1
|
Di Fiore R, Drago-Ferrante R, Suleiman S, Calleja N, Calleja-Agius J. The role of microRNA-9 in ovarian and cervical cancers: An updated overview. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:108546. [PMID: 39030109 DOI: 10.1016/j.ejso.2024.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Ovarian and cervical cancers are the two most frequent kind of gynaecological cancers (GCs). In spite of advances in prevention, screening and treatment, cervical cancer still leads to an increased morbidity and mortality worldwide. Ovarian cancer is often detected at a late stage, which significantly reduces the effectiveness of available treatments. Therefore, novel methods are desperately needed to improve the clinical care of GC patients. MicroRNAs, also known as short noncoding RNAs (miRNAs/miRs), are a diverse group of RNAs with a length of 22 nucleotides. These typically cause translational repression and mRNA degradation by interacting with target mRNAs' 3' untranslated region (3'-UTR), together with other regions and gene promoters. Under certain conditions, they are also able to activate translation or regulate transcription. It has been demonstrated that miRNAs are crucial to several biological processes leading to tumorigenesis, including GCs. Recent research has shown that miR-9 affects carcinogenesis. In this review, we will provide an overview of current research on the potential utility of miR-9 in the diagnosis, prognosis, and therapy of ovarian and cervical malignancies.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA.
| | - Rosa Drago-Ferrante
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta; BioDNA Laboratories, Malta Life Sciences Park, SGN, 3000, San Gwann, Malta.
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta.
| | - Neville Calleja
- Department of Public Health, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta.
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta.
| |
Collapse
|
2
|
Zhou W, Yang Y, Wang W, Yang C, Cao Z, Lin X, Zhang H, Xiao Y, Zhang X. Pseudogene OCT4-pg5 upregulates OCT4B expression to promote bladder cancer progression by competing with miR-145-5p. Cell Cycle 2024; 23:645-661. [PMID: 38842275 PMCID: PMC11229759 DOI: 10.1080/15384101.2024.2353554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/05/2024] [Indexed: 06/07/2024] Open
Abstract
Bladder cancer (BC) is one of the most common malignant neoplasms worldwide. Competing endogenous RNA (ceRNA) networks may identify potential biomarkers associated with the progression and prognosis of BC. The OCT4-pg5/miR-145-5p/OCT4B ceRNA network was found to be related to the progression and prognosis of BC. OCT4-pg5 expression was significantly higher in BC cell lines than in normal bladder cells, with OCT4-pg5 expression correlating with OCT4B expression and advanced tumor grade. Overexpression of OCT4-pg5 and OCT4B promoted the proliferation and invasion of BC cells, whereas miR-145-5p suppressed these activities. The 3' untranslated region (3'UTR) of OCT4-pg5 competed for miR-145-5p, thereby increasing OCT4B expression. In addition, OCT4-pg5 promoted epithelial-mesenchymal transition (EMT) by activating the Wnt/β-catenin pathway and upregulating the expression of matrix metalloproteinases (MMPs) 2 and 9 as well as the transcription factors zinc finger E-box binding homeobox (ZEB) 1 and 2. Elevated expression of OCT4-pg5 and OCT4B reduced the sensitivity of BC cells to cisplatin by reducing apoptosis and increasing the proportion of cells in G1. The OCT4-pg5/miR-145-5p/OCT4B axis promotes the progression of BC by inducing EMT via the Wnt/β-catenin pathway and enhances cisplatin resistance. This axis may represent a therapeutic target in patients with BC.
Collapse
Affiliation(s)
- Wuer Zhou
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Yue Yang
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wei Wang
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chenglin Yang
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Zhi Cao
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Xiaoyu Lin
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Huifen Zhang
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Yuansong Xiao
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Xiaoming Zhang
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| |
Collapse
|
3
|
Fu Z, Wang L, Li S, Chen F, Au-Yeung KKW, Shi C. MicroRNA as an Important Target for Anticancer Drug Development. Front Pharmacol 2021; 12:736323. [PMID: 34512363 PMCID: PMC8425594 DOI: 10.3389/fphar.2021.736323] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer has become the second greatest cause of death worldwide. Although there are several different classes of anticancer drugs that are available in clinic, some tough issues like side-effects and low efficacy still need to dissolve. Therefore, there remains an urgent need to discover and develop more effective anticancer drugs. MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs that regulate gene expression by inhibiting mRNA translation or reducing the stability of mRNA. An abnormal miRNA expression profile was found to exist widely in cancer cell, which induces limitless replicative potential and evading apoptosis. MiRNAs function as oncogenes (oncomiRs) or tumor suppressors during tumor development and progression. It was shown that regulation of specific miRNA alterations using miRNA mimics or antagomirs can normalize the gene regulatory network and signaling pathways, and reverse the phenotypes in cancer cells. The miRNA hence provides an attractive target for anticancer drug development. In this review, we will summarize the latest publications on the role of miRNA in anticancer therapeutics and briefly describe the relationship between abnormal miRNAs and tumorigenesis. The potential of miRNA-based therapeutics for anticancer treatment has been critically discussed. And the current strategies in designing miRNA targeting therapeutics are described in detail. Finally, the current challenges and future perspectives of miRNA-based therapy are conferred.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Liu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Fen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | | | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
4
|
Ito T, Igaki T. Yorkie drives Ras-induced tumor progression by microRNA-mediated inhibition of cellular senescence. Sci Signal 2021; 14:14/685/eaaz3578. [PMID: 34074704 DOI: 10.1126/scisignal.aaz3578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The activation of Ras signaling is a major early event of oncogenesis in many contexts, yet paradoxically, Ras signaling induces cellular senescence, which prevents tumorigenesis. Thus, Ras-activated cells must overcome senescence to develop into cancer. Through a genetic screen in Drosophila melanogaster, we found that the ETS family transcriptional activator Pointed (Pnt) was necessary and sufficient to trigger cellular senescence upon Ras activation and blocked Ras-induced tumor growth in eye-antennal discs. Through analyses of mosaic discs using various genetic tools, we identified a mechanism of tumor progression in which loss of cell polarity, a common driver of epithelial oncogenesis, abrogated Ras-induced cellular senescence through microRNA-mediated inhibition of Pnt. Mechanistically, polarity defects in Ras-activated cells caused activation of the Hippo effector Yorkie (Yki), which induced the expression of the microRNA bantam bantam-mediated repression of the E3 ligase-associated protein Tribbles (Trbl) relieved Ras- and Akt-dependent inhibition of the transcription factor FoxO. The restoration of FoxO activity in Ras-activated cells induced the expression of the microRNAs miR-9c and miR-79, which led to reduced pnt expression, thereby abrogating cellular senescence and promoting tumor progression. Our findings provide a mechanistic explanation for how Ras-activated tumors progress toward malignancy by overcoming cellular senescence.
Collapse
Affiliation(s)
- Takao Ito
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
5
|
Bahreini F, Saidijam M, Mousivand Z, Najafi R, Afshar S. Assessment of lncRNA DANCR, miR-145-5p and NRAS axis as biomarkers for the diagnosis of colorectal cancer. Mol Biol Rep 2021; 48:3541-3547. [PMID: 33956301 DOI: 10.1007/s11033-021-06373-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022]
Abstract
Recent evidence reveals that miRNA sponges neutralize miRNAs activity by binding to miRNAs and sequester them from their relevant targets to regulate expression. The detailed mechanisms of sponge RNAs in colorectal cancer remain to be exactly determined. In this study DANCR, miR-145-5p, NRAS axis was evaluated and the diagnostic value of these targets was assessed in colorectal cancer patients. A case-control study was carried out on 40 samples of tumor tissues and 40 adjacent tissues. Total RNA was extracted, and then, the expression level of DANCR, miR-145-5p and NRAS was evaluated using qRT-PCR. In addition, the sensitivity and specificity of these markers were evaluated by receiver operating characteristic (ROC) curve analysis. Our results revealed that the expression level of DANCR was significantly upregulated in colorectal cancer tissues (p < 0.001). It was demonstrated that DANCR could regulate NRAS expression by sponging miR-145-5 in colorectal cancer patients. Furthermore, the mean expression of miR-145-5p (p < 0.001) and NRAS (p < 0.001) was significantly different between tumor and normal tissue. A significant correlation was observed between DANCR and miR-145-5p (p = 0.001), and also between miR-145-5p and NRAS (p < 0.001). Sensitivity and specificity value for DANCR, miR-145-5p and NRAS were (0.875 and 0.725), (0.875 and 0.745), and (0.877 and 0.694), respectively. According to the values of sensitivities and specificity of DANCR, miR-145-5p and NRAS, confirmed with ROC curve analysis, these biomarkers may be useful in the screening and differentiating between tumor and control sample in colorectal neoplasm.
