1
|
Ma X, Liu X, Duan X, Fan D. Screening for PRX mutations in a large Chinese Charcot-Marie-Tooth disease cohort and literature review. Front Neurol 2023; 14:1148044. [PMID: 37470010 PMCID: PMC10352492 DOI: 10.3389/fneur.2023.1148044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023] Open
Abstract
Background Periaxins (encoded by PRX) play an important role in the stabilization of peripheral nerve myelin. Mutations in PRX can lead to Charcot-Marie-Tooth disease type 4F (CMT4F). Methods In this study, we screened for PRX mutations using next-generation sequencing and whole-exome sequencing in a large Chinese CMT cohort consisting of 465 unrelated index patients and 650 healthy controls. Sanger sequencing was used for the validation of all identified variants. We also reviewed all previously reported PRX-related CMT cases and summarized the clinical manifestations and genetic features of PRX-related CMTs. Results The hit rate for biallelic PRX variants in our cohort of Chinese CMT patients was 0.43% (2/465). One patient carried a previously unreported splice-site mutation (c.25_27 + 9del) compound heterozygous with a known nonsense variant. Compiling data on CMT4F cases and PRX variants from the medical literature confirmed that early-onset (95.2%), distal amyotrophy or weakness (94.0%), feet deformity (75.0%), sensory impairment or sensory ataxia (65.5%), delayed motor milestones (60.7%), and spinal deformity (59.5%) are typical features for CMT4F. Less frequent features were auditory impairments, respiratory symptoms, late onset, dysarthria or hoarseness, ophthalmic problems, and central nervous system involvement. The two cases with biallelic missense mutations have later onset age than those with nonsense or frameshift mutations. We did not note clear correlations between the type and site of mutations and clinical severity or distinct constellations of symptoms. Conclusion Consistent with observations in other countries and ethnic groups, PRX-related CMT is rare in China. The clinical spectrum is wider than previously anticipated.
Collapse
Affiliation(s)
- Xinran Ma
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Xiaohui Duan
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| |
Collapse
|
2
|
Bennett TM, Zhou Y, Meyer KJ, Anderson MG, Shiels A. Whole-exome sequencing prioritizes candidate genes for hereditary cataract in the Emory mouse mutant. G3 (BETHESDA, MD.) 2023; 13:jkad055. [PMID: 36891866 PMCID: PMC10151407 DOI: 10.1093/g3journal/jkad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023]
Abstract
The Emory cataract (Em) mouse mutant has long been proposed as an animal model for age-related or senile cataract in humans-a leading cause of visual impairment. However, the genetic defect(s) underlying the autosomal dominant Em phenotype remains elusive. Here, we confirmed development of the cataract phenotype in commercially available Em/J mice [but not ancestral Carworth Farms White (CFW) mice] at 6-8 months of age and undertook whole-exome sequencing of candidate genes for Em. Analysis of coding and splice-site variants did not identify any disease-causing/associated mutations in over 450 genes known to underlie inherited and age-related forms of cataract and other lens disorders in humans and mice, including genes for lens crystallins, membrane/cytoskeleton proteins, DNA/RNA-binding proteins, and those associated with syndromic/systemic forms of cataract. However, we identified three cataract/lens-associated genes each with one novel homozygous variant including predicted missense substitutions in Prx (p.R167C) and Adamts10 (p.P761L) and a disruptive in-frame deletion variant (predicted missense) in Abhd12 (p.L30_A32delinsS) that were absent in CFW and over 35 other mouse strains. In silico analysis predicted that the missense substitutions in Prx and Adamts10 were borderline neutral/damaging and neutral, respectively, at the protein function level, whereas, that in Abhd12 was functionally damaging. Both the human counterparts of Adamts10 and Abhd12 are clinically associated with syndromic forms of cataract known as Weil-Marchesani syndrome 1 and polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract syndrome, respectively. Overall, while we cannot exclude Prx and Adamts10, our data suggest that Abhd12 is a promising candidate gene for cataract in the Em/J mouse.
