1
|
Zhang Y, Jiang Y, Zhang D, Hu X, Deng S, Li X, Feng J. Role of GLCCI1 in inhibiting PI3K-induced NLRP3 inflammasome activation in asthma. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:279-288. [PMID: 39834584 PMCID: PMC11742361 DOI: 10.1016/j.pccm.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Indexed: 01/22/2025]
Abstract
Background Glucocorticoid-induced transcript 1 (GLCCI1) has been reported to be associated with the efficiency of inhaled glucocorticoids in patients with asthma. This study aimed to investigate the role of GLCCI1 in the regulation of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) by the phosphatidylinositol 3-kinase (PI3K) pathway in the pathogenesis of allergic asthma. Methods The expression levels of genes encoding GLCCI1, NLRP3 inflammasome components, and PI3K pathway-related indicators were detected in cells isolated from induced sputum from patients with asthma and healthy controls. Next, we induced asthma in wild-type C57BL/6 mice and Glcci1 knockout (Glcci1 -/-) mice by injecting them with ovalbumin (OVA) and treated the asthmatic mice with a PI3K pathway inhibitor (LY294002) or left them untreated. We also performed adoptive transfer of macrophages into the mice and assessed lung inflammation, as well as GLCCI1, PI3K pathway component, and NLRP3 inflammasome component expression levels. Finally, primary bone marrow-derived macrophages (BMDMs) from wild-type and Glcci1 -/- mice were treated with OVA, either in the presence or absence of LY294002 and the NLRP3 inhibitor (MCC950), to validate our findings. Results The mRNA level of Glcci1 in induced sputum cells from asthmatic patients was lower compared to that of healthy controls. Additionally, Glcci1 mRNA expression correlated negatively with NLRP3 inflammasome indicators and the PI3K pathway components, as well as with IL-1β expression in induced sputum macrophages. In vivo, Glcci1 -/- asthmatic mice showed elevated levels of airway inflammation and NLRP3 inflammasome activation compared to wild-type asthmatic mice. Surprisingly, the efficacy of LY294002 in reducing lung tissue inflammation and NLRP3 inflammasome activity in wild-type asthmatic mice was attenuated by Glcci1 knockout. LY294002 enhanced GLCCI1 levels in macrophages within the lung tissue of wild-type asthmatic mice. Moreover, LY294002 did not inhibit lung inflammation in wild-type asthmatic mice depleted of macrophages that had received adoptive transfer of Glcci1 -/- BMDMs. In vitro experiments further illustrated that LY294002 suppressed NLRP3 activation by upregulating GLCCI1 expression in BMDMs. The introduction of MCC950 led to a marked decrease in NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) protein levels, but did not affect the expression levels of GLCCI1 or the phospho-protein kinase B (p-AKT)/AKT ratio. Conclusions GLCCI1 deficiency promotes asthma inflammation through PI3K-induced NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yingyu Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuanyuan Jiang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Daimo Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaozhao Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Juntao Feng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
2
|
Nie R, Zhang QY, Feng ZY, Huang K, Zou CY, Fan MH, Zhang YQ, Zhang JY, Li-Ling J, Tan B, Xie HQ. Hydrogel-based immunoregulation of macrophages for tissue repair and regeneration. Int J Biol Macromol 2024; 268:131643. [PMID: 38643918 DOI: 10.1016/j.ijbiomac.2024.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
The rational design of hydrogel materials to modulate the immune microenvironment has emerged as a pivotal approach in expediting tissue repair and regeneration. Within the immune microenvironment, an array of immune cells exists, with macrophages gaining prominence in the field of tissue repair and regeneration due to their roles in cytokine regulation to promote regeneration, maintain tissue homeostasis, and facilitate repair. Macrophages can be categorized into two types: classically activated M1 (pro-inflammatory) and alternatively activated M2 (anti-inflammatory and pro-repair). By regulating the physical and chemical properties of hydrogels, the phenotypic transformation and cell behavior of macrophages can be effectively controlled, thereby promoting tissue regeneration and repair. A full understanding of the interaction between hydrogels and macrophages can provide new ideas and methods for future tissue engineering and clinical treatment. Therefore, this paper reviews the effects of hydrogel components, hardness, pore size, and surface morphology on cell behaviors such as macrophage proliferation, migration, and phenotypic polarization, and explores the application of hydrogels based on macrophage immune regulation in skin, bone, cartilage, and nerve tissue repair. Finally, the challenges and future prospects of macrophage-based immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zi-Yuan Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Kai Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yue-Qi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bo Tan
- Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, PR China.