Collapse
Affiliation(s)
- Fatemeh Bahreini
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, 6517838695, Hamadan, Iran. .,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Street of Mahdieh, 6517838695, Hamadan, Iran.
| | - Masoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Street of Mahdieh, 6517838695, Hamadan, Iran
| | | | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Street of Mahdieh, 6517838695, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Street of Mahdieh, 6517838695, Hamadan, Iran
| |
Collapse
|
6
|
MicroRNA Biomarkers of High-Grade Cervical Intraepithelial Neoplasia in Liquid Biopsy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6650966. [PMID: 33954190 PMCID: PMC8060087 DOI: 10.1155/2021/6650966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 01/16/2023]
Abstract
New prevention strategies are needed to detect cervical intraepithelial neoplasia (CIN). The microRNA expression analysis has already been reported as molecular biomarkers in the early detection of cervical cancer (CC) through minimally invasive samples, such as liquid biopsy, obtained through collection using liquid-based cytology (LBC). In this study, we aimed to identify molecular signatures of microRNAs in cervical precursor lesions from LBC cervical and the molecular pathways potentially associated with the CC progression. We analyzed 31 LBC cervical samples from women who underwent colposcopy. These samples were divided into two groups: the first group was composed of samples without precursor lesions of CC, considering the control group, referred to as healthy female subjects (HFS; n = 11). The second group corresponded to women diagnosed with cervical interepithelial neoplasia grade 3 (CIN 3; n = 20). We performed microRNA and gene expression profiling using the nCounter® miRNA Expression Assays (NanoString Technology) and PanCancer Pathways (NanoString Technology), respectively. A microRNA target prediction was performed by mirDIP, and molecular pathway interaction was constructed using Cytoscape. Bidirectional in silico analyses and Pearson's correlation were performed for associated the relation between genes, and miRNAs differentially expressed related cervical cancer progression were performed. We found that the expression of nine microRNAs was significantly higher, two were downregulated (miR-381-3p and miR-4531), and seven miRNAs were upregulated (miR-205-5p, miR-130a-3p, miR-3136-3p, miR-128-2-5p, let-7f-5p, miR-202-3p, and miR-323a-5p) in CIN 3 (fold change ≥ 2 and p ≤ 0.05). The miRNA expression patterns were independent of hr-HPV infection. We identified four miRNAs (miR-205-5p, miR-130a-3p, miR-4531, and miR-381-3p) that could be used as biomarkers for CIN 3 in LBC samples through multiple logistic regression analyses. We found 16 genes differentially expressed between CIN 3 and HSF samples (fold change ≥ 2 and p ≤ 0.05). We found the correlation between miR-130a-3p and CCND1(R = −0.52; p = 0.0029), miR-205-5p and EGFR (R = 0.53; p = 0.0021), and miR-4531 and SMAD2 (R = −0.54; p = 0.0016). In addition, we demonstrated the most significant pathways of the targets associated with cervical cancer progression (FDR-corrected p < 0.001). This study demonstrated that miRNA biomarkers may distinguish healthy cervix and CIN 3 and regulate important molecular pathways of carcinogenesis.
Collapse
|
7
|
Sabeena S, Ravishankar N. Role of microRNAs in Predicting the Prognosis of Cervical Cancer Cases: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2021; 22:999-1006. [PMID: 33906290 PMCID: PMC8325113 DOI: 10.31557/apjcp.2021.22.4.999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 12/02/2022] Open
Abstract
Aim: There is growing evidence for the possible use of microRNAs (miRNAs) in cancers as diagnostic as well as prognostic biomarkers in the present era of Personalized Medicine. The objective of the present systematic review and meta-analysis was to assess the prognostic role of microRNAs in uterine cervical cancers. Methods: A systematic review and meta-analysis was carried out searching electronic databases for published articles between January 2009 and August 2020 based on standard systematic review guidelines. Meta-analysis was performed by pooling the hazard ratio (HR) with 95% confidence interval (CI) to assess the prognostic value of deregulated miRNAs by the random-effects model. Results: In the present meta-analysis, the aberrant expression of 14 microRNAs in 1,526 uterine cervical cancer cases before definitive therapy from 14 case-control studies were assessed. The pooled HR of two miRNAs, miRNA-155 and miRNA-224 which were upregulated in cervical cancer tissues was 1.76 (95% CI 1.27-2.45) revealing significant association with overall poor survival. Meanwhile, the pooled HR was 1.53 (95% CI 0.94-2.94) when all the deregulated miRNAs in cervical cancer tissues were evaluated. The pooled HR of downregulated miRNAs was 1.46 (95% CI 0.81, 2.64). Meanwhile, the pooled HR of three upregulated miRNAs-425-5p, 196a, 205 in the serum sample was 1.37 (95% CI 0.45 -4.20). Conclusion: The downregulation of aberrant miRNAs was not associated with poor overall survival rates.
Collapse
Affiliation(s)
| | - Nagaraja Ravishankar
- Department of Biostatistics, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
8
|
Piao HY, Guo S, Jin H, Wang Y, Zhang J. LINC00184 involved in the regulatory network of ANGPT2 via ceRNA mediated miR-145 inhibition in gastric cancer. J Cancer 2021; 12:2336-2350. [PMID: 33758610 PMCID: PMC7974899 DOI: 10.7150/jca.49138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Disrupted gene levels are intimately correlated with the occurrence and prognosis of gastric cancer (GC). As genes do not function in isolation, we set out to investigate the possible relationship among mRNA and non-coding RNAs (ncRNAs). Materials and methods: RNA sequencing from 406 cases of GC was acquired through the TCGA database. R packages were utilized to assess differential RNA expression. The competing endogenous RNA (ceRNA) network was predicted using miRcode, miRDB, mirTarBase, Target Scan and constructed by Cytoscape 3.6.1. GO enrichment analysis, KEGG pathway analysis, GSEA, and WGCNA were applied for pathway analysis. The expression of select candidate molecules was confirmed using western blot and RT-PCR in GC cells and tissues. CCK-8, EdU staining, and Transwell assays were conducted to assess the influence of candidate molecules on proliferation and invasion. The gain and loss-of-function were achieved by co-culture with sh-lncRNA, mimics and sh-mRNA. Luciferase reporters were created using the psiCHECK2 vector, and the relative luciferase activity was calculated. Results: Using data from TCGA, we determined differentially expressed RNAs and created a ceRNA regulatory network. Interestingly, we identified a regulatory complex surrounding ANGPT2. We detected that ANGPT2 was highly expressed in GC, which correlated with a worse prognosis. Our findings indicated that ANGPT2 encourages growth, invasion, and epithelial-mesenchymal transition (EMT) in GC. Importantly, miR-145 inhibits ANGPT2 and abrogates its effects. Furthermore, LINC00184, a ceRNA, blocks miR-145, thereby improving ANGPT2-mediated carcinogenesis. Conclusions: Our findings indicate that the LINC00184/miR-145/ANGPT2 pathway has a crucial function in the development of GC and can act as a possible biomarker and targets for GC therapy.
