1
|
Demicheli V, Jefferson T, Di Pietrantonj C, Ferroni E, Thorning S, Thomas RE, Rivetti A. Vaccines for preventing influenza in the elderly. Cochrane Database Syst Rev 2018; 2:CD004876. [PMID: 29388197 PMCID: PMC6491101 DOI: 10.1002/14651858.cd004876.pub4] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The consequences of influenza in the elderly (those age 65 years or older) are complications, hospitalisations, and death. The primary goal of influenza vaccination in the elderly is to reduce the risk of death among people who are most vulnerable. This is an update of a review published in 2010. Future updates of this review will be made only when new trials or vaccines become available. Observational data included in previous versions of the review have been retained for historical reasons but have not been updated because of their lack of influence on the review conclusions. OBJECTIVES To assess the effects (efficacy, effectiveness, and harm) of vaccines against influenza in the elderly. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 11), which includes the Cochrane Acute Respiratory Infections Group's Specialised Register; MEDLINE (1966 to 31 December 2016); Embase (1974 to 31 December 2016); Web of Science (1974 to 31 December 2016); CINAHL (1981 to 31 December 2016); LILACS (1982 to 31 December 2016); WHO International Clinical Trials Registry Platform (ICTRP; 1 July 2017); and ClinicalTrials.gov (1 July 2017). SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs assessing efficacy against influenza (laboratory-confirmed cases) or effectiveness against influenza-like illness (ILI) or safety. We considered any influenza vaccine given independently, in any dose, preparation, or time schedule, compared with placebo or with no intervention. Previous versions of this review included 67 cohort and case-control studies. The searches for these trial designs are no longer updated. DATA COLLECTION AND ANALYSIS Review authors independently assessed risk of bias and extracted data. We rated the certainty of evidence with GRADE for the key outcomes of influenza, ILI, complications (hospitalisation, pneumonia), and adverse events. We have presented aggregate control group risks to illustrate the effect in absolute terms. We used them as the basis for calculating the number needed to vaccinate to prevent one case of each event for influenza and ILI outcomes. MAIN RESULTS We identified eight RCTs (over 5000 participants), of which four assessed harms. The studies were conducted in community and residential care settings in Europe and the USA between 1965 and 2000. Risk of bias reduced our certainty in the findings for influenza and ILI, but not for other outcomes.Older adults receiving the influenza vaccine may experience less influenza over a single season compared with placebo, from 6% to 2.4% (risk ratio (RR) 0.42, 95% confidence interval (CI) 0.27 to 0.66; low-certainty evidence). We rated the evidence as low certainty due to uncertainty over how influenza was diagnosed. Older adults probably experience less ILI compared with those who do not receive a vaccination over the course of a single influenza season (3.5% versus 6%; RR 0.59, 95% CI 0.47 to 0.73; moderate-certainty evidence). These results indicate that 30 people would need to be vaccinated to prevent one person experiencing influenza, and 42 would need to be vaccinated to prevent one person having an ILI.The study providing data for mortality and pneumonia was underpowered to detect differences in these outcomes. There were 3 deaths from 522 participants in the vaccination arm and 1 death from 177 participants in the placebo arm, providing very low-certainty evidence for the effect on mortality (RR 1.02, 95% CI 0.11 to 9.72). No cases of pneumonia occurred in one study that reported this outcome (very low-certainty evidence). No data on hospitalisations were reported. Confidence intervaIs around the effect of vaccines on fever and nausea were wide, and we do not have enough information about these harms in older people (fever: 1.6% with placebo compared with 2.5% after vaccination (RR 1.57, 0.92 to 2.71; moderate-certainty evidence)); nausea (2.4% with placebo compared with 4.2% after vaccination (RR 1.75, 95% CI 0.74 to 4.12; low-certainty evidence)). AUTHORS' CONCLUSIONS Older adults receiving the influenza vaccine may have a lower risk of influenza (from 6% to 2.4%), and probably have a lower risk of ILI compared with those who do not receive a vaccination over the course of a single influenza season (from 6% to 3.5%). We are uncertain how big a difference these vaccines will make across different seasons. Very few deaths occurred, and no data on hospitalisation were reported. No cases of pneumonia occurred in one study that reported this outcome. We do not have enough information to assess harms relating to fever and nausea in this population.The evidence for a lower risk of influenza and ILI with vaccination is limited by biases in the design or conduct of the studies. Lack of detail regarding the methods used to confirm the diagnosis of influenza limits the applicability of this result. The available evidence relating to complications is of poor quality, insufficient, or old and provides no clear guidance for public health regarding the safety, efficacy, or effectiveness of influenza vaccines for people aged 65 years or older. Society should invest in research on a new generation of influenza vaccines for the elderly.
