1
|
John JR, Hephzibah J, Shanthly N, Oommen R. Long-term disease-free survival after MIBG therapy for metastatic pheochromocytoma. BMJ Case Rep 2024; 17:e254747. [PMID: 38969389 DOI: 10.1136/bcr-2023-254747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024] Open
Abstract
Pheochromocytomas are rare tumours originating in chromaffin cells, representing 0.1%-1% of all secondary hypertension cases. The majority are benign and unilateral, characterised by the production of catecholamines and other neuropeptides. Mainly located in the adrenal gland, they are more frequent between the third and fifth decades of life. Iodine-131 metaiodobenzylguanidine (131I-MIBG), a radiopharmaceutical agent used for scintigraphic localisation of pheochromocytomas, has been employed to treat malignant pheochromocytomas since 1983 in a few specialised centres around the world. We reviewed our clinical experience in one such case of a young lady who presented with history of abdominal pain, headache and lower back pain. On evaluation, ultrasonography revealed a right adrenal mass and elevated urine vanillylmandelic acid levels. Following surgical resection and histopathological confirmation of pheochromocytoma, MIBG scintigraphy revealed osseous metastases and hence, she underwent 131I-MIBG therapy.
Collapse
Affiliation(s)
- Junita Rachel John
- Department of Nuclear Medicine, Christian Medical College and Hospital Vellore, Vellore, India
| | - Julie Hephzibah
- Department of Nuclear Medicine, Christian Medical College and Hospital Vellore, Vellore, India
| | - Nylla Shanthly
- Department of Nuclear Medicine, Christian Medical College and Hospital Vellore, Vellore, India
| | - Regi Oommen
- Department of Nuclear Medicine, Christian Medical College and Hospital Vellore, Vellore, India
| |
Collapse
|
2
|
Zhang X, Wakabayashi H, Hiromasa T, Kayano D, Kinuya S. Recent Advances in Radiopharmaceutical Theranostics of Pheochromocytoma and Paraganglioma. Semin Nucl Med 2023; 53:503-516. [PMID: 36641337 DOI: 10.1053/j.semnuclmed.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
As a rare kind of non-epithelial neuroendocrine neoplasms, paragangliomas (PGLs) exhibit various clinical characteristics with excessive catecholamine secretion and have been a research focus in recent years. Although several modalities are available nowadays, radiopharmaceuticals play an integral role in the management of PGLs. Theranostics utilises radiopharmaceuticals for diagnostic and therapeutic intentions by aiming at a specific target in tumour and has been considered a possible means in diagnosis, staging, monitoring and treatment planning. Numerous radiopharmaceuticals have been developed over the past decades. 123/131-Metaiodobenzylguanidine (123/131I-MIBG), the theranostics pair target on norepinephrine transporter system, has remained a fantastic protocol for patients with PGLs because of disease control with limited toxicity. The high-specific-activity 131I-MIBG was authorised by the Food and Drug Administration as a systemic treatment method for metastatic PGLs in 2018. Afterward, peptide receptor radionuclide therapy, which uses radiolabelled somatostatin (SST) analogues, has been exploited as a superior substitute. 68Ga-somatostatin analogue (SSA) PET showed significant performance in diagnosing PGLs than MIBG scintigraphy, especially in patients with head and neck PGLs or SDHx mutation. 90Y/177Lu-DOTA-SSA is highly successful and has preserved favourable safety with mounting evidence regarding objective response, disease stabilisation, symptomatic and hormonal management and quality of life preservation. Besides the ordinary beta emitters, alpha-emitters such as 211At-MABG and 225Ac-DOTATATE have been investigated intensively in recent years. However, many studies are still in the pre-clinical stage, and more research is necessary. This review summarises the developments and recent advances in radiopharmaceutical theranostics of PGLs.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan.