Collapse
Affiliation(s)
- Thomas M Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kacie J Meyer
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Li H, Yuan L, Yang H, Guo Y, Zheng W, Fan K, Deng S, Gong L, Xu H, Yang Z, Cheng J, Kang M, Deng H. Analysis of SOD1 Variants in Chinese Patients with Familial Amyotrophic Lateral Sclerosis. QJM 2023; 116:365-374. [PMID: 36661322 DOI: 10.1093/qjmed/hcad010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, and genetic contributors exert a significant role in the complicated pathogenesis. Identification of the genetic causes in ALS families could be valuable for early diagnosis and management. The development of potential drugs for patients with genetic defects will shed new light on ALS therapy. AIM To identify causative variants in three Chinese families with familial ALS (FALS), reveal the pathogenic mechanism, and look for the targeted drug for ALS. DESIGN AND METHODS Whole-exome sequencing and bioinformatics were used to perform genetic analysis of the ALS families. Functional analysis was performed to study the variants' function and search for potential drug targets. RESULTS Three heterozygous missense variants of the SOD1 gene were identified in families with FALS. The clinical manifestations of these patients include spinal onset, predominant lower motor neurons presentation, and absence of cognitive involvement. Functional analysis showed that all three SOD1 variants led to increased reactive oxygen species (ROS) levels, reduced cell viability, and formation of cytoplasmic aggregates. Remarkably, the decreased cell viability induced by variants was rescued after treatment with the ROS inhibitor N-acetylcysteine. CONCLUSIONS This study identified three SOD1 variants in three families with FALS. The variant SOD1 toxicity was associated with oxidative damage and aggregation, and N-acetylcysteine could rescue the decreased cell viability induced by these variants. Our findings support a pathogenic role for ROS in SOD1 deficiencies, and provide a potential drug N-acetylcysteine for ALS therapy, especially in SOD1-patients with limb onset.
Collapse
Affiliation(s)
- H Li
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - L Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
| | - H Yang
- Department of Neurology, the Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Y Guo
- Department of Medical Information, School of Life Sciences, Central South University, Changsha, China
| | - W Zheng
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - K Fan
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - S Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - L Gong
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - H Xu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Z Yang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - J Cheng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - M Kang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - H Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
| |
Collapse
|
4
|
Pitfalls of whole exome sequencing in undefined clinical conditions with a suspected genetic etiology. Genes Genomics 2022; 45:637-655. [PMID: 36454368 DOI: 10.1007/s13258-022-01341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/26/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Whole-Exome Sequencing (WES) is a valuable tool for the molecular diagnosis of patients with a suspected genetic condition. In complex and heterogeneous diseases, the interpretation of WES variants is more challenging given the absence of diagnostic handles and other reported cases with overlapping clinical presentations. OBJECTIVE To describe candidate variants emerging from trio-WES and possibly associated with the clinical phenotype in clinically heterogeneous conditions. METHODS We performed WES in ten patients from eight families, selected because of the lack of a clear clinical diagnosis or suspicion, the presence of multiple clinical signs, and the negative results of traditional genetic tests. RESULTS Although we identified ten candidate variants, reaching the diagnosis of these cases is challenging, given the complexity and the rarity of these syndromes and because affected genes are already associated with known genetic diseases only partially recapitulating patients' phenotypes. However, the identification of these variants could shed light into the definition of new genotype-phenotype correlations. Here, we describe the clinical and molecular data of these cases with the aim of favoring the match with other similar cases and, hopefully, confirm our diagnostic hypotheses. CONCLUSION This study emphasizes the major limitations associated with WES data interpretation, but also highlights its clinical utility in unraveling novel genotype-phenotype correlations in complex and heterogeneous undefined clinical conditions with a suspected genetic etiology.