Collapse
Affiliation(s)
- Vittorio Demicheli
- Servizio Regionale di Riferimento per l'Epidemiologia, SSEpi-SeREMI, Azienda Sanitaria Locale ASL AL, Via Venezia 6, Alessandria, Piemonte, Italy, 15121
| | | | | | | | | | | | | |
Collapse
|
2
|
Lansbury LE, Brown CS, Nguyen‐Van‐Tam JS. Influenza in long-term care facilities. Influenza Other Respir Viruses 2017; 11:356-366. [PMID: 28691237 PMCID: PMC5596516 DOI: 10.1111/irv.12464] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2017] [Indexed: 01/13/2023] Open
Abstract
Long-term care facility environments and the vulnerability of their residents provide a setting conducive to the rapid spread of influenza virus and other respiratory pathogens. Infections may be introduced by staff, visitors or new or transferred residents, and outbreaks of influenza in such settings can have devastating consequences for individuals, as well as placing extra strain on health services. As the population ages over the coming decades, increased provision of such facilities seems likely. The need for robust infection prevention and control practices will therefore remain of paramount importance if the impact of outbreaks is to be minimised. In this review, we discuss the nature of the problem of influenza in long-term care facilities, and approaches to preventive and control measures, including vaccination of residents and staff, and the use of antiviral drugs for treatment and prophylaxis, based on currently available evidence.
Collapse
Affiliation(s)
- Louise E. Lansbury
- Health Protection and Influenza Research GroupDivision of Epidemiology and Public HealthCity HospitalUniversity of NottinghamNottinghamUK
| | - Caroline S. Brown
- Influenza & Other Respiratory Pathogens ProgrammeDivision of Communicable Diseases and Health SecurityWHO Regional Office for EuropeUN CityCopenhagenDenmark
| | - Jonathan S. Nguyen‐Van‐Tam
- Health Protection and Influenza Research GroupDivision of Epidemiology and Public HealthCity HospitalUniversity of NottinghamNottinghamUK
| |
Collapse
|
3
|
Abstract
Influenza constitutes the most widespread and significant respiratory infectious disease in the world, resulting in increased morbidity, mortality and economic loss each epidemic year. Pandemic influenza is a worldwide epidemic usually caused by a new virus variant to which the majority of the population has no immunity. As demonstrated in the devastating pandemic of 1918 to 1919, a pandemic virus may infect 30 to 50% of the worlds population and kill 1 to 2% of those infected. Pandemic control must be a concerted and co-ordinated world strategy and under the auspices of the World Health Organization, pandemic preparedness plans have been formulated, including: intensified surveillance for more rapid identification of new reassortant viruses with potential human virulence and infectivity, laboratory characterization of the new viruses so that vaccine may be prepared, development of techniques for more rapid vaccine production and the manufacture and stock piling of antiviral drugs. The H5N1 outbreak of virulent chicken influenza in 1997 in Hong Kong which resulted in the deaths of six of 18 infected persons serves as a wake-up call. Should such a virus attain high transmissibility in humans, a pandemic of tragic proportions might ensue. Even though the timing of onset of the next pandemic cannot be precisely predicted, world governments must understand the urgency of the problem and increase funding for influenza pandemic control.
Collapse
Affiliation(s)
- H Grant Stiver
- Division of Infectious Diseases, Department of Medicine, University of British Columbia and Vancouver Coastal Health Authority, Vancouver, BC V5Z 3J5, Canada.