| | - Tomo Hiromasa
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Daiki Kayano
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| |
Collapse
|
3
|
Araujo-Castro M, Pascual-Corrales E, Alonso-Gordoa T, Molina-Cerrillo J, Martínez Lorca A. Papel de las pruebas de imagen con radionúclidos en el diagnóstico y tratamiento de los feocromocitomas y paragangliomas. ENDOCRINOL DIAB NUTR 2022. [DOI: 10.1016/j.endinu.2021.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Araujo-Castro M, Pascual-Corrales E, Alonso-Gordoa T, Molina-Cerrillo J, Martínez Lorca A. Role of imaging test with radionuclides in the diagnosis and treatment of pheochromocytomas and paragangliomas. ENDOCRINOL DIAB NUTR 2022; 69:614-628. [PMID: 36402734 DOI: 10.1016/j.endien.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/29/2021] [Indexed: 06/16/2023]
Abstract
Radionuclide imaging tests with [123I] Metaiodobenzylguanidine (MIBG), [18F] -fluorodeoxyglucose, [18F]-fluorodopa, or 68Ga-DOTA(0)-Tyr(3)-octreotate are useful for the diagnosis, staging and follow-up of pheochromocytomas (PHEOs) and paragangliomas (PGLs) (PPGLs). In addition to their ability to detect and localize the disease, they allow a better molecular characterization of the tumours, which is useful for planning targeted therapy with iodine-131 (131I) -labelled MIBG or with peptide receptor radionuclide therapy (PRRT) with [177Lu]-labelled DOTATATE or other related agents in patients with metastatic disease. In this review we detail the main characteristics of the radiopharmaceuticals used in the functional study of PPGLs and the role of nuclear medicine tests for initial evaluation, staging, selection of patients for targeted molecular therapy, and radiation therapy planning. It also offers a series of practical recommendations regarding the functional imaging according to the different clinical and genetic scenarios in which PPGLs occur, and on the indications and efficacy of therapy with [131I]-MIBG and 177Lu-DOTATATE.
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Unidad de Neuroendocrinología, Servicio de Endocrinología y Nutrición, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain; Universidad de Alcalá, Departamento de Ciencias de la Salud, Madrid, Spain.
| | - Eider Pascual-Corrales
- Unidad de Neuroendocrinología, Servicio de Endocrinología y Nutrición, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Teresa Alonso-Gordoa
- Servicio de Oncología Médica, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Javier Molina-Cerrillo
- Servicio de Oncología Médica, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alberto Martínez Lorca
- Servicio de Medicina Nuclear, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain.
| |
Collapse
|
5
|
Zhang X, Wakabayashi H, Kayano D, Inaki A, Kinuya S. I-131 metaiodobenzylguanidine therapy is a significant treatment option for pheochromocytoma and paraganglioma. Nuklearmedizin 2022; 61:231-239. [PMID: 35668668 DOI: 10.1055/a-1759-2050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours of chromaffin cells. Several modalities are currently available to treat patients with PPGL. These treatment modalities include surgery, chemotherapy, molecular targeted therapy and radiopharmaceuticals. METHODS I-131 metaiodobenzylguanidine (mIBG), a classic radiopharmaceutical, can be taken up through specific receptors and sited into many, but not all, PPGL cells. RESULTS Many studies have investigated the efficacy and toxicity of I-131 mIBG therapy. These studies reported significant results in terms of objective, hormonal and symptomatic responses as well as tolerable toxicities in patients. CONCLUSION This article reviews the reported experiences of patients who underwent I-131 mIBG therapy for PPGL with a focus on functions and deficiencies of the therapy.
Collapse
Affiliation(s)
- Xue Zhang
- Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | | | - Daiki Kayano
- Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Anri Inaki
- Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Seigo Kinuya
- Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
| |
Collapse
|
6
|
Prado-Wohlwend S, del Olmo-García MI, Bello-Arques P, Merino-Torres JF. Response to targeted radionuclide therapy with [ 131I]MIBG AND [ 177Lu]Lu-DOTA-TATE according to adrenal vs. extra-adrenal primary location in metastatic paragangliomas and pheochromocytomas: A systematic review. Front Endocrinol (Lausanne) 2022; 13:957172. [PMID: 36339441 PMCID: PMC9630737 DOI: 10.3389/fendo.2022.957172] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Targeted radionuclide therapy (TRT) with [131I]MIBG and [177Lu]Lu-DOTA-TATE is an alternative treatment to the classic schemes in slow progressive metastatic/inoperable paraganglioma (PGL) and pheochromocytoma (PHEO). There is no consensus on which treatment to administer and/or the best sequence in patients who are candidates for both therapies. To clarify these questions, this systematic review assesses the prognostic value of [131I]MIBG and [177Lu]Lu-DOTA-TATE (PRRT-Lu) treatments in terms of progression-free survival (PFS) both globally and considering the primary location. METHODS This review was developed according to the PRISMA Statement with 27 final studies (608 patients). Patient characteristics, treatment procedure, and follow-up criteria were evaluated. In addition, a Bayesian linear regression model weighted according to its sample size and an alternative model, which also included an interaction between the treatment and the proportion of PHEOs, were carried out, adjusted by a Student's t distribution. RESULTS In linear regression models, [131I]MIBG overall PFS was, on average, 10 months lower when compared with PRRT-Lu. When considering the interaction between treatment responses and the proportion of PHEOs, PRRT-Lu showed remarkably better results in adrenal location. The PFS of PRRT-Lu was longer when the ratio of PHEOs increased, with a decrease in [131I]MIBG PFS by 1.9 months for each 10% increase in the proportion of PHEOs in the sample. CONCLUSION Methodology, procedure, and PFS from the different studies are quite heterogeneous. PRRT-Lu showed better results globally and specifically in PHEOs. This fact opens the window to prospective trials comparing or sequencing [131I]MIBG and PRRT-Lu.