Collapse
Affiliation(s)
- Hai-Yan Piao
- Medical Oncology Department of Gastrointestinal cancer, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University), No. 44 Xiaoheyan Road, Dadong District, Shenyang City, Liaoning Province, China 110042
| | - Shuai Guo
- Gastric Cancer Department, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University), No. 44 Xiaoheyan Road, Dadong District, Shenyang City, Liaoning Province, China 110042
| | - Haoyi Jin
- Pancreatic and Thyroid Surgery Department, Sheng Jing Hospital of China Medical University, 36 Sanhao St, Heping District, Shenyang City, Liaoning Province, China 110003
| | - Yue Wang
- Gastric Cancer Department, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University), No. 44 Xiaoheyan Road, Dadong District, Shenyang City, Liaoning Province, China 110042
| | - Jun Zhang
- Gastric Cancer Department, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University), No. 44 Xiaoheyan Road, Dadong District, Shenyang City, Liaoning Province, China 110042
| |
Collapse
|
9
|
Zhao J, Zhou K, Ma L, Zhang H. MicroRNA-145 overexpression inhibits neuroblastoma tumorigenesis in vitro and in vivo. Bioengineered 2020; 11:219-228. [PMID: 32083506 PMCID: PMC7039631 DOI: 10.1080/21655979.2020.1729928] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma (NB) is responsible for 15% of all childhood cancer deaths. Despite advances in treatment and disease management, the overall 5-year survival rates remain poor in high-risk disease (25-40%). It is well known that miR-145 functions as a tumor suppressor in several types of cancer. However, the impact of miR-145 on NB is still ambiguous. Our aim was to investigate the potential tumor suppressive role and mechanisms of miR-145 in high-risk neuroblastoma. Expression levels of miR-145 in tissues and cells were determined using RT-qPCR. The effect of miR-145 on cell viability was evaluated using MTT assays, apoptosis levels were determined using TUNEL staining, and the MTDH protein expression was determined using western blot and RT-PCR. Luciferase reporter plasmids were constructed to confirm direct targeting for MTDH. The results showed that miR-145 expression was significantly lower in high-risk MYCN amplified (MNA) tumors and low miR-145 expression was associated with worse EFS and OS in our cohort. Over-expression of miR-145 reduced cell viability and increased apoptosis in SH-SY-5Y cells. We identified MTDH as a direct target for miR-145 in SH-SY-5Y cells. Targeting MTDH has the similar results as miR-145 overexpression. Our findings suggest that low miR-145 expression was associated with poor prognosis in patients with NB, and the overexpression of miR-145 inhibited NB cells growth by down-regulating MTDH, thus providing a potential target for the development of microRNA-based approach for NB therapy.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Kai Zhou
- Urology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Liang Ma
- Child Health Division, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huanyu Zhang
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
10
|
Wang L, Cui M, Cheng D, Qu F, Yu J, Wei Y, Cheng L, Wu X, Liu X. miR-9-5p facilitates hepatocellular carcinoma cell proliferation, migration and invasion by targeting ESR1. Mol Cell Biochem 2020; 476:575-583. [PMID: 33106914 DOI: 10.1007/s11010-020-03927-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022]
Abstract
The study aimed to explore the relationship between miR-9-5p and ESR1, and clarify the underlying functional mechanism in the occurrence and development of hepatocellular carcinoma (HCC). Expression data including miRNAs and mRNAs of HCC downloaded from TCGA database were processed for differential analysis, and corresponding clinical data were collected for survival analysis to identify the target miRNA miR-9-5p. Bioinformatics databases were applied for predicting downstream target mRNAs of miR-9-5p. qRT-PCR was used to evaluate expression of miR-9-5p. Western blot was used to detect protein expression of ESR1. MTT, wound healing assay and Transwell assay were used to detect HCC cell proliferation, migration and invasion, respectively. Dual-luciferase reporter gene assay was used to identify the targeting relationship between miR-9-5p and ESR1. Research suggested that miR-9-5p was highly expressed in HCC cells but ESR1 was poorly expressed. Overexpression of miR-9-5p could improve the proliferation, invasion and migration of cells. Dual-luciferase reporter assay showed that ESR1 was the downstream target of miR-9-5p in HCC. Overexpression of miR-9-5p markedly reduced ESR1 mRNA and protein levels in HCC cells, whereas inhibition of miR-9-5p expression produced the contrary results. Silencing ESR1 could noticeably reverse the effect of miR-9-5p knockdown on the proliferation, migration and invasion of HCC cells. As an oncogene, miR-9-5p fostered the proliferation, migration and invasion of HCC cells by targeting and inhibiting ESR1 expression.
Collapse
Affiliation(s)
- Libing Wang
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, No. 27 Cultural Road, Lubei District, Tangshan, 063000, Hebei, China
| | - Mingxin Cui
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, No. 27 Cultural Road, Lubei District, Tangshan, 063000, Hebei, China
| | - Daming Cheng
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, No. 27 Cultural Road, Lubei District, Tangshan, 063000, Hebei, China
| | - Fengzhi Qu
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, No. 27 Cultural Road, Lubei District, Tangshan, 063000, Hebei, China
| | - Jingkun Yu
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, No. 27 Cultural Road, Lubei District, Tangshan, 063000, Hebei, China
| | - Yanbin Wei
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, 200231, China
| | - Ling Cheng
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, 200231, China
| | - Xiaotang Wu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, 200231, China
| | - Xiaogang Liu
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, No. 27 Cultural Road, Lubei District, Tangshan, 063000, Hebei, China.
| |
Collapse
|
11
|
Chen S, Gao C, Wu Y, Huang Z. Identification of Prognostic miRNA Signature and Lymph Node Metastasis-Related Key Genes in Cervical Cancer. Front Pharmacol 2020; 11:544. [PMID: 32457603 PMCID: PMC7226536 DOI: 10.3389/fphar.2020.00544] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background miRNAs and genes can serve as biomarkers for the prognosis and therapy of cervical tumors whose metastasis into lymph nodes is closely associated with disease progression and poor prognosis. Methods R software and Bioconductor packages were employed to identify differentially expressed miRNAs (DEMs) from The Cancer Genome Atlas (TCGA) database. GEO2R detected differentially expressed genes (DEGs) in the GSE7410 dataset originating from the Gene Expression Omnibus (GEO). A Cox proportional hazard regression model was established to select prognostic miRNA biomarkers. Online tools such as TargetScan and miRDB predicted target genes, and overlapping DEGs and target genes were defined as consensus genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) function annotations were performed to discern the potential functions of consensus genes. STRING and Cytoscape screened key genes and constructed a regulatory network. Results A combination of four miRNAs (down-regulated miR-502 and miR-145, up-regulated miR-142 and miR-33b) was identified as an independent prognostic signature of cervical cancer. A total of 94 consensus genes were significantly enriched in 7 KEGG pathways and 19 GO function annotations including the cAMP signaling pathway, the plasma membrane, integral components of the plasma membrane, cell adhesion, etc. The module analysis suggested that CXCL12, IGF1, PTPRC CDH5, RAD51B, REV3L, and WDHD1 are key genes that significantly correlate with cervical cancer lymph node metastasis. Conclusions This study demonstrates that a four-miRNA signature can be a prognostic biomarker, and seven key genes are significantly associated with lymph node metastasis in cervical cancer patients. These miRNAs and key genes have the potential to be therapeutic targets for cervical cancer. Among them, two miRNAs (miR-502 and miR-33b) and two key genes (PTPRC and CDH5) were first reported to be potential novel biomarkers for cervical cancer. The current study further characterizes the progression of lymph node metastasis and mechanism of cervical tumors; therefore, it provides a novel diagnostic indicator and therapeutic targets for future clinical treatments.