| |
Collapse
|
4
|
Rainwater-Lovett K, Chun K, Lessler J. Influenza outbreak control practices and the effectiveness of interventions in long-term care facilities: a systematic review. Influenza Other Respir Viruses 2013; 8:74-82. [PMID: 24373292 PMCID: PMC3877675 DOI: 10.1111/irv.12203] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2013] [Indexed: 01/08/2023] Open
Abstract
Background Evaluation of influenza control measures frequently focuses on the efficacy of chemoprophylaxis and vaccination, while the effectiveness of non-pharmaceutical interventions (NPI) receives less emphasis. While influenza control measures are frequently reported for individual outbreaks, there have been few efforts to characterize the real-world effectiveness of these interventions across outbreaks. Objectives To characterize influenza case and outbreak definitions and control measures reported by long-term care facilities (LTCFs) of elderly adults and estimate the reduction in influenza-like illness (ILI) attack rates due to chemoprophylaxis and NPI. Methods We conducted a literature search in PubMed including English-language studies reporting influenza outbreaks among elderly individuals in LTCFs. A Bayesian hierarchical logistic regression model estimated the effects of control measures on ILI attack rates. Results Of 654 articles identified in the literature review, 37 articles describing 60 influenza outbreaks met the inclusion criteria. Individuals in facilities where chemoprophylaxis was used were significantly less likely to develop influenza A or B than those in facilities with no interventions [odds ratio (OR) 0·48, 95% CI: 0·28, 0·84]. Considered by drug class, adamantanes significantly reduced infection risk (OR 0·22, 95% CI: 0·12, 0·42), while neuraminidase inhibitors did not show a significant effect. Although NPI showed no significant effect, the results suggest that personal protective equipment may produce modest protective effects. Conclusions Our results indicate pharmaceutical control measures have the clearest reported protective effect in LTCFs. Non-pharmaceutical approaches may be useful; however, most data were from observational studies and standardized reporting or well-conducted clinical trials of NPI are needed to more precisely measure these effects.
Collapse
|
5
|
Finnie TJR, Hall IM, Leach S. Behaviour and control of influenza in institutions and small societies. J R Soc Med 2012; 105:66-73. [PMID: 22357982 DOI: 10.1258/jrsm.2012.110249] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A literature review was undertaken to assess the impact of influenza in enclosed societies. The literature spanned 120 years and included both readily accessible material from online keyword searches, as well as more obscure paper documents found through in-depth library research. Enclosed societies have been predominantly found in some type of institution through this period although noticeable similarities exist in communities isolated by distance and geography. We observe that no matter how isolated a community is, it is not necessarily insulated from infection by influenza and that even where there are no complicating factors, such as the age distribution or the presence of individuals with greater susceptibility in the enclosed population, their organization tends to increase influenza transmission and the risk of secondary infection. The collected accounts demonstrate important features of outbreaks in such societies and the necessity of considering them in pandemic planning: in particular, rapid intervention is essential for the control of influenza spread in such circumstances. Recent experience has shown that administration of modern antiviral drugs, such as neuraminidase inhibitors are effective at moderating outbreaks of influenza, but only in combination with other methods of control. In more remote communities where such drugs are not, or less, readily available, and medical care is limited, such outbreaks can still pose particular difficulties. In all cases delay in correct diagnosis, detection of an outbreak or the implementation of control measures can result in the majority of the enclosed population succumbing to the disease.
Collapse
Affiliation(s)
- Thomas James Ronald Finnie
- Microbial Risk Assessment, Emergency Response Department, Health Protection Agency, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| | | | | |
Collapse
|
6
|
Enstone JE, Myles PR, Openshaw PJM, Gadd EM, Lim WS, Semple MG, Read RC, Taylor BL, McMenamin J, Armstrong C, Bannister B, Nicholson KG, Nguyen-Van-Tam JS. Nosocomial pandemic (H1N1) 2009, United Kingdom, 2009-2010. Emerg Infect Dis 2011; 17:592-8. [PMID: 21470446 PMCID: PMC3377421 DOI: 10.3201/eid1704.101679] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To determine clinical characteristics of patients hospitalized in the United Kingdom with pandemic (H1N1) 2009, we studied 1,520 patients in 75 National Health Service hospitals. We characterized patients who acquired influenza nosocomially during the pandemic (H1N1) 2009 outbreak. Of 30 patients, 12 (80%) of 15 adults and 14 (93%) of 15 children had serious underlying illnesses. Only 12 (57%) of 21 patients who received antiviral therapy did so within 48 hours after symptom onset, but 53% needed escalated care or mechanical ventilation; 8 (27%) of 30 died. Despite national guidelines and standardized infection control procedures, nosocomial transmission remains a problem when influenza is prevalent. Health care workers should be routinely offered influenza vaccine, and vaccination should be prioritized for all patients at high risk. Staff should remain alert to the possibility of influenza in patients with complex clinical problems and be ready to institute antiviral therapy while awaiting diagnosis during influenza outbreaks.