Collapse
Affiliation(s)
- Stefan Prado-Wohlwend
- Nuclear Medicine Department, University and Polytechnic Hospital La Fe, Valencia, Spain
- *Correspondence: Stefan Prado-Wohlwend,
| | | | - Pilar Bello-Arques
- Nuclear Medicine Department, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Juan Francisco Merino-Torres
- Endocrinology and Nutrition Department, University and Polytechnic Hospital La Fe, Valencia, Spain
- Medicine Department, Universitat de València, Valencia, Spain
| |
Collapse
|
7
|
Carrasquillo JA, Chen CC, Jha A, Pacak K, Pryma DA, Lin FI. Systemic Radiopharmaceutical Therapy of Pheochromocytoma and Paraganglioma. J Nucl Med 2021; 62:1192-1199. [PMID: 34475242 PMCID: PMC8882896 DOI: 10.2967/jnumed.120.259697] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/16/2021] [Indexed: 11/16/2022] Open
Abstract
Whereas benign pheochromocytomas and paragangliomas are often successfully cured by surgical resection, treatment of metastatic disease can be challenging in terms of both disease control and symptom control. Fortunately, several options are available, including chemotherapy, radiation therapy, and surgical debulking. Radiolabeled metaiodobenzylguanidine (MIBG) and somatostatin receptor imaging have laid the groundwork for use of these radiopharmaceuticals as theranostic agents. 131I-MIBG therapy of neuroendocrine tumors has a long history, and the recent approval of high-specific-activity 131I-MIBG for metastatic or inoperable pheochromocytoma or paraganglioma by the U.S. Food and Drug Administration has resulted in general availability of, and renewed interest in, this treatment. Although reports of peptide receptor radionuclide therapy of pheochromocytoma and paraganglioma with 90Y- or 177Lu-DOTA conjugated somatostatin analogs have appeared in the literature, the approval of 177Lu-DOTATATE in the United States and Europe, together with National Comprehensive Cancer Network guidelines suggesting its use in patients with metastatic or inoperable pheochromocytoma and paraganglioma, has resulted in renewed interest. These agents have shown evidence of efficacy as palliative treatments in patients with metastatic or inoperable pheochromocytoma or paraganglioma. In this continuing medical education article, we discuss the therapy of pheochromocytoma and paraganglioma with 131I-MIBG and 90Y- or 177Lu-DOTA-somatostatin analogs.
Collapse
Affiliation(s)
- Jorge A Carrasquillo
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York;
- Molecular Imaging Branch, National Cancer Institute, Bethesda, Maryland
| | - Clara C Chen
- Department of Radiology, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; and
| | - Karel Pacak
- Section on Medical Neuroendocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; and
| | - Daniel A Pryma
- Department of Radiology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frank I Lin
- Molecular Imaging Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
8
|
Xue X, Wang D, Xiao Y, Ji Z, Xie Y. Functional paraganglioma with tumor thrombus in the inferior vena cava, first case report. Transl Androl Urol 2021; 10:1813-1820. [PMID: 33968670 PMCID: PMC8100850 DOI: 10.21037/tau-21-50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Pheochromocytoma (PHEO) is a rare neuroendocrine that tumor originated from the adrenal medulla that secrets catecholamines. Tumors from extra-adrenal chromaffin tissues are called extra-adrenal PHEO or paraganglioma (PGL). To our knowledge, adrenal PHEO and subclinical PGL with inferior vena cava (IVC) invasion had been sporadically reported, while functional PGL with IVC tumor thrombus has not been publicly reported yet. Perioperative management of those diseases is less well established because of their multidisciplinary nature and rarity. We herein present a case of primary malignant PGL with IVC invasion. A 16-year-old female patient with a history of severe paroxysmal hypertension was admitted to Peking Union Medical College Hospital on suspicion of retroperitoneal mass. In-house diagnostic work-up revealed a malignant PGL with IVC invasion, inferior mesenteric artery encasement and, aorta engagement. Multi-disciplinary discussions were held and careful preoperative preparation plans were made. After everything was ready, the functional PGL and tumor thrombus were completely resected, then a reconstruction of IVC was performed. The patient was discharged on postoperative day 14 and all her clinical symptoms disappeared afterward. No evidence of tumor residual or metastasis was found in the subsequent six months of follow-up. Gene tests were made for her and her family. Albeit its rarity, functional PGL with IVC invasion is not unresectable, a multi-disciplinary task force should be established to settle down every detail. We recommended 3-dimensional imaging reconstruction for gaining a better anatomic understanding. Literature reviews showed that complete resection is the premise of a good prognosis. In particular cases, complementary or alternative therapy like chemotherapy and 131I-metaiodobenzylguanidine might help, family hereditary genetic tests are advised as well.