Collapse
Affiliation(s)
- Shuoling Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Chang Gao
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yangyuan Wu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,Institute of Marine Biomedical Research, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
12
|
Functional implications of miR-145/RCAN3 axis in the progression of cervical cancer. Reprod Biol 2020; 20:140-146. [PMID: 32345470 DOI: 10.1016/j.repbio.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/09/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
Abstract
Cervical cancer, as the second leading cause of death in women malignant tumor, is not optimistic about survival rate and late recurrence rate. RCAN3 has been reported to function in a variety of diseases, but its relationship with cervical cancer has not been reported. This study aimed to investigate whether RCAN3 contributes to the development of cervical cancer and its mechanism. RCAN3 expression was analyzed in 306 cervical cancer tissues and 13 normal healthy tissues from TCGA and GTEX databases. Kaplan-Meier analysis and Cox regression analysis were carried out to assess the potential function of RCAN3. Subsequently, the upstream regulatory miRNA of RCAN3 was predicted by bioinformatics and confirmed using dual luciferase reporter assay. CCK-8, colony formation assay, transwell assay were used for functional analysis of miR-145/RCAN3 axis in vitro. The results showed that RCAN3 was highly expressed in cervical cancer tissues, leading to poor prognosis, and could be used as a prognostic factor for cervical cancer. MiR-145 directly targeted RCAN3, which was lowly expressed in cervical cancer tissues and cell lines, and the higher the miR-145 expression, the longer the survival time of patients. Finally, from the functional experiments results we can see that miR-145 can inhibit the proliferation, migration and invasion of cervical cancer cells, but overexpression of RCAN3 can reverse miR-145-mediated inhibition. To sum up, miR-145/RCAN3 axis may serve as a potential therapeutic target to regulate the progression of cervical cancer.
Collapse
|
13
|
Sammarco ML, Tamburro M, Pulliero A, Izzotti A, Ripabelli G. Human Papillomavirus Infections, Cervical Cancer and MicroRNAs: An Overview and Implications for Public Health. Microrna 2020; 9:174-186. [PMID: 31738147 PMCID: PMC7366004 DOI: 10.2174/2211536608666191026115045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/21/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Human Papillomavirus (HPV) is among the most common sexually transmitted infections in both females and males across the world that generally do not cause symptoms and are characterized by high rates of clearance. Persistent infections due at least to twelve well-recognized High-Risk (HR) or oncogenic genotypes, although less frequent, can occur, leading to diseases and malignancies, principally cervical cancer. Three vaccination strategies are currently available for preventing certain HR HPVs-associated diseases, infections due to HPV6 and HPV11 low-risk types, as well as for providing cross-protection against non-vaccine genotypes. Nevertheless, the limited vaccine coverage hampers reducing the burden of HPV-related diseases globally. For HR HPV types, especially HPV16 and HPV18, the E6 and E7 oncoproteins are needed for cancer development. As for other tumors, even in cervical cancer, non-coding microRNAs (miRNAs) are involved in posttranscriptional regulation, resulting in aberrant expression profiles. In this study, we provide a summary of the epidemiological background for HPV occurrence and available immunization programs. In addition, we present an overview of the most relevant evidence of miRNAs deregulation in cervical cancer, underlining that targeting these biomolecules could lead to wide translational perspectives, allowing better diagnosis, prognosis and therapeutics, and with valuable applications in the field of prevention. The literature on this topic is rapidly growing, but advanced investigations are required to achieve more consistent findings on the up-regulated and down-regulated miRNAs in cervical carcinogenesis. Because the expression of miRNAs is heterogeneously reported, it may be valuable to assess factors and risks related to individual susceptibility.
Collapse
Affiliation(s)
| | | | | | | | - Giancarlo Ripabelli
- Address correspondence to this author at the Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy; Tel: +39 0874 404961/743; Fax: +39 0874 404778; E-mail:
| |
Collapse
|
14
|
Lv R, Zhang QW. The long noncoding RNA FTH1P3 promotes the proliferation and metastasis of cervical cancer through microRNA‑145. Oncol Rep 2019; 43:31-40. [PMID: 31789421 PMCID: PMC6908927 DOI: 10.3892/or.2019.7413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence has revealed that long noncoding RNAs (lncRNAs) play crucial roles in the development and progression of tumors. The present study aimed to examine the roles and illustrate the underlying mechanisms of lncRNA ferritin heavy chain 1 pseudogene 3 (FTH1P3) in cervical cancer. The expression of lncRNA FTH1P3 and microRNA-145 (miRNA-145 or miR-145) in human cervical cancer samples and cervical cancer cell lines was detected by qRT-PCR (reverse transcription-quantitative polymerase chain reaction). FTH1P3 overexpression, siRNA plasmid, hsa-miR-145 mimic or hsa-miR-145 inhibitor were transfected. The target of FTH1P3 was predicted by bioinformatics analysis and validated by luciferase assay. Statistical significance analysis was performed by SPSS software. The results revealed that FTH1P3 was significantly upregulated in cervical cancer tissues compared with normal tissues. Increased expression of FTH1P3 was revealed in human cervical cancer cell lines compared with cervical normal epithelial cells. Downregulation of FTH1P3 inhibited cell proliferation, invasion and migration, and promoted apoptosis in cervical cancer cells. miR-145 was predicted and validated as a direct target of FTH1P3. Moreover, FTH1P3 siRNA partially attenuated the effects of the miR-145 inhibitor on cell viability and mobility in cervical cancer cells. The present results demonstrated that lncRNA FTH1P3 functioned as a promoting factor in cervical cancer by targeting miR-145.
Collapse
Affiliation(s)
- Rui Lv
- Department of Gynecological Oncology Ward, Gansu Provincial Cancer Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Qian Wen Zhang
- Department of Gynecological Oncology Ward, Gansu Provincial Cancer Hospital, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
15
|
Luo SS, Liao XW, Zhu XD. Genome-wide analysis to identify a novel microRNA signature that predicts survival in patients with stomach adenocarcinoma. J Cancer 2019; 10:6298-6313. [PMID: 31772663 PMCID: PMC6856753 DOI: 10.7150/jca.33250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022] Open
Abstract
Objective: Using genome-wide screening, this study was aimed at identifying prognostic microRNA (miRNA) in those patients suffering from stomach adenocarcinoma (STAD). Methods: A genome-wide miRNA sequencing dataset and relevant STAD clinical information was obtained via The Cancer Genome Atlas (TCGA). Prognostic miRNA selection was carried out through a whole genome multivariate Cox regression model in order to establish a prognostic STAD signature. Results: Eleven miRNAs (hsa-mir-509-2, hsa-mir-3917, hsa-mir-495, hsa-mir-653, hsa-mir-3605, hsa-mir-2115, hsa-mir-1292, hsa-mir-137, hsa-mir-6511b-1, hsa-mir-145, and hsa-mir-138-2) were recognized as prognostic and used for the construction of a STAD prognostic signature. This signature exhibited good performance in predicting prognosis (adjusted P<0.0001, adjusted hazard ratio= 3.047, and 95% confidence interval=2.148-4.323). The time-dependent receiver operating characteristic examination exhibited area under curve values of 0.711, 0.697, 0.716, 0.733, 0.805, and 0.805, for 1-, 2-, 3-, 4-, 5-, and 10-year overall survival (OS) estimation, respectively. Comprehensive survival analysis suggests that the 11-miRNA prognostic signature acts as an independent feature of STAD prognosis and exhibits superior performance in OS prediction when compared to traditional clinical parameters. Furthermore, fourteen miRNA target genes were linked to STAD OS. These included SERPINE1, MLEC, ANGPT2, C5orf38, FZD7, MARCKS, PDGFD, DUSP6, IRS1, PSAT1, TENM3, TMEM127, BLMH, and TIRAP. Functional and gene set enrichment analysis suggested that target genes and the 11-miRNA prognostic signature were both participate in various biological processes and pathways, including the growth factor beta, Wnt, and Notch signaling pathways. Conclusions: By means of a genome-wide analysis, an 11-miRNA expression signature that may serve as an underlying prognostic indicator for those patients suffering from STAD has been identified and described here.