Collapse
Affiliation(s)
- Joanne E Enstone
- Epidemiology and Public Health, University of Nottingham, Nottingham, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jefferson T, Di Pietrantonj C, Al-Ansary LA, Ferroni E, Thorning S, Thomas RE. Vaccines for preventing influenza in the elderly. Cochrane Database Syst Rev 2010:CD004876. [PMID: 20166072 DOI: 10.1002/14651858.cd004876.pub3] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Vaccines have been the main global weapon to minimise the impact of influenza in the elderly for the last four decades and are recommended worldwide for individuals aged 65 years or older. The primary goal of influenza vaccination in the elderly is to reduce the risk of complications among persons who are most vulnerable. OBJECTIVES To assess the effectiveness of vaccines in preventing influenza, influenza-like illness (ILI), hospital admissions, complications and mortality in the elderly. To identify and appraise comparative studies evaluating the effects of influenza vaccines in the elderly. To document types and frequency of adverse effects associated with influenza vaccines in the elderly. SEARCH STRATEGY We searched the Cochrane Central Register of Controlled Trials (CENTRAL), which contains the Cochrane Acute Respiratory Infections (ARI) Group's Specialised Register (The Cochrane Library 2009, issue 4); MEDLINE (January 1966 to October Week 1 2009); EMBASE (1974 to October 2009) and Web of Science (1974 to October 2009). SELECTION CRITERIA Randomised controlled trials (RCTs), quasi-RCTs, cohort and case-control studies assessing efficacy against influenza (laboratory-confirmed cases) or effectiveness against influenza-like illness (ILI) or safety. Any influenza vaccine given independently, in any dose, preparation or time schedule, compared with placebo or with no intervention was considered. DATA COLLECTION AND ANALYSIS We grouped reports first according to the setting of the study (community or long-term care facilities) and then by level of viral circulation and vaccine matching. We further stratified by co-administration of pneumococcal polysaccharide vaccine (PPV) and by different types of influenza vaccines. We analysed the following outcomes: influenza, influenza-like illness, hospital admissions, complications and deaths. MAIN RESULTS We included 75 studies. Overall we identified 100 data sets. We identified one RCT assessing efficacy and effectiveness. Although this seemed to show an effect against influenza symptoms it was underpowered to detect any effect on complications (1348 participants). The remainder of our evidence base included non-RCTs. Due to the general low quality of non-RCTs and the likely presence of biases, which make interpretation of these data difficult and any firm conclusions potentially misleading, we were unable to reach clear conclusions about the effects of the vaccines in the elderly. AUTHORS' CONCLUSIONS The available evidence is of poor quality and provides no guidance regarding the safety, efficacy or effectiveness of influenza vaccines for people aged 65 years or older. To resolve the uncertainty, an adequately powered publicly-funded randomised, placebo-controlled trial run over several seasons should be undertaken.
Collapse
Affiliation(s)
- Tom Jefferson
- Vaccines Field, The Cochrane Collaboration, Via Adige 28a, Anguillara Sabazia, Roma, Italy, 00061
| | | | | | | | | | | |
Collapse
|
8
|
Eastwood K, Osbourn M, Francis L, Merritt T, Nicholas C, Cashman P, Durrheim D, Wiggers J. Improving communicable disease outbreak preparedness in residential aged care facilities using an interventional interview strategy. Australas J Ageing 2008; 27:143-9. [DOI: 10.1111/j.1741-6612.2008.00299.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Gupta RK, Zhao H, Cooke M, Harling R, Regan M, Bailey L, Nguyen-Van-Tam JS. Public health responses to influenza in care homes: a questionnaire-based study of local Health Protection Units. J Public Health (Oxf) 2007; 29:88-90. [PMID: 17237477 DOI: 10.1093/pubmed/fdl082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Influenza virus infection poses a major threat to the elderly people in residential care. We sought to describe the extent to which local public health services in England were positioned to detect and respond effectively to influenza-like illness (ILI) in nursing homes. METHODS A questionnaire-based survey was conducted in all 34 Health Protection Units (HPUs) regarding the 2004-05 influenza season. RESULTS Of the 20 responses, half reported 24 outbreaks of ILI in care homes. The mean resident population attack rate was 41% (range 15-79) with 31 deaths. Staff ILI occurred in 23 of 24 outbreaks. Seven of 20 HPUs stated that a local policy for the management of ILI in nursing homes was in place, with only four specifying the use of neuraminidase inhibitors (NI) for treatment of cases and prophylaxis of residents. In the outbreaks reported, NIs were used for treatment and prophylaxis, respectively, in only 46 and 54% of instances. CONCLUSIONS Given the availability of effective interventions for treatment and prophylaxis, there is potential to prevent substantial morbidity and mortality from influenza in at-risk populations. This study suggests that challenges remain in the effective response to influenza outbreaks in care homes and that there are wide variations in practice at local level.
