1
|
Su CM, Tsai CH, Chen HT, Wu YS, Yang SF, Tang CH. Melatonin Regulates Rheumatoid Synovial Fibroblasts-Related Inflammation: Implications for Pathological Skeletal Muscle Treatment. J Pineal Res 2024; 76:e13009. [PMID: 39315577 DOI: 10.1111/jpi.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
Melatonin has been reported to regulate circadian rhythms and have anti-inflammatory characteristics in various inflammatory autoimmune diseases, but its effects in diseases-associated muscle atrophy remain controversial. This study is aimed to determine the evidence of melatonin in rheumatoid arthritis (RA)-related pathological muscle atrophy. We used initially bioinformatics results to show that melatonin regulated significantly the correlation between pro-inflammation and myogenesis in RA synovial fibroblasts (RASF) and myoblasts. The conditioned medium (CM) from melatonin-treated RASF was incubated in myoblasts with growth medium and differentiated medium to investigate the markers of pro-inflammation, atrophy, and myogenesis. We found that melatonin regulated RASF CM-induced pathological muscle pro-inflammation and atrophy in myoblasts and differentiated myocytes through NF-κB signaling pathways. We also showed for the first time that miR-30c-1-3p is negatively regulated by three inflammatory cytokines in human RASF, which is associated with murine-differentiated myocytes. Importantly, oral administration with melatonin in a collagen-induced arthritis (CIA) mouse model also significantly improved arthritic swelling, hind limb grip strength as well as pathological muscle atrophy. In conclusion, our study is the first to demonstrate not only the underlying mechanism whereby melatonin decreases pro-inflammation in RA-induced pathological muscle atrophy but also increases myogenesis in myoblasts and differentiated myocytes.
Collapse
MESH Headings
- Melatonin/pharmacology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/drug therapy
- Humans
- Fibroblasts/metabolism
- Fibroblasts/drug effects
- Fibroblasts/pathology
- Animals
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Inflammation/metabolism
- Inflammation/pathology
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Synovial Membrane/drug effects
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/drug therapy
- Male
- Myoblasts/metabolism
- Myoblasts/drug effects
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Muscular Atrophy/drug therapy
- Mice, Inbred DBA
Collapse
Affiliation(s)
- Chen-Ming Su
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung City, Taiwan
- School of Medicine, China Medical University, Taichung City, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung City, Taiwan
- Spine Center, China Medical University Hospital, China Medical University, Taichung City, Taiwan
| | - Yi-Syuan Wu
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung City, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung City, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung City, Taiwan
| |
Collapse
|
2
|
Akagi R, Miyokawa Y, Shiozaki D, Yajima Y, Yamada K, Kano K, Hashimoto Y, Okamoto T, Ando S. Eight-week neuromuscular electrical stimulation training produces muscle strength gains and hypertrophy, and partial muscle quality improvement in the knee extensors. J Sports Sci 2023; 41:2209-2228. [PMID: 38390833 DOI: 10.1080/02640414.2024.2318540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
This study investigated the effect of an 8-week neuromuscular electrical stimulation (NMES) training programme (3 days/week) on muscle quantity and quality and single-joint performance in the knee extensors. Thirty-nine untrained young male participants were randomly assigned to NMES training (n = 21) and control (n = 18) groups. The 8-week NMES training induced significant increase in the isometric maximal voluntary contraction (MVC) torque of the knee extensors (≈9.3%), muscle volume of the individual and entire quadriceps muscles determined by magnetic resonance imaging (≈3.3%-6.4%), and a significant decrease in the ultrasound echo intensity of the vastus lateralis (≈-4.0%); however, hypertrophy of the vastus intermedius (i.e., the deep muscle) was limited (≈3.3%). In the NMES training group, the repeated measures correlations of the isometric MVC torque with the muscle volume of the entire quadriceps muscle and each quadriceps muscle were significant (rrm (20) = 0.551-0.776), whereas that of the isometric MVC torque with the ultrasound echo intensity of the vastus lateralis was not significant. These findings suggest that NMES training produces muscle strength gains, muscle hypertrophy, and partial muscle quality improvement and that the NMES training-induced muscle strength gains is caused by muscle hypertrophy in the knee extensors.
