1
|
Ryan EM, Sadiku P, Coelho P, Watts ER, Zhang A, Howden AJM, Sanchez-Garcia MA, Bewley M, Cole J, McHugh BJ, Vermaelen W, Ghesquiere B, Carmeliet P, Rodriguez Blanco G, Von Kriegsheim A, Sanchez Y, Rumsey W, Callahan JF, Cooper G, Parkinson N, Baillie K, Cantrell DA, McCafferty J, Choudhury G, Singh D, Dockrell DH, Whyte MKB, Walmsley SR. NRF2 Activation Reprograms Defects in Oxidative Metabolism to Restore Macrophage Function in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2023; 207:998-1011. [PMID: 36724365 PMCID: PMC7614437 DOI: 10.1164/rccm.202203-0482oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) is a disease characterized by persistent airway inflammation and disordered macrophage function. The extent to which alterations in macrophage bioenergetics contribute to impaired antioxidant responses and disease pathogenesis has yet to be fully delineated. Objectives: Through the study of COPD alveolar macrophages (AMs) and peripheral monocyte-derived macrophages (MDMs), we sought to establish if intrinsic defects in core metabolic processes drive macrophage dysfunction and redox imbalance. Methods: AMs and MDMs from donors with COPD and healthy donors underwent functional, metabolic, and transcriptional profiling. Measurements and Main Results: We observed that AMs and MDMs from donors with COPD display a critical depletion in glycolytic- and mitochondrial respiration-derived energy reserves and an overreliance on glycolysis as a source for ATP, resulting in reduced energy status. Defects in oxidative metabolism extend to an impaired redox balance associated with defective expression of the NADPH-generating enzyme, ME1 (malic enzyme 1), a known target of the antioxidant transcription factor NRF2 (nuclear factor erythroid 2-related factor 2). Consequently, selective activation of NRF2 resets the COPD transcriptome, resulting in increased generation of TCA cycle intermediaries, improved energetic status, favorable redox balance, and recovery of macrophage function. Conclusions: In COPD, an inherent loss of metabolic plasticity leads to metabolic exhaustion and reduced redox capacity, which can be rescued by activation of the NRF2 pathway. Targeting these defects, via NRF2 augmentation, may therefore present an attractive therapeutic strategy for the treatment of the aberrant airway inflammation described in COPD.
Collapse
Affiliation(s)
- Eilise M. Ryan
- University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute
| | - Pranvera Sadiku
- University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute
| | - Patricia Coelho
- University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute
| | - Emily R. Watts
- University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute
| | - Ailiang Zhang
- University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute
| | - Andrew J. M. Howden
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, United Kingdom
| | - Manuel A. Sanchez-Garcia
- University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute
| | - Martin Bewley
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Brian J. McHugh
- University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute
| | - Wesley Vermaelen
- Metabolomics Expertise Centre, VIB-KU Leuven Centre for Cancer Biology, Leuven, Belgium
| | - Bart Ghesquiere
- Metabolomics Expertise Centre, VIB-KU Leuven Centre for Cancer Biology, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | | | | | - Yolanda Sanchez
- GlaxoSmithKline Research & Development, Collegeville, Pennsylvania
| | - William Rumsey
- GlaxoSmithKline Research & Development, Collegeville, Pennsylvania
| | | | - George Cooper
- University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute
| | - Nicholas Parkinson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kenneth Baillie
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Doreen A. Cantrell
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, United Kingdom
| | - John McCafferty
- NHS Lothian, Respiratory Medicine, Edinburgh, United Kingdom; and
| | - Gourab Choudhury
- NHS Lothian, Respiratory Medicine, Edinburgh, United Kingdom; and
| | - Dave Singh
- Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - David H. Dockrell
- University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute
| | - Moira K. B. Whyte
- University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute
| | - Sarah R. Walmsley
- University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute
| |
Collapse
|