Collapse
Affiliation(s)
- Xiaoqiang Xue
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Xiao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Xie
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Kayano D, Kinuya S. Current Consensus on I-131 MIBG Therapy. Nucl Med Mol Imaging 2018; 52:254-265. [PMID: 30100938 DOI: 10.1007/s13139-018-0523-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 12/24/2022] Open
Abstract
Metaiodobenzylguanidine (MIBG) is structurally similar to the neurotransmitter norepinephrine and specifically targets neuroendocrine cells including some neuroendocrine tumors. Iodine-131 (I-131)-labeled MIBG (I-131 MIBG) therapy for neuroendocrine tumors has been performed for more than a quarter-century. The indications of I-131 MIBG therapy include treatment-resistant neuroblastoma (NB), unresectable or metastatic pheochromocytoma (PC) and paraganglioma (PG), unresectable or metastatic carcinoid tumors, and unresectable or metastatic medullary thyroid cancer (MTC). I-131 MIBG therapy is one of the considerable effective treatments in patients with advanced NB, PC, and PG. On the other hand, I-131 MIBG therapy is an alternative method after more effective novel therapies are used such as radiolabeled somatostatin analogs and tyrosine kinase inhibitors in patients with advanced carcinoid tumors and MTC. No-carrier-aided (NCA) I-131 MIBG has more favorable potential compared to the conventional I-131 MIBG. Astatine-211-labeled meta-astatobenzylguanidine (At-211 MABG) has massive potential in patients with neuroendocrine tumors. Further studies about the therapeutic protocols of I-131 MIBG including NCA I-131 MIBG in the clinical setting and At-211 MABG in both the preclinical and clinical settings are needed.
Collapse
Affiliation(s)
- Daiki Kayano
- 1Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan.,2Department of Nuclear Medicine, Fukushima Medical University Hospital, 1 Hikariga-oka, Fukushima, 960-1295 Japan
| | - Seigo Kinuya
- 1Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| |
Collapse
|
10
|
Andrade MDO, Cunha VSD, Oliveira DCD, Moraes OLD, Lofrano-Porto A. What determines mortality in malignant pheochromocytoma? – Report of a case with eighteen-year survival and review of the literature. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:264-269. [PMID: 29768630 PMCID: PMC10118982 DOI: 10.20945/2359-3997000000033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/19/2018] [Indexed: 11/23/2022]
Abstract
Pheochromocytoma (PCC) is a tumor derived from adrenomedullary chromaffin cells. Prognosis of malignant PCC is generally poor due to local recurrence or metastasis. We aim to report a case of malignant PCC with 18-year survival and discuss which factors may be related to mortality and long-term survival in malignant pheochromocytoma. The patient, a 45-year-old man, reported sustained arterial hypertension with paroxysmal episodes of tachycardia, associated with head and neck burning sensation, and hand and foot tremors. Diagnosis of PCC was established biochemically and a tumor with infiltration of renal parenchyma was resected. No genetic mutation or copy number variations were identified in SDHB, SDHD, SDHC, MAX and VHL. Over 18 years, tumor progression was managed with 131I-MIBG (iodine-metaiodobenzylguanidine) and 177Lutetium-octreotate therapy. Currently, the patient is asymptomatic and presents sustained stable disease, despite the presence of lung, para-aortic lymph nodes and femoral metastases. Adequate response to treatment with control of tumor progression, absence of significant cardiovascular events and other neoplasms, and lack of mutations in the main predisposing genes reported so far may be factors possibly associated with the prolonged survival in this case. Early diagnosis and life-long follow-up in patients with malignant pheochromocytoma are known to be crucial in improving survival.