptome Sequencing Analysis of Goose ( Anser anser) Embryonic Skin and the Identification of Genes Related to Feather Follicle Morphogenesis at Three Stages of Development. Int J Mol Sci 2018; 19:ijms19103170. [PMID: 30326614 PMCID: PMC6214020 DOI: 10.3390/ijms19103170] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/08/2018] [Accepted: 10/13/2018] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to evaluate the changes in the goose embryo transcriptome during feather development. RNA-Sequencing (RNA-Seq) was used to find the transcriptome profiles of feather follicles from three stages of embryonic dorsal skin at embryonic day 13, 18, and 28 (E13, E18, E28). The results showed that 3001, 6634, and 13,780 genes were differently expressed in three stages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that differentially expressed genes (DEGs) in E13 vs. E18 were significantly mapped into the GO term of extracellular structure organization and the pathway of extracellular matrix (ECM)-receptor interaction. In E18 vs. E28, the top significantly mapped into GO term was the single-organism developmental process; the pathway was also the ECM-receptor interaction. DEGs in E13 vs. E28 were significantly mapped into the GO term of the multicellular organismal process and the pathway of cell adhesion molecules. Subsequently, the union of DEGs was categorized by succession cluster into eight profiles, which were then grouped into four ideal profiles. Lastly, the seven genes spatio-temporal expression pattern was confirmed by real-time PCR. Our findings advocate that interleukin 20 receptor subunit alpha (IL20RA), interleukin 6 receptor (IL6R), interleukin 1 receptor type 1 (IL-1R1), Wnt family member 3A (WNT3A), insulin-like growth factor binding protein 3 (IGFBP3), bone morphogenetic protein 7 (BMP7), and secreted-frizzled related protein 2 (SFRP2) might possibly play vital roles in skin and feather follicle development and growth processes.
Collapse
|
16
|
Cooperative Effects of FOXL2 with the Members of TGF-β Superfamily on FSH Receptor mRNA Expression and Granulosa Cell Proliferation from Hen Prehierarchical Follicles. PLoS One 2015; 10:e0141062. [PMID: 26496659 PMCID: PMC4619702 DOI: 10.1371/journal.pone.0141062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Forkhead box L2 (FOXL2) is a member of the forkhead nuclear factor 3 gene family and plays an essential role in ovarian growth and maturation in mammals. However, its potential effects and regulative mechanism in development of chicken ovarian prehierarchical follicles remain unexplored. In this study, the cooperative effects of FOXL2 with activin A, growth differentiation factor-9 (GDF9) and follistatin, three members of the transforming growth factor beta (TGF-β) superfamily that were previously suggested to exert a critical role in follicle development was investigated. We demonstrated herein, using in-situ hybridization, Northern blot and immunohistochemical analyses of oocytes and granulosa cells in various sizes of prehierarchical follicles that both FOXL2 transcripts and FOXL2 proteins are predominantly expressed in a highly similar expression pattern to that of GDF9 gene. In addition, the FOXL2 transcript was found at lower levels in theca cells in the absence of GDF9. Furthermore, culture of granulosa cells (GCs) from the prehierarchical follicles (6–8 mm) in conditioned medium revealed that in the pcDNA3.0-FOXL2 transfected GCs, there was a more dramatic increase in FSHR mRNA expression after treatment with activin A (10 ng/ml) or GDF9 (100 ng/ml) for 24 h which caused a stimulatory effect on the GC proliferation. In contrast, a significant decrease of FSHR mRNA was detected after treatment with follistatin (50 ng/ml) and resulted in an inhibitory effect on the cell proliferation. The results of this suggested that FOXL2 plays a bidirectional modulating role involved in the intracellular FSHR transcription and GC proliferation via an autocrine regulatory mechanism in a positive or negative manner through cooperation with activin A and/or GDF9, and follistatin in the hen follicle development. This cooperative action may be mediated by the examined Smad signals and simultaneously implicated in modulation of the StAR, CCND2, and CYP11A1 expression.
Collapse
|
17
|
Qin N, Fan XC, Zhang YY, Xu XX, Tyasi TL, Jing Y, Mu F, Wei ML, Xu RF. New insights into implication of the SLIT/ROBO pathway in the prehierarchical follicle development of hen ovary. Poult Sci 2015; 94:2235-46. [PMID: 26188027 DOI: 10.3382/ps/pev185] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/19/2015] [Indexed: 01/28/2023] Open
Abstract
The SLIT/Roundabout (ROBO) pathway is involved in follicle development of mammalian ovary, and 2 secreted hormones activin A and inhibin A have potential roles in modulation of the SLIT/ROBO system, but the related actions remain poorly understood in bird. The aims of the present study were to examine the spatial and temporal expression of the SLIT ligand genes (SLIT1, SLIT2, and SLIT3) and their receptor ROBO1, ROBO2, ROBO3, and ROBO4 genes in various-sized prehierarchical follicles during hen ovary development and the effects of activin A and inhibin A on the expression of these genes in the cultured hen follicles. Our result demonstrated that the transcripts of the 3 SLIT genes were highly expressed in the developing follicles and expression patterns of the SLIT transcripts were different from those of ROBO genes detected by real-time quantitative reverse transcriptase PCR. Both SLIT and ROBO transcripts were predominantly expressed in oocytes and granulosa cells from the prehierarchichal follicles examined by in situ hybridization. The localization for SLIT and ROBO proteins was revealed by immunohistochemistry similar to the spatial distribution of their transcript. In cultured follicles (4 to 8 mm in diameter), the expression levels of SLIT and ROBO members are hormonally regulated by activin A (10 ng/mL) and/or inhibin A (20 ng/mL) after treatment for 24 h. However, the expression of only SLIT2, SLIT3, and ROBO3 mRNA presented a directly opposite response to activin A and inhibin A hormones. These results indicate that SLIT/ROBO pathway is implicated in the prehierarchical follicular development of the hen ovary by an intrafollicular autocrine and/or paracrine action, and is influenced by activin A and inhibin A hormones.
Collapse
Affiliation(s)
- N Qin
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - X C Fan
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Y Y Zhang
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - X X Xu
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - T L Tyasi
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Y Jing
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - F Mu
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - M L Wei
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - R F Xu
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| |
Collapse
|
18
|
The papillary structure identified by a novel nail wound healing model in mice. J Dermatol Sci 2010; 57:219-20. [DOI: 10.1016/j.jdermsci.2009.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 12/10/2009] [Accepted: 12/10/2009] [Indexed: 11/21/2022]
|
19
|
Wu W, Xu R, Xiao L, Xu H, Gao G. Expression of the β-Catenin Gene in the Skin of Embryonic Geese During Feather Bud Development. Poult Sci 2008; 87:204-11. [DOI: 10.3382/ps.2007-00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|