Collapse
Affiliation(s)
- Ryota Akagi
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Yusuke Miyokawa
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Daigo Shiozaki
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Yoshinari Yajima
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Koki Yamada
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Kosuke Kano
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Yuto Hashimoto
- Department of Exercise Physiology, Nippon Sport Science University, Tokyo, Japan
| | - Takanobu Okamoto
- Department of Exercise Physiology, Nippon Sport Science University, Tokyo, Japan
| | - Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
3
|
Majnik J, Császár-Nagy N, Böcskei G, Bender T, Nagy G. Non-pharmacological treatment in difficult-to-treat rheumatoid arthritis. Front Med (Lausanne) 2022; 9:991677. [PMID: 36106320 PMCID: PMC9465607 DOI: 10.3389/fmed.2022.991677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Although the management of rheumatoid arthritis (RA) has improved remarkably with new pharmacological therapies, there is still a significant part of patients not reaching treatment goals. Difficult-to-treat RA (D2TRA) is a complex entity involving several factors apart from persistent inflammation, thereafter requiring a holistic management approach. As pharmacological treatment options are often limited in D2TRA, the need for non-pharmacological treatments (NPT) is even more pronounced. The mechanism of action of non-pharmacological treatments is not well investigated, NPTs seem to have a complex, holistic effect including the immune, neural and endocrine system, which can have a significant additive benefit together with targeted pharmacotherapies in the treatment of D2TRA. In this review we summarize the current knowledge on different NPT in rheumatoid arthritis, and we propose a NPT plan to follow when managing D2TRA patients.
Collapse
Affiliation(s)
- Judit Majnik
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Hospital of the Hospitaller Order of Saint John of God, Budapest, Hungary
- *Correspondence: Judit Majnik,
| | - Noémi Császár-Nagy
- Department of Public Management and Information Technology, Faculty of Science of Public Governance and Administration, National University of Public Service, Budapest, Hungary
| | - Georgina Böcskei
- Hospital of the Hospitaller Order of Saint John of God, Budapest, Hungary
| | - Tamás Bender
- Hospital of the Hospitaller Order of Saint John of God, Budapest, Hungary
| | - György Nagy
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Paz IDA, Rigo GT, Sgarioni A, Baroni BM, Frasson VB, Vaz MA. Alternating Current Is More Fatigable Than Pulsed Current in People Who Are Healthy: A Double-Blind, Randomized Crossover Trial. Phys Ther 2021; 101:6131761. [PMID: 33561279 DOI: 10.1093/ptj/pzab056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/12/2020] [Accepted: 12/27/2020] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Tolerance level and rapid fatigue onset are limitations in the use of neuromuscular electrical stimulation (NMES) as an electrotherapeutic resource in rehabilitation and training protocols; however, it is unclear if pulsed current (PC) and alternating current (AC) produce different fatigue levels when applied at submaximal contraction level. The purpose of this study was to compare fatigue and discomfort levels between PC and AC during a submaximal contraction protocol in people who are healthy. METHODS In this double-blind, randomized crossover trial conducted in a laboratory setting, 30 male volunteers [23.23 years of age (SD = 4.59)] performed 2 submaximal fatigue protocols (with a 7-day interval) in a randomized order: PC (pulse duration = 2 milliseconds, pulse frequency = 100 Hz) and AC (2.5 kHz, pulse duration = 0.4 milliseconds, burst frequency = 100 Hz). NMES currents were applied to the knee extensor motor point of the dominant limb. The NMES protocol consisted of 80 evoked contractions (time on:off = 5:10 seconds) and lasted 20 minutes. The current was maintained at a constant intensity throughout the NMES protocol. The primary outcome measures were maximal voluntary isometric contraction, fatigue index (evoked torque decline), fatigability (number of contractions for a 50% drop in evoked-torque from the protocol start), total evoked torque-time integral (TTI), decline in TTI, and discomfort level. RESULTS AC at 2.5 kHz demonstrated higher maximal voluntary isometric contraction decline post-fatigue, higher fatigue index, higher fatigability (ie, fewer contractions to reach the 50% evoked torque decline from the protocol start), smaller total TTI, and higher TTI decline compared with PC. No between-currents difference was observed in discomfort level. CONCLUSION PC is less fatigable than AC at 2.5 kHz. IMPACT Based on this study, PC is the preferred current choice when the NMES goal is to generate higher muscle work, higher mechanical load, and smaller fatigability during training both for athletes who are healthy and for rehabilitation programs for people with disease or injury.
