1
|
Fei C, Zou J, Yang Z, Chang H, Lu L, Zhao K, Shi H. Enhanced therapeutic efficacy of Eupolyphaga sinensis Walker in females through sex-specific metabolomic-pharmacodynamic divergence. Sci Rep 2025; 15:6032. [PMID: 39972042 DOI: 10.1038/s41598-025-90100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Eupolyphaga sinensis Walker (ESW), a medicinal insect used in traditional Chinese medicine, is renowned for its effects on blood circulation, stasis resolution, and bone and tendon healing. The underlying reasons for the clinical preference for female ESW remain unclear. Previous investigations were limited in scope, focusing narrowly on female specimens, large-molecule compounds, and single pharmacological effect. This study systematically compared female and male ESW in terms of composition and therapeutic efficacy. Metabolomics identified 31 compound types in both female and male ESW, including lipids, amino acids, and fatty acids. Female ESW exhibited significantly higher levels of 8 bioactive compounds, 15 small peptides, and 13 prostaglandins compared to male ESW, which contribute to immunity enhancement, antithrombotic effects, and improved bone metabolism. These differences may underlie the superior medicinal efficacy of female ESW. In the thrombosis model, ESW can cause vasodilation, reduce blood cell aggregation and thrombosis rate of mice tails. It also improved t-PA levels, prolonged APTT, and enhanced hepatic SOD activity, with female ESW showing stronger effects on MDA and D2D levels, indicating its stronger ability to protect cells from damage and fibrinolytic effect. In the osteoporosis model, ESW increased femur length, liver, and thymus indices while regulating serum BALP and Mg levels. Female ESW notably reduced TRACP-5b, OT/BGP, P, and Cu to normal levels, indicating its stronger ability to improved bone metabolism, corrected disturbances in calcium-phosphorus metabolism, and regulated serum inorganic elements. Overall, female ESW exhibited a greater abundance of bioactive components and demonstrated superior anti-thrombotic and anti-osteoporotic effects. These findings highlight the superior therapeutic effects of female ESW due to its enriched bioactive components, supporting its clinical preference while underscoring the potential of male ESW for uilization of resource.
Collapse
Affiliation(s)
- Chenghao Fei
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Jie Zou
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Zhaorui Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Huaiyang Chang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Lixian Lu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Kun Zhao
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
2
|
Brudzyńska P, Kulka-Kamińska K, Piwowarski Ł, Lewandowska K, Sionkowska A. Dialdehyde Starch as a Cross-Linking Agent Modifying Fish Collagen Film Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1475. [PMID: 38611990 PMCID: PMC11012723 DOI: 10.3390/ma17071475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The aim of this research was the modification of fish collagen films with various amounts of dialdehyde starch (DAS). Film properties were examined before and after the cross-linking process by DAS. Prepared biopolymer materials were characterized by Fourier Transform Infrared Spectroscopy and Atomic Force Microscopy. Moreover, the mechanical, thermal and swelling properties of the films were evaluated and the contact angle was measured. Research has shown that dialdehyde starch applied as a cross-linking agent influences collagen film properties. Mechanical testing indicated a decrease in Young's Modulus and an increase in breaking force, elongation at break, and tensile strength parameters. Results for contact angle were significantly higher for collagen films cross-linked with DAS; thus, the hydrophilicity of samples decreased. Modified samples presented a lower swelling degree in PBS than native collagen films. However, the highest values for the degree of swelling among the modified specimens were obtained from the 1% DAS samples, which were 717% and 702% for 1% and 2% collagen, respectively. Based on AFM images and roughness values, it was noticed that DAS influenced collagen film surface morphology. The lowest value of Rq was observed for 2%Coll_2%DAS and was approximately 10 nm. Analyzing thermograms for collagen samples, it was observed that pure collagen samples were less thermally stable than cross-linked ones. Dialdehyde starch is a promising cross-linking agent for collagen extracted from fish skin and may increase its applicability.
Collapse
Affiliation(s)
- Patrycja Brudzyńska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland; (P.B.); (K.K.-K.); (K.L.)
| | - Karolina Kulka-Kamińska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland; (P.B.); (K.K.-K.); (K.L.)
| | - Łukasz Piwowarski
- SanColl Sp. z o.o., Juliusza Słowackiego 24, 35-060 Rzeszów, Poland;
| | - Katarzyna Lewandowska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland; (P.B.); (K.K.-K.); (K.L.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland; (P.B.); (K.K.-K.); (K.L.)
| |
Collapse
|
3
|
Xiao J, Ji Y, Gao Z, Dai Y, Li X, Feng Y, You R. Silk nanofibrous scaffolds assembled by natural polysaccharide konjac glucomannan. J Appl Polym Sci 2024; 141. [DOI: 10.1002/app.54981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2025]
Abstract
AbstractNatural silk fibroin nanofibers (SNF) have recently attracted great attention in the field of biomaterials due to their excellent biocompatibility, outstanding mechanical properties, and biomimetic nanostructures. However, the poor structural stability of SNF assembly in aqueous conditions remains a major obstacle to their biomedical application. In this work, SNF scaffolds with extracellular matrix‐mimicking architecture and tunable properties were developed by using a small amount of konjac glucomannan (KGM) as a physical adhesive. Fourier transform infrared spectroscopy (FTIR) results revealed that KGM facilitated the formation of hydrogen bond networks between SNF as well as nanofibers/polysaccharide molecules, thereby reinforcing the interconnectivity between SNF. The water stability test showed that SNF scaffolds exhibited good structural stability in water when the mass ratio of KGM/SNF reached 2.5/100. Raising KGM content significantly enhanced the compression strength, modulus, and swelling ratio of the porous scaffold. Whereas, the nanofibrous morphology and porosity of the scaffolds were significantly sacrificed as KGM content exceeded 10% as evidenced by scanning electron microscopy (SEM) results. In vitro, cytocompatibility results also demonstrated the excellent biocompatibility of the biomimetic nanofibrous scaffolds, and the high porosity significantly enhanced cell viability. These results suggest that KGM‐reinforced SNF scaffolds may serve as promising candidates for biomaterial applications.