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Pheochromocytomas and paragangliomas (PPGLs) are uncommon catecholamine-producing neuroendocrine neoplasms that usually present with secondary hypertension. This review is to update the current knowledge about these neoplasms, the pathophysiology, genetic aspects and diagnostic and therapeutic algorithms based on scientific literature mostly within the past 3 years. RECENT FINDINGS Eighty to eighty-five percent of PPGLs arise from the adrenal medulla (pheochromocytomas; PCCs) and the remainder from the autonomic neural ganglia (paragangliomas; PGLs). Catecholamine excess causes chronic or paroxysmal hypertension associated with sweating, headaches and palpitations, the presenting features of PPGLs, and increases the cardiovascular morbidity and mortality. Genetic testing should be considered in all cases as mutations are reported in 35-40% of cases; 10-15% of PCCs and 20-50% of PGLs can be malignant. Measurements of plasma-free metanephrines or 24-h urine-fractionated metanephrines help biochemical diagnosis with high sensitivity and specificity. Initial anatomical localization after biochemical confirmation is usually with computed tomography (CT) or magnetic resonance imaging (MRI). 123Iodine metaiodobenzylguanidine (123I-MIBG) scintigraphy, positron emission tomography (PET) or single-photon emission computed tomography (SPECT) is often performed for functional imaging and prognostication prior to curative or palliative surgery. Clinical and biochemical follow-up is recommended at least annually after complete tumour excision. Children, pregnant women and older people have higher morbidity and mortality risk. De-bulking surgery, chemotherapy, radiotherapy, radionuclide agents and ablation procedures are useful in the palliation of incurable disease. PPGLs are unique neuroendocrine tumours that form an important cause for endocrine hypertension. The diagnostic and therapeutic algorithms are updated in this comprehensive article.
Collapse
Affiliation(s)
- Joseph M Pappachan
- Department of Endocrinology and Metabolism, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, LA1 4RP, UK.
| | - Nyo Nyo Tun
- Metabolic Unit, Western General Hospital, Edinburgh, UK
| | | | - Ravinder Sodi
- Department of Biochemistry and Blood Sciences, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, LA1 4RP, UK
| | - Fahmy W F Hanna
- Department of Endocrinology and Metabolism, The Royal Stoke University Hospital and North Staffordshire University, Stoke-on-Trent, ST4 6QG, UK
| |
Collapse
|
12
|
Cerebral metastasis of malignant pheochromocytoma 28 years after of disease onset. INTERDISCIPLINARY NEUROSURGERY-ADVANCED TECHNIQUES AND CASE MANAGEMENT 2017. [DOI: 10.1016/j.inat.2017.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Davison AS, Jones DM, Ruthven S, Helliwell T, Shore SL. Clinical evaluation and treatment of phaeochromocytoma. Ann Clin Biochem 2017; 55:34-48. [DOI: 10.1177/0004563217739931] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Phaeochromocytoma and extra adrenal paraganglioma are rare neuroendocrine tumours and have the potential to secrete adrenaline, noradrenaline and dopamine causing a myriad of clinical symptoms. Prompt diagnosis is essential for clinicians and requires a multidisciplinary specialist approach for the clinical and laboratory investigation, diagnosis, treatment and follow-up of patients. This paper is an integrated review of the clinical and laboratory evaluation and treatment of patients suspected to have phaeochromocytoma or paraganglioma, highlighting recent developments and best practices from recent published clinical guidelines.