Collapse
Affiliation(s)
- Isabel de Almeida Paz
- Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Graciane Taglian Rigo
- Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Sgarioni
- Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruno Manfredini Baroni
- Graduate Program in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Viviane Bortoluzzi Frasson
- Graduate Program in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil.,Physique Centro de Fisioterapia, Porto Alegre, RS, Brazil
| | - Marco Aurélio Vaz
- Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Physique Centro de Fisioterapia, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Sandoval-Munoz CP, Haidar ZS. Neuro-Muscular Dentistry: the "diamond" concept of electro-stimulation potential for stomato-gnathic and oro-dental conditions. Head Face Med 2021; 17:2. [PMID: 33499906 PMCID: PMC7836574 DOI: 10.1186/s13005-021-00257-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 01/19/2021] [Indexed: 01/17/2023] Open
Abstract
Oro-Pharyngeal Dysphagia - or simply dysphagia - is the difficulty (persistent) in swallowing/passing food and/or liquid from the mouth to the pharynx into the esophagus and finally the stomach; a deglutition disorder (a symptom, by definition, often due to neuro-degenerative/−muscular, drug-induced or localized structural pathologies such as head and neck tumors, lesions and associated surgical and/or radiation injuries) linked to severe consequences on Quality of Life (QoL), including malnutrition, dehydration, and even sudden death. Likewise, Temporo-Mandibular Jaw and Joint disorder(s) – or simply TMD – is a multifactorial etiological condition, regularly encountered in the dental office. Whether due to malocclusion, bruxism, stress and/or trauma, TMD destabilizes the whole cranio-mandibular system structurally and functionally, via affecting mastication, teeth, supporting structures, comfort and aesthetics, and thus, QoL, again. While several treatment regimens do exist for such conditions, some of which have been standardized for use over the years, most continue to lack proper evidence-based literature support. Hence, (1) caution is to be exercised; and (2) the need for alternative therapeutic strategies is amplified, subsequently, the door for innovation is wide open. Indeed, neuromuscular electrical stimulation or “NMES”, is perhaps a fine example. Herein, we present the interested oro-dental health care provider with an up-dated revision of this therapeutic modality, its potential benefits, risks and concerns, to best handle the dysphagic patient: an intra-disciplinary approach or strategy bridging contemporary dentistry with speech and language therapy; a rather obscure and un-discovered yet critical allied health profession. A pre-clinical and clinical prospectus on employing inventive NMES-based regimens and devices to manage TMD is also highlighted.
Collapse
Affiliation(s)
- Catalina P Sandoval-Munoz
- BioMAT'X (Laboratorio de Biomateriales, Farmacéuticos y Bioingeniería de Tejidos Cráneo Máxilo-Facial), Universidad de los Andes, Mons. Álvaro del Portillo 12.455 - Las Condes, Santiago, Chile
| | - Ziyad S Haidar
- BioMAT'X (Laboratorio de Biomateriales, Farmacéuticos y Bioingeniería de Tejidos Cráneo Máxilo-Facial), Universidad de los Andes, Mons. Álvaro del Portillo 12.455 - Las Condes, Santiago, Chile. .,Programa de Doctorado en BioMedicina, Facultad de Medicina, Universidad de los Andes, Mons. Álvaro del Portillo 12.455 - Las Condes, Santiago, Chile. .,Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Mons. Álvaro del Portillo 12.455 - Las Condes, Santiago, Chile. .,Facultad de Odontología, Universidad de los Andes, Mons. Álvaro del Portillo 12.455 - Las Condes, Santiago, Chile.
| |
Collapse
|
6
|
Almeida GJ, Khoja SS, Zelle BA. Effect of prehabilitation in older adults undergoing total joint replacement: An Overview of Systematic Reviews. CURRENT GERIATRICS REPORTS 2020; 9:280-287. [PMID: 33344110 DOI: 10.1007/s13670-020-00342-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose of Review To review and discuss the findings of systematic reviews that synthesized the evidence on the effect of preoperative exercises (prehabilitation) on postoperative functional recovery in older adults undergoing total knee or hip joint replacement. Recent Findings Ten systematic reviews (8 meta-analyses) were included in this review. Findings from the systematic reviews indicated that prehabilitation decreases length of hospital stay but does not improve postoperative functional recovery in older adults undergoing joint replacement. Individual studies in the systematic reviews varied considerably in prehabilitation protocol, assessment timepoints, and outcome measures. Most importantly, systematic reviews did not assess the outcomes pre-post prehabilitation as this timepoint was not addressed in most individual studies. Therefore, it is not known whether the prehabilitation programs improved outcomes preoperatively. Summary There is a need to develop comprehensive prehabilitation protocols and systematically assess the preoperative and postoperative effectiveness of prehabilitation protocols on functional outcomes (i.e., self-reported and performance-based) in older adults undergoing total joint replacement.
Collapse
Affiliation(s)
- Gustavo J Almeida
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio; Department of Orthopaedics, Long School of Medicine, University of Texas Health Science Center at San Antonio
| | - Samannaaz S Khoja
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh
| | - Boris A Zelle
- Department of Orthopaedics, Long School of Medicine, University of Texas Health Science Center at San Antonio
| |
Collapse
|