Collapse
|
5
|
Huang Y, Yuan L, Cao Y, Tang R, Xu H, Tang Z, Deng H. Novel compound heterozygous mutations in the CHST6 gene cause macular corneal dystrophy in a Han Chinese family. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:622. [PMID: 33987320 PMCID: PMC8106006 DOI: 10.21037/atm-20-7178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Macular corneal dystrophy (MCD), a rare autosomal recessive disorder, is caused by pathogenic mutations in the carbohydrate sulfotransferase 6 gene (CHST6) and is characterized by bilateral progressive stromal clouding and vision loss. Corneal transplantation is often necessary. This study aimed to identify disease-causing mutations in a Han-Chinese MCD patient. METHODS A 37-year-old female diagnosed with MCD was recruited. The clinical materials were observed and described, and peripheral blood sample was extracted. Whole exome sequencing (WES) and Sanger sequencing were used to reveal genetic defects. The pathogenicity of identified mutations was assessed using in silico analysis. RESULTS The patient had typical features of MCD, including decreased vision, multiple irregular gray-white corneal opacities, and corneal thinning. A novel nonsense mutation c.544C>T (p.Gln182Ter) and a validated missense mutation c.631C>G (p.Arg211Gly) were identified in the CHST6 gene coding region, both classified as "pathogenic" following the American College of Medical Genetics and Genomics standards and guidelines. CONCLUSIONS This study reports a Han-Chinese MCD patient with a novel nonsense mutation c.544C>T (p.Gln182Ter) and a recurrent missense mutation c.631C>G (p.Arg211Gly), which expand the spectrum of genetic mutations. The results of this study extend genotype-phenotype correlations between the CHST6 gene mutations and MCD clinical findings, contributing to a more accurate diagnosis and the development of potential gene-targeted MCD therapies. KEYWORDS Carbohydrate sulfotransferase 6 gene (CHST6); compound heterozygous mutations; Han Chinese family; macular corneal dystrophy (MCD).
Collapse
Affiliation(s)
- Yanxia Huang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yanna Cao
- Department of Ophthalmology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Renhong Tang
- Department of Ophthalmology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Ziqian Tang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China;,Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China;,Disease Genome Research Center, Central South University, Changsha, China
| |
Collapse
|
6
|
Molecular genetics of congenital cataracts. Exp Eye Res 2019; 191:107872. [PMID: 31770519 DOI: 10.1016/j.exer.2019.107872] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
Abstract
Congenital cataracts, the most common cause of visual impairment and blindness in children worldwide, have diverse etiologies. According to statistics analysis, about one quarter of congenital cataracts caused by genetic defects. Various mutations of more than one hundred genes have been identified in hereditary cataracts so far. In this review, we briefly summarize recent developments about the genetics, molecular mechanisms, and treatments of congenital cataracts. The studies of these pathogenic mutations and molecular genetics is making it possible for us to comprehend the underlying mechanisms of cataractogenesis and providing new insights into the preventive, diagnostic and therapeutic approaches of cataracts.
Collapse
|
7
|
Huang X, Guo Y, Xu H, Yang Z, Deng X, Deng H, Yuan L. Identification of a novel EVC variant in a Han-Chinese family with Ellis-van Creveld syndrome. Mol Genet Genomic Med 2019; 7:e885. [PMID: 31338997 PMCID: PMC6732296 DOI: 10.1002/mgg3.885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022] Open
Abstract
Background Ellis‐van Creveld syndrome (EVC), a very rare genetic skeletal dysplasia, is clinically characterized by a tetrad consisting of chondrodystrophy, polydactyly, ectodermal dysplasia, and cardiac anomalies. The aim of this study was to identify the genetic defect for EVC in a five‐generation consanguineous Han‐Chinese pedigree. Methods A five‐generation, 12‐member Han‐Chinese pedigree was enrolled in this study. Exome sequencing was applied in the proband to screen potential genetic variant(s), and then Sanger sequencing was used to identify the variant in family members and 200 unrelated ethnicity‐matched controls. Results A novel homozygous variant, c.2014C>T, p.(Q672*), in the EvC ciliary complex subunit 1 gene (EVC), was detected in the patient, which was cosegregated with the disease in the family and absent in the controls. Conclusion The identified novel homozygous EVC variant, c.2014C>T, p.(Q672*), was responsible for EVC in this Han‐Chinese pedigree. The findings in this study extend the EVC mutation spectrum and may provide new insights into EVC causation and diagnosis with implications for genetic counseling and clinical management.