Collapse
Affiliation(s)
- Andrew S Davison
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, UK
- Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Danielle M Jones
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, UK
| | - Stuart Ruthven
- Department of Cellular Pathology, Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, UK
| | - Timothy Helliwell
- Department of Cellular Pathology, Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, UK
| | - Susannah L Shore
- Department of Endocrine Surgery, Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, UK
| |
Collapse
|
14
|
Pandit-Taskar N, Modak S. Norepinephrine Transporter as a Target for Imaging and Therapy. J Nucl Med 2017; 58:39S-53S. [PMID: 28864611 DOI: 10.2967/jnumed.116.186833] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023] Open
Abstract
The norepinephrine transporter (NET) is essential for norepinephrine uptake at the synaptic terminals and adrenal chromaffin cells. In neuroendocrine tumors, NET can be targeted for imaging as well as therapy. One of the most widely used theranostic agents targeting NET is metaiodobenzylguanidine (MIBG), a guanethidine analog of norepinephrine. 123I/131I-MIBG theranostics have been applied in the clinical evaluation and management of neuroendocrine tumors, especially in neuroblastoma, paraganglioma, and pheochromocytoma. 123I-MIBG imaging is a mainstay in the evaluation of neuroblastoma, and 131I-MIBG has been used for the treatment of relapsed high-risk neuroblastoma for several years, however, the outcome remains suboptimal. 131I-MIBG has essentially been only palliative in paraganglioma/pheochromocytoma patients. Various techniques of improving therapeutic outcomes, such as dosimetric estimations, high-dose therapies, multiple fractionated administration and combination therapy with radiation sensitizers, chemotherapy, and other radionuclide therapies, are being evaluated. PET tracers targeting NET appear promising and may be more convenient options for the imaging and assessment after treatment. Here, we present an overview of NET as a target for theranostics; review its current role in some neuroendocrine tumors, such as neuroblastoma, paraganglioma/pheochromocytoma, and carcinoids; and discuss approaches to improving targeting and theranostic outcomes.
Collapse
Affiliation(s)
| | - Shakeel Modak
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
15
|
Carrasquillo JA, Pandit-Taskar N, Chen CC. I-131 Metaiodobenzylguanidine Therapy of Pheochromocytoma and Paraganglioma. Semin Nucl Med 2016; 46:203-14. [PMID: 27067501 DOI: 10.1053/j.semnuclmed.2016.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pheochromocytomas and paragangliomas are rare tumors arising from chromaffin cells. Available therapeutic modalities consist of chemotherapy, tyrosine kinase inhibitors, and I-131 metaiodobenzylguanidine (MIBG). I-131 MIBG is taken up via specific receptors and localizes into many but not all pheochromocytomas and paragangliomas. Because these tumors are rare, most therapy studies are retrospective presentations of clinical experience. Numerous retrospective studies and a few prospective studies have shown favorable responses in this disease, including symptomatic, biochemical, and objective responses. In this report, we review the experience of using I-131 MIBG therapy for targeting pheochromocytoma and paragangliomas.
Collapse
Affiliation(s)
- Jorge A Carrasquillo
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering, New York, NY; Department of Radiology, Weill Cornell Medical Center, New York, NY.
| | - Neeta Pandit-Taskar
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering, New York, NY; Department of Radiology, Weill Cornell Medical Center, New York, NY
| | - Clara C Chen
- Nuclear Medicine, Department of Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
16
|
Tsang VHM, Tacon LJ, Learoyd DL, Robinson BG. Pheochromocytomas in Multiple Endocrine Neoplasia Type 2. Recent Results Cancer Res 2015; 204:157-78. [PMID: 26494388 DOI: 10.1007/978-3-319-22542-5_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pheochromocytoma (PC) is a neuroendocrine tumor that originates from chromaffin cells of the adrenal medulla. The production of catecholamines, including epinephrine, norepinephrine and dopamine, may lead to haemodynamic instability. Over 30% of PCs are associated with germline mutations, including re-arranged in transfection (RET) mutations seen in multiple endocrine neoplasia type 2 (MEN2) syndromes. Around 40% of individuals with MEN2 develop PC, though it is rarely the presenting feature. Compared to sporadic PC, MEN2-associated PC is more likely to be epinephine secreting and demonstrate bilateral adrenal involvement, and is less likely to be malignant. The diagnosis of PC requires clinical suspicion and biochemical testing, followed by imaging studies. Novel nuclear medicine modalities, including FDG positron emission tomography (PET) and 68Ga DOTATATE PET have added to the conventional techniques of 123I-metaiodobenzylguanindine (MIBG) scintigraphy, computer tomography and magnetic resonance imaging. Treatment of PC is surgical and requires peri-operative alpha and, frequently, beta blockade. Novel surgical techniques, such as adrenal sparing surgery and a laparoscopic approach, have decreased peri-operative morbidity. Surveillance for PC is life long, due to the risk of metastatic disease.
Collapse
Affiliation(s)
- Venessa H M Tsang
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia. .,Department of Endocrinology, Acute Services Building, Clinic 1, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia.
| | - Lyndal J Tacon
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,Department of Endocrinology, Acute Services Building, Clinic 1, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia
| | - Diana L Learoyd
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,Department of Endocrinology, Acute Services Building, Clinic 1, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia
| | - Bruce G Robinson
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,Department of Endocrinology, Acute Services Building, Clinic 1, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia
| |
Collapse
|