Collapse
Affiliation(s)
- R K Gupta
- Centre for Infections, Health Protection Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Boschini A, Longo B, Caselli F, Begnini M, De Maria C, Ansaldi F, Durando P, Icardi G, Rezza G. An outbreak of influenza in a residential drug-rehabilitation community. J Med Virol 2006; 78:1218-22. [PMID: 16847961 DOI: 10.1002/jmv.20684] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Influenza outbreaks can be difficult to control in confined settings where high-risk individuals are concentrated. Following the occurrence of a large number of cases of influenza-like illness in a rehabilitation community for drug users, between February and March 2004, surveillance activities were implemented. Attack rates of influenza-like illness were calculated, and risk factors for the development of disease and complications were evaluated through the use of relative risks (RR) with 95% confidence intervals (CI). Nasal-pharyngeal samples were collected for virological studies. Of 1,310 persons who were living in the community, 209 were diagnosed with influenza-like illness: the attack rate (15.9% overall) was higher for HIV-infected persons (RR: 1.77, 95% CI: 1.32-2.37), older individuals, and dormitory residents. HIV-infected participants were also more likely to develop complications compared with HIV-uninfected persons diagnosed with influenza-like illness (RR: 5.13, 95% CI: 2.52-10.20). The outbreak was attributable to Christchurch-like influenza A strains. Vaccination was ineffective because of the mismatch between wild and vaccine strains.
Collapse
|
11
|
Rivetti D, Jefferson T, Thomas R, Rudin M, Rivetti A, Di Pietrantonj C, Demicheli V. Vaccines for preventing influenza in the elderly. Cochrane Database Syst Rev 2006:CD004876. [PMID: 16856068 DOI: 10.1002/14651858.cd004876.pub2] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Influenza vaccination of elderly individuals is recommended worldwide and has been targeted toward the elderly and those at serious risk of complications. OBJECTIVES Our aim was to review the evidence of efficacy, effectiveness and safety of influenza vaccines in individuals aged 65 years or older. SEARCH STRATEGY We searched the following databases on The Cochrane Library, the Cochrane Central Register of Controlled Trials (CENTRAL), the Cochrane Database of Systematic Reviews, and the Database of Abstracts of Reviews of Effectiveness (Issue 1, 2006); MEDLINE (January 1966 to March Week 3 2006); EMBASE (Dialog 1974 to 1979; SilverPlatter 1980 to December 2005); Biological Abstracts (SilverPlatter 1969 to December 2004); and Science Citation Index (Web of Science 1974 to December 2004). SELECTION CRITERIA We considered randomised, quasi-randomised, cohort and case-control studies assessing efficacy against influenza (laboratory-confirmed cases) or effectiveness against influenza-like illness (ILI) or safety. Any influenza vaccine given independently, in any dose, preparation or time schedule, compared with placebo or with no intervention was considered. DATA COLLECTION AND ANALYSIS We grouped reports first according to the setting of the study (community or long-term care facilities) and then by level of viral circulation and vaccine matching. We further stratified by co-administration of pneumococcal polysaccharide vaccine (PPV) and by different types of influenza vaccines. We analysed the following outcomes: influenza, influenza-like illness, hospital admissions, complications and deaths. MAIN RESULTS Sixty-four studies were included in the efficacy / effectiveness assessment, resulting in 96 data sets. In homes for elderly individuals (with good vaccine match and high viral circulation) the effectiveness of vaccines against ILI was 23% (6% to 36%) and non-significant against influenza (RR 1.04: 95% CI 0.43 to 2.51). We found no correlation between vaccine coverage and ILI attack rate. Well matched vaccines prevented pneumonia (VE 46%; 30% to 58%), hospital admission (VE 45%; 16% to 64%) and deaths from influenza or pneumonia (VE 42%, 17% to 59%). In elderly individuals living in the community, vaccines were not significantly effective against influenza (RR 0.19; 95% CI 0.02 to 2.01), ILI (RR 1.05: 95% CI 0.58 to 1.89), or pneumonia (RR 0.88; 95% CI 0.64 to 1.20). Well matched vaccines prevented hospital admission for influenza and pneumonia (VE 26%; 12% to 38%) and all-cause mortality (VE 42%; 24% to 55%). After adjustment for confounders, vaccine performance was improved for admissions to hospital for influenza or pneumonia (VE* 27%; 21% to 33%), respiratory diseases (VE* 22%; 15% to 28%) and cardiac disease (VE* 24%; 18% to 30%); and for all-cause mortality (VE* 47%; 39% to 54%). The public health safety profiles of the vaccines appear to be acceptable. AUTHORS' CONCLUSIONS In long-term care facilities, where vaccination is most effective against complications, the aims of the vaccination campaign are fulfilled, at least in part. However, according to reliable evidence the usefulness of vaccines in the community is modest. The apparent high effectiveness of the vaccines in preventing death from all causes may reflect a baseline imbalance in health status and other systematic differences in the two groups of participants.