Collapse
Affiliation(s)
- Xiangjun Huang
- Department of General Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yi Guo
- Department of Medical Information, School of Life Sciences, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhijian Yang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Identification of novel pathogenic ABCA4 variants in a Han Chinese family with Stargardt disease. Biosci Rep 2019; 39:BSR20180872. [PMID: 30563929 PMCID: PMC6331664 DOI: 10.1042/bsr20180872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Stargardt disease (STGD1, OMIM 248200) is a common hereditary juvenile or early adult onset macular degeneration. It ultimately leads to progressive central vision loss. Here, we sought to identify gene mutations associated with STGD1 in a three-generation Han Chinese pedigree by whole exome sequencing and Sanger sequencing. Two novel potentially pathogenic variants in a compound heterozygous state, c.3607G>T (p.(Gly1203Trp)) and c.6722T>C (p.(Leu2241Pro)), in the ATP binding cassette subfamily A member 4 gene (ABCA4) were identified as contributing to the family’s STGD1 phenotype. These variants may impact the ABCA4 protein structure and reduce the retinal-activated ATPase activity, leading to abnormal all-trans retinal accumulation in photoreceptor outer segments and in retinal pigment epithelium cells. The present study broadens the mutational spectrum of the ABCA4 responsible for STGD1. A combination of whole exome sequencing and Sanger sequencing is likely to be a time-saving and cost-efficient approach to screen pathogenic variants in genetic disorders caused by sizable genes, as well as avoiding misdiagnosis. These results perhaps refine genetic counseling and ABCA4-targetted treatments for families affected by STGD1.
Collapse
|
9
|
Identification of a Novel Mutation in the ABCA4 Gene in a Chinese Family with Retinitis Pigmentosa Using Exome Sequencing. Biosci Rep 2018; 38:BSR20171300. [PMID: 29437900 PMCID: PMC5857910 DOI: 10.1042/bsr20171300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 11/26/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of hereditary, degenerative retinal disorders characterized by progressive retinal dysfunction, outer retina cell loss, and retinal tissue atrophy. It eventually leads to tunnel vision and legal or total blindness. Here, we aimed to reveal the causal gene and mutation contributing to the development of autosomal recessive RP (arRP) in a consanguineous family. A novel homozygous mutation, c.4845delT (p.K1616Rfs*46), in the ATP-binding cassette subfamily A member 4 gene (ABCA4) was identified. It may reduce ABCA4 protein activity, leading to progressive degeneration of both rod and cone photoreceptors. The study extends the arRP genotypic spectrum and confirms a genotype–phenotype relationship. The present study may also disclose some new clues for RP genetic causes and pathogenesis, as well as clinical and genetic diagnosis. The research findings may contribute to improvement in clinical care, therapy, genetic screening, and counseling.
Collapse
|
10
|
Wada K, Saito J, Yamaguchi M, Seki Y, Furugori M, Takahashi G, Nishito Y, Matsuda H, Shitara H, Kikkawa Y. Pde6b rd1 mutation modifies cataractogenesis in Foxe3 rct mice. Biochem Biophys Res Commun 2018; 496:231-237. [PMID: 29317205 DOI: 10.1016/j.bbrc.2018.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/04/2018] [Indexed: 11/27/2022]
Abstract
The Foxe3rct mutation, which causes early-onset cataracts, is a recessive mutation found in SJL/J mice. A previous study reported that cataract phenotypes are modified by the genetic background of mouse inbred strains and that the Pde6brd1 mutation, which induced degeneration of the photoreceptor cells, is a strong candidate genetic modifier to accelerate the severity of cataractogenesis of Foxe3rct mice. We created congenic mice by transferring a genomic region including the Foxe3rct mutation to the B6 genetic background, which does not carry the Pde6brd1 mutation. In the congenic mice, the cataract phenotypes became remarkably mild, and the development of cataracts was suppressed for a long time. Moreover, we created transgenic mice by injecting BAC clones including the wild-type Pde6b gene into the eggs of SJL-Foxe3rct mice. Although the resistant effect for cataract phenotypes in transgenic mice was less than that in congenic mice, the severity and onset time of cataract phenotypes were clearly improved and delayed, respectively, compared with the phenotypes of the original SJL-Foxe3rct mice. These results clearly show that the development of early-onset cataracts requires at least two mutant alleles of Foxe3rct and Pde6brd1, and another modifier associated with the severity of cataract phenotypes in Foxe3rct mice underlies the genetic backgrounds in mice.