| |
Collapse
|
3
|
Zhang FF, Hao Y, Zhang KX, Yang JJ, Zhao ZQ, Liu HJ, Li JT. Interplay between mesenchymal stem cells and macrophages: Promoting bone tissue repair. World J Stem Cells 2024; 16:375-388. [PMID: 38690513 PMCID: PMC11056637 DOI: 10.4252/wjsc.v16.i4.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
The repair of bone tissue damage is a complex process that is well-orchestrated in time and space, a focus and difficulty in orthopedic treatment. In recent years, the success of mesenchymal stem cells (MSCs)-mediated bone repair in clinical trials of large-area bone defects and bone necrosis has made it a candidate in bone tissue repair engineering and regenerative medicine. MSCs are closely related to macrophages. On one hand, MSCs regulate the immune regulatory function by influencing macrophages proliferation, infiltration, and phenotype polarization, while also affecting the osteoclasts differentiation of macrophages. On the other hand, macrophages activate MSCs and mediate the multilineage differentiation of MSCs by regulating the immune microenvironment. The cross-talk between MSCs and macrophages plays a crucial role in regulating the immune system and in promoting tissue regeneration. Making full use of the relationship between MSCs and macrophages will enhance the efficacy of MSCs therapy in bone tissue repair, and will also provide a reference for further application of MSCs in other diseases.
Collapse
Affiliation(s)
- Fei-Fan Zhang
- Molecular Biology Lab, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou 450000, Henan Province, China
- Graduate School, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Yang Hao
- Molecular Biology Lab, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou 450000, Henan Province, China
- Graduate School, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Kuai-Xiang Zhang
- Molecular Biology Lab, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou 450000, Henan Province, China
- Graduate School, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Jiang-Jia Yang
- Molecular Biology Lab, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou 450000, Henan Province, China
- Graduate School, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhi-Qiang Zhao
- Molecular Biology Lab, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou 450000, Henan Province, China
| | - Hong-Jian Liu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Ji-Tian Li
- Molecular Biology Lab, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou 450000, Henan Province, China
- Graduate School, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Graduate School, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China.
| |
Collapse
|
4
|
Chen J, Pan C, Gao Y, Chen Q, An X, Liu Z. Reactive Oxygen Species Scavenging Injectable Hydrogel Potentiates the Therapeutic Potential of Mesenchymal Stem Cells in Skin Flap Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17120-17128. [PMID: 38554083 DOI: 10.1021/acsami.3c18284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Cell-based therapies offer tremendous potential for skin flap regeneration. However, the hostile microenvironment of the injured tissue adversely affects the longevity and paracrine effects of the implanted cells, severely reducing their therapeutic effectiveness. Here, an injectable hydrogel (nGk) with reactive oxygen species (ROS) scavenging capability, which can amplify the cell viability and functions of encapsulated mesenchymal stem cells (MSCs), is employed to promote skin flap repair. nGk is formulated by dispersing manganese dioxide nanoparticles (MnO2 NPs) in a gelatin/κ-carrageenan hydrogel, which exhibits satisfactory injectable properties and undergoes a sol-gel phase transition at around 40 °C, leading to the formation of a solid gel at physiological temperature. MnO2 NPs enhance the mechanical properties of the hydrogel and give it the ability to scavenge ROS, thus providing a cell-protective system for MSCs. Cell culture studies show that nGk can mitigate the oxidative stress, improve cell viability, and boost stem cell paracrine function to promote angiogenesis. Furthermore, MSC-loaded nGk (nGk@MSCs) can improve the survival of skin flaps by promoting angiogenesis, reducing inflammatory reactions, and attenuating necrosis, providing an effective approach for tissue regeneration. Collectively, injectable nGk has substantial potential to enhance the therapeutic benefits of MSCs, making it a valuable delivery system for cell-based therapies.