Collapse
Affiliation(s)
- Shan-Shan Luo
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
16
|
Causin RL, Pessôa-Pereira D, Souza KCB, Evangelista AF, Reis RMV, Fregnani JHTG, Marques MMC. Identification and performance evaluation of housekeeping genes for microRNA expression normalization by reverse transcription-quantitative PCR using liquid-based cervical cytology samples. Oncol Lett 2019; 18:4753-4761. [PMID: 31611985 PMCID: PMC6781752 DOI: 10.3892/ol.2019.10824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022] Open
Abstract
Screening for cervical cancer by cytology has been effective in reducing the worldwide incidence and mortality rates of this disease. However, a number of studies have demonstrated that the sensitivity of conventional cervical cytology may be too low for detection of cervical intraepithelial neoplasias (CIN). Therefore, it is important to incorporate more sensitive molecular diagnostic tests that could substantially improve the detection rates and accuracy for identifying CIN lesions. MicroRNAs (miRNAs) are a class of small non-coding RNAs with the potential to provide robust non-invasive cancer biomarkers for detecting CIN lesions in liquid-based cervical cytology (LBC) samples. At present, there is no consensus on which are the best housekeeping genes for miRNA normalization in LBC. The present study aimed to identify housekeeping genes with consistent and reproducible performance for normalization of reverse transcription-quantitative PCR (RT-qPCR) expression analysis of miRNA using LBC samples. The present study firstly selected six potential candidate housekeeping genes based on a systematic literature evaluation. Subsequently, the expression levels of microRNAs U6, RNU-44, RNU-47, RNU-48, RNU-49 and hsa-miR-16 were measured in 40 LBC samples using RT-qPCR. The stability of each potential housekeeping gene was assessed using the NormFinder algorithm. The results revealed that U6 and RNU-49 were the most stable genes among all candidates requiring fewer amplification cycles and smaller variation across the sample set. However, RNU-44, RNU-47, RNU-48 and hsa-miR-16 stability exceeded the recommended housekeeping value suitable for normalization. The findings revealed that U6 may be a reliable housekeeping gene for normalization of miRNA RT-qPCR expression analysis using LBC samples.
Collapse
Affiliation(s)
- Rhafaela Lima Causin
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
| | - Danielle Pessôa-Pereira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
| | | | | | - Rui Manuel Vieira Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
| | | | - Márcia Maria Chiquitelli Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil.,Barretos School of Health Sciences-FACISB, Barretos, São Paulo 14785-002, Brazil
| |
Collapse
|
17
|
Rafieenia F, Abbaszadegan MR, Poursheikhani A, Razavi SMS, Jebelli A, Molaei F, Aghaee‐Bakhtiari SH. In silico evidence of high frequency of miRNA‐related SNPs in Esophageal Squamous Cell Carcinoma. J Cell Physiol 2019; 235:966-978. [DOI: 10.1002/jcp.29012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Fatemeh Rafieenia
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Arash Poursheikhani
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
| | | | - Amir Jebelli
- Stem Cell and Regenerative Medicine Research Department Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch Mashhad Iran
| | - Fatemeh Molaei
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Hamid Aghaee‐Bakhtiari
- Bioinformatics Research Group Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
18
|
Park S, Kim J, Eom K, Oh S, Kim S, Kim G, Ahn S, Park KH, Chung D, Lee H. microRNA-944 overexpression is a biomarker for poor prognosis of advanced cervical cancer. BMC Cancer 2019; 19:419. [PMID: 31060525 PMCID: PMC6501303 DOI: 10.1186/s12885-019-5620-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background One-third of cervical cancer patients are still diagnosed at advanced stages. The five-year survival rate is decreased in about 50% of advanced stage cervical cancer patients worldwide, and the clinical outcomes are remarkably varied and difficult to predict. One of the miRNAs known to be associated with cancer tumorigenesis is miR-944. However, the prognostic value of miR-944 in cervical cancer has not been fully investigated. The aim of this study was to analyze clinical significance and prognostic value of miR-944 in cervical cancer. Methods The expression levels of miR-944 were detected using quantitative reverse transcription polymerase chain reaction in five types of cervical cancer cell lines and 116 formalin-fixed paraffin-embedded (FFPE) cervical tissues. The association between the expression levels of miR-944 and prognostic value was analyzed using the Kaplan-Meier analysis and Cox proportional hazards model. Results The expression levels of miR-944 in cervical cancer tissues were significantly higher compared with those in normal tissues (P < 0.0001). Moreover, the expression levels of miR-944 in cervical cancer cell lines and FFPE tissues with human papillomavirus (HPV) infection were significantly higher compared to those without HPV infection (P < 0.01 and P = 0.02). High miR-944 expression was also markedly associated with bulky tumor size (P = 0.026), advanced International Federation of Gynecology and Obstetrics (FIGO) stage (P = 0.042), and lymph node metastasis (P = 0.030). In particular, high miR-944 expression group showed shorter overall survival than the low miR-944 expression group in the advanced FIGO stage (84.4% vs. 44.4%, HR = 4.0, and P = 0.01). Conclusions These results suggest that miR-944 may be used as a novel biomarker for improving prognosis and as a potential therapeutic target. Electronic supplementary material The online version of this article (10.1186/s12885-019-5620-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sunyoung Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Jungho Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Kiyoon Eom
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Sehee Oh
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Sunghyun Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Pusan, South Korea
| | - Geehyuk Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Sungwoo Ahn
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Kwang Hwa Park
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, South Korea
| | - Dawn Chung
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, 146-92 Dongok-dong, Gangnam-gu, Seoul, Republic of Korea.
| | - Hyeyoung Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea.
| |
Collapse
|
19
|
Chen X, Yang F, Zhang T, Wang W, Xi W, Li Y, Zhang D, Huo Y, Zhang J, Yang A, Wang T. MiR-9 promotes tumorigenesis and angiogenesis and is activated by MYC and OCT4 in human glioma. J Exp Clin Cancer Res 2019; 38:99. [PMID: 30795814 PMCID: PMC6385476 DOI: 10.1186/s13046-019-1078-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 02/06/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Glioma, characterized by its undesirable prognosis and poor survival rate, is a serious threat to human health and lives. MicroRNA-9 (miR-9) is implicated in the regulation of multiple tumors, while the mechanisms underlying its aberrant expression and functional alterations in human glioma are still controversial. METHODS Expressions of miR-9 were measured in GEO database, patient specimens and glioma cell lines. Gain- and loss-of-function assays were applied to identify the effects of miR-9 on glioma cells and HUVECs in vitro and in vivo. Potential targets of miR-9 were predicted by bioinformatics and further verified via in vitro experiments. Transcriptional regulation of miR-9 by MYC and OCT4 was determined in glioma cells. RESULTS MiR-9 was frequently up-regulated in glioma specimens and cells, and could significantly enhance proliferation, migration and invasion of glioma cells. In addition, miR-9 could be secreted from glioma cells via exosomes and was then absorbed by vascular endothelial cells, leading to an increase in angiogenesis. COL18A1, THBS2, PTCH1 and PHD3 were verified as the direct targets of miR-9, which could elucidate the miR-9-induced malignant phenotypes in glioma cells. MYC and OCT4 were able to bind to the promoter region of miR-9 to trigger its transcription. CONCLUSIONS Our results highlight that miR-9 is pivotal for glioma pathogenesis and can be treated as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Fan Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
- Department of Neurosurgery, General Navy Hospital of PLA, Beijing, 100048 People’s Republic of China
| | - Tianze Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Wei Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Yufang Li
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
- Nuclear Medicine Diagnostic Center, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Dan Zhang
- First Student Brigade, Fourth Military Medical University, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Yi Huo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Jianning Zhang
- Department of Neurosurgery, General Navy Hospital of PLA, Beijing, 100048 People’s Republic of China
| | - Angang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
| | - Tao Wang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, #169 Changle West Road, Xi’an, Shaanxi 710032 People’s Republic of China
| |
Collapse
|
20
|
Du H, Chen Y. Competing endogenous RNA networks in cervical cancer: function, mechanism and perspective. J Drug Target 2019; 27:709-723. [PMID: 30052083 DOI: 10.1080/1061186x.2018.1505894] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the past several years, competing endogenous RNAs (ceRNAs) have emerged as a potential class of post-transcriptional regulators that alter gene expression through a microRNA (miRNA)-mediated mechanism. An increasing number of studies have found that ceRNAs play important roles in tumorigenesis. Cervical cancer is one of the most common cancers in female malignancies. Despite advances in our understanding of this neoplasm, patients with advanced cervical cancer still have poor prognosis. There is an urgent need to provide a new insight on the mechanism of cervical cancer development and may be acted as new anticancer therapeutic strategies. Here, we review the ceRNA studies and coherent researches in cervical cancer, especially in long non-coding RNA (lncRNA) and miRNAs in order to broaden horizons into mechanisms, selection biomarkers for diagnosis as well as predicting prognosis, and targeting treatment for cervical cancer in the future.