Collapse
Affiliation(s)
- D Rivetti
- Servizio di Igiene e Sanita' Pubblica, Public Health Department, ASL 19 Asti, C. so Dante 202, Asti, Italy 14100.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ellis SE, Coffey CS, Mitchel EF, Dittus RS, Griffin MR. Influenza- and respiratory syncytial virus-associated morbidity and mortality in the nursing home population. J Am Geriatr Soc 2003; 51:761-7. [PMID: 12757561 PMCID: PMC7159134 DOI: 10.1046/j.1365-2389.2003.51254.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To estimate winter viral-related morbidity and mortality in Tennessee nursing home residents during 4 consecutive years. DESIGN A retrospective cohort study. SETTING Three hundred eighty-one Tennessee nursing homes. PARTICIPANTS Nursing home residents. MEASUREMENTS Viral surveillance data were used to define three seasons: influenza (influenza and respiratory syncytial virus (RSV) cocirculating), RSV (RSV alone circulating), and non winter-viral (neither virus circulating). Adjusted seasonal differences in rates of cardiopulmonary hospitalizations, antibiotic prescriptions, and deaths during these three seasons were calculated to estimate annual hospitalizations, courses of antibiotics, and deaths attributable to influenza and RSV from 1995 to 1999. RESULTS Nursing home residents had 81,885 person-years of follow-up. In the 63% of residents with comorbid conditions that increase influenza morbidity, influenza infection contributed to an estimated average of 28 hospitalizations, 147 courses of antibiotics, and 15 deaths per 1,000 persons annually. Similarly, RSV accounted for an annual average of 15 hospitalizations, 76 courses of antibiotics, and 17 deaths per 1,000 persons. Influenza and RSV accounted for 7% of cardiopulmonary hospitalizations and 9% of total deaths in high-risk residents during the 4 study years. Absolute morbidity and mortality were lower in residents without identified comorbid conditions but accounted for 15% of hospitalizations and 14% of deaths. These estimates depend on the assumption that morbidity and mortality from other respiratory viruses were distributed evenly between the three defined seasons. CONCLUSION Influenza and RSV substantially increased hospitalization rates, antibiotic use, and deaths in elderly nursing home residents each winter. These data should encourage persistent efforts toward disease prevention, and thoughtful study of vaccine development and delivery, diagnostic tools, and methods of prophylaxis and therapy.
Collapse
Affiliation(s)
- Shelley E. Ellis
- Department of Medicine
- Vanderbilt University School of Medicine and the Quality Scholars
Program, and
| | - Christopher S. Coffey
- Veterans Affairs,
Tennessee Valley Healthcare System, Nashville, Tennessee; and
- Department of Biostatistics, University of Alabama at Birmingham,
Birmingham, Alabama
| | | | - Robert S. Dittus
- Department of Medicine
- Vanderbilt University School of Medicine and the Quality Scholars
Program, and
- Geriatric Research, Education and Clinical Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Marie R. Griffin
- Department of Medicine
- Department of Preventive Medicine
- Vanderbilt Center for Education and Research on Therapeutics
- Geriatric Research, Education and Clinical Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
13
|
Abstract
Antiviral treatment, rapid viral diagnosis and point-of-care diagnostics are all relatively new, and their appropriate use not fully appreciated or evaluated. In this article, the need for laboratory diagnosis in relation to antiviral treatment, and practical approaches are discussed, with influenza and herpes simplex virus (HSV) as examples.
Collapse
Affiliation(s)
- A Linde
- Department of Virology, Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Stockholm, Sweden.
| |
Collapse
|