Collapse
Affiliation(s)
- Jianmei Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou 225009, P. R. China
| | - Chun Pan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou 225009, P. R. China
| | - Ya Gao
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Qihong Chen
- Department of Critical Care Medicine, Jiangdu People's Hospital of Yangzhou, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou 225200, P. R. China
| | - Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P. R. China
| | - Zongguang Liu
- Microelectronics Industry Research Institute, College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
5
|
Zhu Y, Yang D, Liu J, Zheng C, Li N, Yang D, Zhang X, Jin C. Doping proanthocyanidins into gel/zirconium hybrid hydrogel to reshape the microenvironment of diabetic wounds for healing acceleration. Int J Biol Macromol 2024; 260:129353. [PMID: 38242386 DOI: 10.1016/j.ijbiomac.2024.129353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Infection and chronic inflammation caused by oxidative stress are major challenges in chronic wound healing. Preparing a simple, efficient hydrogel with reactive oxygen-scavenging properties for chronic wound repair is a promising strategy. Herein, we report an injectable, self-repairing hydrogel with antioxidant and antibacterial properties that can be used to regenerate diabetic wounds. Hydrogels are prepared by coordination crosslinking of gelatin (Gel), a natural biopolymer derived from collagen, with Zr4+. Because of the dynamic properties of metal ion coordination bonds and the bactericidal effect of Zr4+, the obtained coordination hydrogels exhibit self-healing, injectable, and antibacterial properties. The plant polyphenol "proanthocyanidins," which has reactive oxygen-scavenging and anti-inflammatory effects, was simultaneously loaded into the coordination hydrogel during cross-linking. We obtained a versatile hydrogel that is easy to prepare, resistant to mechanical irritation, and antioxidant, and antibacterial in vitro. We further demonstrated that the injectable self-healing hydrogels could effectively repair diabetic skin wounds and accelerate collagen deposition and wound healing. This study shows that the multifunctional antioxidant hydrogel has great potential in developing multifunctional biomaterials for chronic wound healing.
Collapse
Affiliation(s)
- Yaxin Zhu
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Dong Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jieyu Liu
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chenguo Zheng
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Na Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Dejun Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| | - Xingxing Zhang
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Chun Jin
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
6
|
Cheng HY, Anggelia MR, Liu SC, Lin CF, Lin CH. Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells by Hydrogel Encapsulation. Cells 2024; 13:210. [PMID: 38334602 PMCID: PMC10854565 DOI: 10.3390/cells13030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) showcase remarkable immunoregulatory capabilities in vitro, positioning them as promising candidates for cellular therapeutics. However, the process of administering MSCs and the dynamic in vivo environment may impact the cell-cell and cell-matrix interactions of MSCs, consequently influencing their survival, engraftment, and their immunomodulatory efficacy. Addressing these concerns, hydrogel encapsulation emerges as a promising solution to enhance the therapeutic effectiveness of MSCs in vivo. Hydrogel, a highly flexible crosslinked hydrophilic polymer with a substantial water content, serves as a versatile platform for MSC encapsulation. Demonstrating improved engraftment and heightened immunomodulatory functions in vivo, MSCs encapsulated by hydrogel are at the forefront of advancing therapeutic outcomes. This review delves into current advancements in the field, with a focus on tuning various hydrogel parameters to elucidate mechanistic insights and elevate functional outcomes. Explored parameters encompass hydrogel composition, involving monomer type, functional modification, and co-encapsulation, along with biomechanical and physical properties like stiffness, viscoelasticity, topology, and porosity. The impact of these parameters on MSC behaviors and immunomodulatory functions is examined. Additionally, we discuss potential future research directions, aiming to kindle sustained interest in the exploration of hydrogel-encapsulated MSCs in the realm of immunomodulation.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
| | - Madonna Rica Anggelia
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shiao-Chin Liu
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chih-Fan Lin
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
7
|
Ti D, Yi J, Chen H, Hao H, Shi C. The Role of Mesenchymal Stem/Stromal Cells Secretome in Macrophage Polarization: Perspectives on Treating Inflammatory Diseases. Curr Stem Cell Res Ther 2024; 19:894-905. [PMID: 37723965 DOI: 10.2174/1574888x18666230811093101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 09/20/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) have exhibited potential for treating multiple inflammation- related diseases (IRDs) due to their easy acquisition, unique immunomodulatory and tissue repair properties, and immune-privileged characteristics. It is worth mentioning that MSCs release a wide array of soluble bioactive components in the secretome that modulate host innate and adaptive immune responses and promote the resolution of inflammation. As the first line of defense, macrophages exist throughout the entire inflammation process. They continuously switch their molecular phenotypes accompanied by complementary functional regulation ranging from classically activated pro-inflammatory M1-type (M1) to alternatively activated anti-inflammatory M2-type macrophages (M2). Recent studies have shown that the active intercommunication between MSCs and macrophages is indispensable for the immunomodulatory and regenerative behavior of MSCs in pharmacological cell therapy products. In this review, we systematically summarized the emerging capacities and detailed the molecular mechanisms of the MSC-derived secretome (MSC-SE) in immunomodulating macrophage polarization and preventing excessive inflammation, providing novel insights into the clinical applications of MSC-based therapy in IRD management.