Collapse
Affiliation(s)
- Hui Du
- a Department of Obstetrics and Gynecology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Ying Chen
- b Department of Gynecologic Oncology , Tianjin Medical University Cancer Institute and Hospital , Tianjin , China.,c Key Laboratory of Cancer Prevention and Therapy , Tianjin , China.,d National Clinical Research Centre of Cancer , Tianjin , China
| |
Collapse
|
21
|
Ye D, Shen Z, Zhou S. Function of microRNA-145 and mechanisms underlying its role in malignant tumor diagnosis and treatment. Cancer Manag Res 2019; 11:969-979. [PMID: 30774425 PMCID: PMC6349084 DOI: 10.2147/cmar.s191696] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
miRNAs are single-stranded small RNAs that do not encode proteins. They can combine complementarily with the 3′-UTRs of target gene mRNA molecules to promote targeted mRNA degradation or inhibit mRNA translation, thereby regulating gene expression at the post-transcriptional level. MiRNAs participate in regulation of cell cycling, growth, apoptosis, differentiation, and stress responses. MiRNA-145 (miR-145) is a tumor suppressor that targets various tumor-specific genes and proteins, thereby influencing related signaling pathways. MiR-145 not only regulates tumor growth, invasion, and metastasis, but is also important for tumor angiogenesis and tumor stem cell proliferation. Here, we review the roles and mechanisms of miR-145 in the diagnosis and treatment of malignant tumors. Published data confirm that miR-145 expression in various tumors is significantly lower than that in normal tissues and that overexpression of miR-145 inhibits the growth of different tumor cells, significantly reduces the ability of tumors to spread, and improves sensitivity to chemotherapeutic drugs. We conclude that miR-145 is a potential marker for use in the early diagnosis and prognostic evaluation of patients with cancer, has a role as a tumor suppressor, and is a promising cancer treatment target candidate.
Collapse
Affiliation(s)
- Dong Ye
- Department of Otorhinolaryngology - Head and Neck Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China, .,Department of Otorhinolaryngology -Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology -Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Shuihong Zhou
- Department of Otorhinolaryngology - Head and Neck Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,
| |
Collapse
|
22
|
Nilsen A, Jonsson M, Aarnes EK, Kristensen GB, Lyng H. Reference MicroRNAs for RT-qPCR Assays in Cervical Cancer Patients and Their Application to Studies of HPV16 and Hypoxia Biomarkers. Transl Oncol 2019; 12:576-584. [PMID: 30660934 PMCID: PMC6349320 DOI: 10.1016/j.tranon.2018.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miRNA) expressions in tumor biopsies have shown potential as biomarkers in cervical cancer, but suitable reference RNAs for normalization of reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays in patient cohorts with different clinicopathological characteristics are not available. We aimed to identify the optimal reference miRNAs and apply these to investigate the potential of miR-9-5p as human papilloma virus (HPV) 16 biomarker and miR-210-3p as hypoxia biomarker in cervical cancer. Candidate reference miRNAs were preselected in sequencing data of 90 patients and ranked in a stability analysis by RefFinder. A selection of the most stable miRNAs was evaluated by geNorm and NormFinder analyses of RT-qPCR data of 29 patients. U6 small nuclear RNA (RNU6) was also included in the evaluation. MiR-9-5p and miR-210-3p expression was assessed by RT-qPCR in 45 and 65 patients, respectively. Nine candidates were preselected in the sequencing data after excluding those associated with clinical markers, HPV type, hypoxia status, suboptimal expression levels, and low stability. In RT-qPCR assays, the combination of miR-151-5p, miR-152-3p, and miR-423-3p was identified as the most stable normalization factor across clinical markers, HPV type, and hypoxia status. RNU6 showed poor stability. By applying the optimal reference miRNAs, higher miR-9-5p expression in HPV16- than HPV18-positive tumors and higher miR-210-3p expression in more hypoxic than less hypoxic tumors were found in accordance with the sequencing data. MiR-210-3p was associated with poor outcome by both sequencing and RT-qPCR assays. In conclusion, miR-151-5p, miR-152-3p, and miR-423-3p are suitable reference miRNAs in cervical cancer. MiR-9-5p and miR-210-3p are promising HPV16 and hypoxia biomarkers, respectively.
Collapse
Affiliation(s)
- Anja Nilsen
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Marte Jonsson
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Eva-Katrine Aarnes
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Gunnar Balle Kristensen
- Department of Gynaecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Institute for Cancer Genetics and Informatics, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
23
|
Xu L, Zhang Y, Tang J, Wang P, Li L, Yan X, Zheng X, Ren S, Zhang M, Xu M. The Prognostic Value and Regulatory Mechanisms of microRNA-145 in Various Tumors: A Systematic Review and Meta-analysis of 50 Studies. Cancer Epidemiol Biomarkers Prev 2019; 28:867-881. [PMID: 30602498 DOI: 10.1158/1055-9965.epi-18-0570] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/16/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023] Open
Abstract
Acting as an important tumor-related miRNA, the clinical significance and underlying mechanisms of miR-145 in various malignant tumors have been investigated by numerous studies. This study aimed to comprehensively estimate the prognostic value and systematically illustrate the regulatory mechanisms of miR-145 based on all eligible literature.Relevant studies were acquired from multiple online databases. Overall survival (OS) and progression-free survival (PFS) were used as primary endpoints. Detailed subgroup analyses were performed to decrease the heterogeneity among studies and recognize the prognostic value of miR-145. All statistical analyses were performed with RevMan software version 5.3 and STATA software version 14.1. A total of 48 articles containing 50 studies were included in the meta-analysis. For OS, the pooled results showed that low miR-145 expression in tumor tissues was significantly associated with worse OS in patients with various tumors [HR = 1.70; 95% confidence interval (CI), 1.46-1.99; P < 0.001). Subgroup analysis based on tumor type showed that the downregulation of miR-145 was associated with unfavorable OS in colorectal cancer (HR = 2.17; 95% CI, 1.52-3.08; P < 0.001), ovarian cancer (HR = 2.15; 95% CI, 1.29-3.59; P = 0.003), gastric cancer (HR = 1.78; 95% CI, 1.35-2.36; P < 0.001), glioma (HR = 1.65; 95% CI, 1.30-2.10; P < 0.001), and osteosarcoma (HR = 2.28; 95% CI, 1.50-3.47; P < 0.001). For PFS, the pooled results also showed that the downregulation of miR-145 was significantly associated with poor PFS in patients with multiple tumors (HR = 1.39; 95% CI, 1.16-1.67; P < 0.001), and the subgroup analyses further identified that the low miR-145 expression was associated with worse PFS in patients with lung cancer (HR = 1.97; 95% CI, 1.25-3.09; P = 0.003) and those of Asian descent (HR = 1.50; 95% CI, 1.23-1.82; P < 0.001). For the regulatory mechanisms, we observed that numerous tumor-related transcripts could be targeted by miR-145-5p or miR-145-3p, as well as the expression and function of miR-145-5p could be regulated by multiple molecules.This meta-analysis indicated that downregulated miR-145 in tumor tissues or peripheral blood predicted unfavorable prognostic outcomes for patients suffering from various malignant tumors. In addition, miR-145 was involved in multiple tumor-related pathways and the functioning of significant biological effects. miR-145 is a well-demonstrated tumor suppressor, and its expression level is significantly correlated with the prognosis of patients with multiple malignant tumors.