Collapse
Affiliation(s)
- Kenta Wada
- Graduate School of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, 099-2493, Japan; Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Junichi Saito
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Midori Yamaguchi
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yuta Seki
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Masamune Furugori
- Graduate School of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, 099-2493, Japan
| | - Gou Takahashi
- Regenerative Medicine Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Hiroshi Matsuda
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Hiroshi Shitara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan; Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
11
|
Singh M, Tyagi SC. Genes and genetics in eye diseases: a genomic medicine approach for investigating hereditary and inflammatory ocular disorders. Int J Ophthalmol 2018; 11:117-134. [PMID: 29376001 DOI: 10.18240/ijo.2018.01.20] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 10/31/2017] [Indexed: 12/27/2022] Open
Abstract
Past 25y have witnessed an exponential increase in knowledge and understanding of ocular diseases and their respective genetic underpinnings. As a result, scientists have mapped many genes and their variants that can influence vision and health of our eyes. Based on these findings, it is becoming clear that an early diagnosis employing genetic testing can help evaluate patients' conditions for instituting treatment plan(s) and follow-up care to avoid vision complications later. For example, knowing family history becomes crucial for inherited eye diseases as it can benefit members in family who may have similar eye diseases or predispositions. Therefore, gathering information from an elaborate examination along with complete assessment of past medical illness by ophthalmologists followed by consultation with geneticists can help create a roadmap for making diagnosis and treatment precise and beneficial. In this review, we present an update on ocular genomic medicine that we believe has tremendous potential towards unraveling genetic implications in ocular diseases and patients' susceptibilities. We also discuss translational aspects of genetic ophthalmology and genome engineering that may help advance molecular diagnostics and therapeutics.
Collapse
Affiliation(s)
- Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Suresh C Tyagi
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| |
Collapse
|
12
|
Li J, Xia CH, Wang E, Yao K, Gong X. Screening, genetics, risk factors, and treatment of neonatal cataracts. Birth Defects Res 2017; 109:734-743. [PMID: 28544770 DOI: 10.1002/bdr2.1050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/15/2017] [Indexed: 12/21/2022]
Abstract
Neonatal cataracts remain the most common cause of visual loss in children worldwide and have diverse, often unknown, etiologies. This review summarizes current knowledge about the detection, treatment, genetics, risk factors, and molecular mechanisms of congenital cataracts. We emphasize significant progress and topics requiring further study in both clinical cataract therapy and basic lens research. Advances in genetic screening and surgical technologies have improved the diagnosis, management, and visual outcomes of affected children. For example, mutations in lens crystallins and membrane/cytoskeletal components that commonly underlie genetically inherited cataracts are now known. However, many questions still remain regarding the causes, progression, and pathology of neonatal cataracts. Further investigations are also required to improve diagnostic criteria for determining the timing of appropriate interventions, such as the implantation of intraocular lenses and postoperative management strategies, to ensure safety and predictable visual outcomes for children. Birth Defects Research 109:734-743, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jinyu Li
- Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Ophthalmology of Zhejiang Province, China
| | - Chun-Hong Xia
- School of Optometry and Vision Science Program, University of California, Berkeley, California, USA
| | - Eddie Wang
- School of Optometry and Vision Science Program, University of California, Berkeley, California, USA
| | - Ke Yao
- Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Ophthalmology of Zhejiang Province, China
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California, Berkeley, California, USA
| |
Collapse
|
13
|
Messina-Baas O, Cuevas-Covarrubias SA. Inherited Congenital Cataract: A Guide to Suspect the Genetic Etiology in the Cataract Genesis. Mol Syndromol 2017; 8:58-78. [PMID: 28611546 DOI: 10.1159/000455752] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 01/23/2023] Open
Abstract
Cataracts are the principal cause of treatable blindness worldwide. Inherited congenital cataract (CC) shows all types of inheritance patterns in a syndromic and nonsyndromic form. There are more than 100 genes associated with cataract with a predominance of autosomal dominant inheritance. A cataract is defined as an opacity of the lens producing a variation of the refractive index of the lens. This variation derives from modifications in the lens structure resulting in light scattering, frequently a consequence of a significant concentration of high-molecular-weight protein aggregates. The aim of this review is to introduce a guide to identify the gene involved in inherited CC. Due to the manifold clinical and genetic heterogeneity, we discarded the cataract phenotype as a cardinal sign; a 4-group classification with the genes implicated in inherited CC is proposed. We consider that this classification will assist in identifying the probable gene involved in inherited CC.
Collapse
|