Collapse
Affiliation(s)
| | - Jun Yi
- Newlife R&D Center, Beijing, China
| | | | | | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
Shan S, Li Q, Criswell T, Atala A, Zhang Y. Stem cell therapy combined with controlled release of growth factors for the treatment of sphincter dysfunction. Cell Biosci 2023; 13:56. [PMID: 36927578 PMCID: PMC10018873 DOI: 10.1186/s13578-023-01009-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Sphincter dysfunction often occurs at the end of tubule organs such as the urethra, anus, or gastroesophageal sphincters. It is the primary consequence of neuromuscular impairment caused by trauma, inflammation, and aging. Despite intensive efforts to recover sphincter function, pharmacological treatments have not achieved significant improvement. Cell- or growth factor-based therapy is a promising approach for neuromuscular regeneration and the recovery of sphincter function. However, a decrease in cell retention and viability, or the short half-life and rapid degradation of growth factors after implantation, remain obstacles to the translation of these therapies to the clinic. Natural biomaterials provide unique tools for controlled growth factor delivery, which leads to better outcomes for sphincter function recovery in vivo when stem cells and growth factors are co-administrated, in comparison to the delivery of single therapies. In this review, we discuss the role of stem cells combined with the controlled release of growth factors, the methods used for delivery, their potential therapeutic role in neuromuscular repair, and the outcomes of preclinical studies using combination therapy, with the hope of providing new therapeutic strategies to treat incontinence or sphincter dysfunction of the urethra, anus, or gastroesophageal tissues, respectively.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
9
|
Cao D, Ding J. Recent advances in regenerative biomaterials. Regen Biomater 2022; 9:rbac098. [PMID: 36518879 PMCID: PMC9745784 DOI: 10.1093/rb/rbac098] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 07/22/2023] Open
Abstract
Nowadays, biomaterials have evolved from the inert supports or functional substitutes to the bioactive materials able to trigger or promote the regenerative potential of tissues. The interdisciplinary progress has broadened the definition of 'biomaterials', and a typical new insight is the concept of tissue induction biomaterials. The term 'regenerative biomaterials' and thus the contents of this article are relevant to yet beyond tissue induction biomaterials. This review summarizes the recent progress of medical materials including metals, ceramics, hydrogels, other polymers and bio-derived materials. As the application aspects are concerned, this article introduces regenerative biomaterials for bone and cartilage regeneration, cardiovascular repair, 3D bioprinting, wound healing and medical cosmetology. Cell-biomaterial interactions are highlighted. Since the global pandemic of coronavirus disease 2019, the review particularly mentions biomaterials for public health emergency. In the last section, perspectives are suggested: (i) creation of new materials is the source of innovation; (ii) modification of existing materials is an effective strategy for performance improvement; (iii) biomaterial degradation and tissue regeneration are required to be harmonious with each other; (iv) host responses can significantly influence the clinical outcomes; (v) the long-term outcomes should be paid more attention to; (vi) the noninvasive approaches for monitoring in vivo dynamic evolution are required to be developed; (vii) public health emergencies call for more research and development of biomaterials; and (viii) clinical translation needs to be pushed forward in a full-chain way. In the future, more new insights are expected to be shed into the brilliant field-regenerative biomaterials.
Collapse
Affiliation(s)
- Dinglingge Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|