Collapse
Affiliation(s)
- Liangliang Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yanfang Zhang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jianwei Tang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Wang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaokai Yan
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaobo Zheng
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shengsheng Ren
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingqing Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
24
|
Human Papillomavirus 16 Oncoproteins Downregulate the Expression of miR-148a-3p, miR-190a-5p, and miR-199b-5p in Cervical Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1942867. [PMID: 30627542 PMCID: PMC6304571 DOI: 10.1155/2018/1942867] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
Abstract
Almost all cervical cancers are associated with human papillomavirus (HPV); however, the majority of women infected with this virus do not develop cervical cancer. Therefore, new markers are needed for reliable screening of cervical cancer, especially in relation to HPV infection. We aimed to identify potential microRNAs that may serve as diagnostic markers for cervical cancer development in high-risk HPV-positive patients. We evaluated the microRNA expression profiles in 12 cervical tissues using the hybridization method and verified them by quantitative polymerase chain reaction (qPCR). Finally, we evaluated the effects of HPV16 oncoproteins on the expression of selected microRNAs using cervical cancer cells (CaSki and SiHa) and RNA interference. With the hybridization method, eight microRNAs (miR-9-5p, miR-136-5p, miR-148a-3p, miR-190a-5p, miR-199b-5p, miR-382-5p, miR-597-5p, and miR-655-3p) were found to be expressed differently in the HPV16-positive cervical cancer group and HPV16-positive normal group (fold change ≥ 2). The results of qPCR showed that miR-148a-3p, miR-190a-5p, miR-199b-5p, and miR-655-3p levels significantly decreased in the cancer group compared with the normal group. Upon silencing of HPV16 E5 and E6/E7, miR-148a-3p levels increased in both cell lines. Silencing of E6/E7 in SiHa cells led to the increase in miR-199b-5p and miR-190a-5p levels. Three HPV16 oncoproteins (E5, E6, and E7) downregulate miR-148a-3p, while E6/E7 inhibit miR-199b-5p and miR-190a-5p expression in cervical carcinoma. The three microRNAs, miR-148a-3p, miR-199b-5p, and miR-190a-5p, may be novel diagnostic biomarkers for cervical cancer development in high-risk HPV-positive patients.
Collapse
|
25
|
Dong J, Wang M, Ni D, Zhang L, Wang W, Cui X, Fu S, Yao S. MicroRNA-217 functions as a tumor suppressor in cervical cancer cells through targeting Rho-associated protein kinase 1. Oncol Lett 2018; 16:5535-5542. [PMID: 30344707 PMCID: PMC6176250 DOI: 10.3892/ol.2018.9335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 11/30/2017] [Indexed: 12/13/2022] Open
Abstract
The abnormal expression of microRNAs (miRNAs/miRs) has been widely reported in various tumor types. miR-217 was demonstrated to be aberrantly expressed in a number of tumors, including pancreatic adenocarcinoma and osteosarcoma; however, its specific expression pattern has never been investigated in cervical cancer cells. Compared with normal control, the level of Rho-associated protein kinase 1 (ROCK1) expression was markedly increased in cervical cancer tissues and cells compared with that in non-cancerous tissues and cells. The expression of miR-217 was significantly reduced in cervical cancer tissues and cell lines. Overexpression of miR-217 could suppress colony formation and the cell invasion capacity of SiHa and HeLa cells. Flow cytometry indicated that miR-217 significantly increased cell apoptosis in SiHa and HeLa cells. Dual-luciferase reporter assays demonstrated that ROCK1 was a target gene of miR-217. In addition, overexpression of ROCK1 also led to an increased invasion capacity in SiHa cells, even when miR-217 was inhibited, indicating that the anti-invasive effects of miR-217 were mediated through ROCK1. In summary, the results of the present study indicated that miR-217 functions as a tumor suppressor in cervical cancer cells, primarily by targeting ROCK1.
Collapse
Affiliation(s)
- Jing Dong
- Department of Obstetrics and Gynecology, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Maoxiu Wang
- Department of Obstetrics and Gynecology, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Donghua Ni
- Department of Obstetrics and Gynecology, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Lixin Zhang
- Department of Obstetrics and Gynecology, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Wen Wang
- Department of Obstetrics and Gynecology, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiujuan Cui
- Department of Obstetrics and Gynecology, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Shijie Fu
- Deparment of Clinical Medicine, Anhui Medical University, Meishan Road, Hefei, Anhui 230032, P.R. China
| | - Shujuan Yao
- Department of Obstetrics and Gynecology, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| |
Collapse
|
26
|
Nie X, Tian H. Correlation between miR-222 and uterine cancer and its prognostic value. Oncol Lett 2018; 16:1722-1726. [PMID: 30008859 PMCID: PMC6036468 DOI: 10.3892/ol.2018.8815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/17/2018] [Indexed: 12/15/2022] Open
Abstract
Relationship between the expression of miR-222 and uterine cancer was investigated to explore its prognostic value. A total of 66 patients with uterine cancer diagnosed by pathological examination in Dongying People's Hospital were enrolled from March 2014 to October 2016. Uterine cancer and adjacent tissues were collected, and the expression of miR-222 in the tissues was detected by stem-loop RT-PCR. The relationship between miR-222 expression and various clinicopathological features of uterine cancer was analyzed. All the patients were followed up to record the survival conditions. The results revealed that stem-loop RT-PCR method could specifically amplify miR-222. The expression of miR-222 in uterine cancer tissues was significantly upregulated compared with that in adjacent tissues (p<0.05). The expression level of miR-222 was significantly increased with the increase of degree of tumor differentiation (p<0.05). The expression of miR-222 in uterine cancer tissue was not significantly correlated with patients age, tumor size, gross tumor type, pathological type and FIGO stage (p>0.05). There was a significant negative correlation between the expression of miR-222 and the survival of patients with uterine cancer. In conclusion, the expression of miR-222 in uterine cancer tissues was significantly upregulated in uterine cancer and negatively correlated with prognosis. miR-222 may play a pivotal role in the development and progression of uterine cancer. It is expected that miR-222 will be an indicator and target for the treatment and prognosis of uterine cancer.
Collapse
Affiliation(s)
- Xiujuan Nie
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Haili Tian
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| |
Collapse
|
27
|
The Progress of Methylation Regulation in Gene Expression of Cervical Cancer. Int J Genomics 2018; 2018:8260652. [PMID: 29850477 PMCID: PMC5926518 DOI: 10.1155/2018/8260652] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/02/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is one of the most common gynecological tumors in females, which is closely related to high-rate HPV infection. Methylation alteration is a type of epigenetic decoration that regulates the expression of genes without changing the DNA sequence, and it is essential for the progression of cervical cancer in pathogenesis while reflecting the prognosis and therapeutic sensitivity in clinical practice. Hydroxymethylation has been discovered in recent years, thus making 5-hmC, the more stable marker, attract more attention in the field of methylation research. As markers of methylation, 5-hmC and 5-mC together with 5-foC and 5-caC draw the outline of the reversible cycle, and 6-mA takes part in the methylation of RNA, especially mRNA. Furthermore, methylation modification participates in ncRNA regulation and histone decoration. In this review, we focus on recent advances in the understanding of methylation regulation in the process of cervical cancer, as well as HPV and CIN, to identify the significant impact on the prospect of overcoming cervical cancer.
Collapse
|
28
|
Tokar T, Pastrello C, Ramnarine VR, Zhu CQ, Craddock KJ, Pikor LA, Vucic EA, Vary S, Shepherd FA, Tsao MS, Lam WL, Jurisica I. Differentially expressed microRNAs in lung adenocarcinoma invert effects of copy number aberrations of prognostic genes. Oncotarget 2018; 9:9137-9155. [PMID: 29507679 PMCID: PMC5823624 DOI: 10.18632/oncotarget.24070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022] Open
Abstract
In many cancers, significantly down- or upregulated genes are found within chromosomal regions with DNA copy number alteration opposite to the expression changes. Generally, this paradox has been overlooked as noise, but can potentially be a consequence of interference of epigenetic regulatory mechanisms, including microRNA-mediated control of mRNA levels. To explore potential associations between microRNAs and paradoxes in non-small-cell lung cancer (NSCLC) we curated and analyzed lung adenocarcinoma (LUAD) data, comprising gene expressions, copy number aberrations (CNAs) and microRNA expressions. We integrated data from 1,062 tumor samples and 241 normal lung samples, including newly-generated array comparative genomic hybridization (aCGH) data from 63 LUAD samples. We identified 85 “paradoxical” genes whose differential expression consistently contrasted with aberrations of their copy numbers. Paradoxical status of 70 out of 85 genes was validated on sample-wise basis using The Cancer Genome Atlas (TCGA) LUAD data. Of these, 41 genes are prognostic and form a clinically relevant signature, which we validated on three independent datasets. By meta-analysis of results from 9 LUAD microRNA expression studies we identified 24 consistently-deregulated microRNAs. Using TCGA-LUAD data we showed that deregulation of 19 of these microRNAs explains differential expression of the paradoxical genes. Our results show that deregulation of paradoxical genes is crucial in LUAD and their expression pattern is maintained epigenetically, defying gene copy number status.
Collapse
Affiliation(s)
- Tomas Tokar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Chiara Pastrello
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Varune R Ramnarine
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, Canada
| | - Chang-Qi Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Kenneth J Craddock
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Larrisa A Pikor
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Emily A Vucic
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Simon Vary
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Mathematical Institute, University of Oxford, Oxford, United Kingdom.,Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| | - Frances A Shepherd
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Computer Science, University of Toronto, Toronto, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
29
|
Eo WK, Kwon BS, Kim KH, Kim HY, Kim HB, Koh SB, Chun S, Ji YI, Lee JY, Namkung J, Kwon S. Monocytosis as a prognostic factor for survival in stage IB and IIA cervical cancer. J Cancer 2018; 9:64-70. [PMID: 29290770 PMCID: PMC5743712 DOI: 10.7150/jca.22234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
Objective: To measure hematologic parameters derived from the white blood cell (WBC) count and differential count (DC) as prognostic factors for survival in patients with stage IB and IIA cervical cancer. Methods: We retrospectively examined demographic, clinicopathologic, and laboratory parameters in a cohort of 233 patients with International Federation of Gynecology and Obstetrics stage IB and IIA cervical cancer who underwent surgical resection. We further assessed the effects of the WBC count and DC-derived hematologic parameters on progression-free survival (PFS) and overall survival (OS) after controlling for other parameters. Results: Patients were followed up for a median of 46.6 months (range, 9-142 months). The Kaplan-Meier estimates of PFS and OS at 5 years were 88.5% and 92.3%, respectively. In a multivariate analysis, we identified the absolute monocyte count (AMC) (hazard ratio [HR], 11.78; P <0.001) and tumor size (HR, 5.41; P = 0.003) as the strongest prognostic factors affecting PFS. We also identified AMC (HR, 23.29; P <0.001), tumor size, (HR, 5.27; P = 0.033), and lymph node involvement (HR, 3.90; P = 0.027) as the strongest prognostic factors affecting OS. AMC remained prognostic with respect to PFS or OS in a Cox model that controlled for the neutrophil-lymphocyte ratio or lymphocyte-monocyte ratio, although neither ratio was a significant prognostic factor for survival. Conclusions: Monocytosis and an increased tumor size were found to be independent prognostic factors affecting both PFS and OS in patients with stage IB and IIA cervical cancer.
Collapse
Affiliation(s)
- Wan Kyu Eo
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Byung Su Kwon
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine; Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine; Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Heung Yeol Kim
- Department of Obstetrics and Gynecology, College of Medicine, Kosin University, Busan, Korea
| | - Hong-Bae Kim
- Department of Obstetrics and Gynecology, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Korea
| | - Suk Bong Koh
- Department of Obstetrics and Gynecology, Catholic University of Daegu, School of Medicine, Daegu, Korea
| | - Sungwook Chun
- Department of Obstetrics and Gynecology, College of Medicine, Inje University, Busan, Korea
| | - Yong Il Ji
- Department of Obstetrics and Gynecology, College of Medicine, Inje University, Busan, Korea
| | - Ji Young Lee
- Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Jeong Namkung
- Department of Obstetrics and Gynecology, Catholic University, Seoul, Republic of Korea
| | - Sanghoon Kwon
- Department of Obstetrics and Gynecology, Keimyung University, School of Medicine, Daegu, Korea
| |
Collapse
|
30
|
Systematic review and meta-analysis of the prognostic significance of microRNAs in cervical cancer. Oncotarget 2017; 9:17141-17148. [PMID: 29682211 PMCID: PMC5908312 DOI: 10.18632/oncotarget.23839] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 10/05/2017] [Indexed: 02/02/2023] Open
Abstract
In this meta-analysis, we analyzed case-control studies that assessed the prognostic potential of miRNAs in cervical cancer. We comprehensively searched EMBASE and PubMed databases and enrolled seven studies with 445 cervical cancer cases. A fixed effects model was used to calculate pooled hazard ratios (HRs) and associated 95% confidence intervals (95% CIs) from the overall survival (OS) data. Our analysis showed that poor OS in cervical cancer was associated with low miR-125 expression (HR = 1.61, 95% CI: 1.02-2.55, P = 0.042; I2 = 10.1%, P = 0.292; n = 99), low miR-145 expression (HR = 1.70, 95% CI: 1.29-2.24, P < 0.001; I2 = 0%, P = 0.560; n = 193) and high miR-196 expression (HR = 0.28, 95% CI: 0.15-0.52, P < 0.001; I2 = 0%, P = 0.950, n = 197). This makes microRNAs such as miR-125, miR-145 and miR-196 potential prognostic biomarkers in cervical cancer.
Collapse
|
31
|
Kong X, Gong S, Su L, Li C, Kong Y. Expression signatures and roles of MicroRNAs in human oesophageal adenocarcinomas. J Cell Mol Med 2017; 22:123-130. [PMID: 28799211 PMCID: PMC5742716 DOI: 10.1111/jcmm.13300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/03/2017] [Indexed: 12/13/2022] Open
Abstract
The most common forms of oesophageal cancers are adenocarcinomas and squamous cell carcinoma (SCC). Although the incidence of SCC in the United States tends to be declining, the adenocarcinoma incidence caused by Barrett's oesophagus has been increasing. Oesophageal cancer is regarded as one of the most fatal malignancies with a short prognosis. Systemic manifestations of patients with PCNSL keep backward in spite of recent development of chemoradiotherapy. MicroRNAs are small non‐coding RNAs that can post‐transcriptionally down‐regulate the expression of genes by targeting mRNAs, causing their translational repression as well as degradation. MicroRNAs exert critical functions in many malignancy‐related biological processes, including cell apoptosis, metabolism, proliferation and differentiation. Many deregulated miRNAs have been identified in oesophageal adenocarcinomas, but their biological importance has not yet been fully elucidated. In this study, we review present evidence regarding the potential applications of oesophageal adenocarcinomas associated microRNAs for prognosis and diagnosis of this lethal disease.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Department of Breast Oncology, National Cancer Center/Cancer Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shun Gong
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, PLA Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lijuan Su
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Li
- Cancer Epigenetic Laboratory, Department of Clinical Oncology, State Key Lab of Oncology in South China, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yanguo Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|