Collapse
Affiliation(s)
- Jiahui Xiao
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies School of Textile Science and Engineering, Wuhan Textile University Wuhan China
| | - Yueyang Ji
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies School of Textile Science and Engineering, Wuhan Textile University Wuhan China
| | - Zixin Gao
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies School of Textile Science and Engineering, Wuhan Textile University Wuhan China
| | - Yunfeng Dai
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies School of Textile Science and Engineering, Wuhan Textile University Wuhan China
| | - Xiufang Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University Wuhan China
| | - Yanfei Feng
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies School of Textile Science and Engineering, Wuhan Textile University Wuhan China
| | - Renchuan You
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies School of Textile Science and Engineering, Wuhan Textile University Wuhan China
| |
Collapse
|
4
|
Gu C, Wang C, Ma W, Gao Y, Li J, Jin Q, Wu X. Drug-Loaded Konjac Glucomannan/Metal-Organic Framework Composite Hydrogels as Antibacterial and Anti-Inflammatory Cell Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41287-41298. [PMID: 37632730 DOI: 10.1021/acsami.3c06996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Bacterial infections severely threaten human health; therefore, it is important to endow the matrix for tissue engineering with antibacterial efficiency. The loading of antibacterial drugs on nanomaterials provides an efficient strategy to realize synergistic antibacterial efficiency. By depositing various metal-organic frameworks, such as UIO-66, onto konjac glucomannan (KGM), composite hydrogels (KGM/UIO-66) were created. These hydrogels were used as drug carriers, enabling the development of antibacterial hydrogels with high drug loading capacities (e.g., the maximum loading amount of pterostilbene on KGM/UIO-66 reached 0.157 mg/mg) and sustained drug release. The resulting KGM/UIO-66/pterostilbene hydrogel exhibited a three-dimensional porous structure, excellent biocompatibility, antibacterial efficiency, and anti-inflammatory activity. It effectively protected cells from bacterial attacks while ensuring cell adhesion and proliferation, demonstrating great potential as a three-dimensional substrate for biomedical applications, including tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Chuanyi Gu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chunru Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenjie Ma
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yunli Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Junyao Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qing Jin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
5
|
Guerreiro F, Pontes JF, Gaspar MM, Rosa da Costa AM, Faleiro ML, Grenha A. Respirable konjac glucomannan microparticles as antitubercular drug carriers: Effects of in vitro and in vivo interactions. Int J Biol Macromol 2023; 248:125838. [PMID: 37455007 DOI: 10.1016/j.ijbiomac.2023.125838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Pulmonary delivery of drugs is potentially beneficial in the context of lung disease, maximising drug concentrations in the site of action. A recent work proposed spray-dried konjac glucomannan (KGM) microparticles as antitubercular drug (isoniazid and rifabutin) carriers to treat pulmonary tuberculosis. The present work explores in vitro and in vivo effects of these microparticles, focusing on the ability for macrophage uptake, the exhibited antibacterial activity and safety issues. Efficient uptake of KGM microparticles by macrophages was demonstrated in vitro, while the antitubercular activity of the model drugs against Mycobacterium bovis was not affected by microencapsulation in KGM microparticles. Despite the good indications provided by the developed system, KGM is not yet approved for pulmonary applications, which is a limiting characteristic. To reinforce the available data on the performance of the material, safety parameters were evaluated both in vitro and in vivo, showing promising results. No significant cell toxicity was observed at concentrations considered realistic for lung delivery approaches (up to 125 μg/mL) when lung epithelial cells and macrophages were exposed to KGM microparticles (both drug-loaded and unloaded). Finally, no signs of systemic or lung inflammatory response were detected in mice after receiving 10 administrations of unloaded KGM microparticles.
Collapse
Affiliation(s)
- Filipa Guerreiro
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Jorge F Pontes
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana M Rosa da Costa
- Algarve Chemistry Research Centre (CIQA), Department of Chemistry and Pharmacy, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Maria Leonor Faleiro
- Algarve Biomedical Center (ABC), Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Ana Grenha
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
6
|
Liu S, Niu L, Tu J, Xiao J. The alleviative effect of curdlan on the quality deterioration of konjac glucomannan thermo-irreversible gels after commercial sterilization at 121 °C. Int J Biol Macromol 2023; 238:124134. [PMID: 36958457 DOI: 10.1016/j.ijbiomac.2023.124134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023]
Abstract
This work employed different curdlan concentrations (0.00 %, 1.00 %, 1.50 %, 2.00 %, and 2.50 %) to alleviate the quality degradation of konjac glucomannan (KGM) gels after commercial sterilization at 121 °C for 15 min. The results showed that all levels of curdlan could retard the deterioration of KGM gels, with the best effect at 2.00 %. After commercial sterilization, incorporating curdlan into KGM gels greatly reduced the Tan σ (G"/ G'), total relaxation time and half-free water from 0.52, 89.85 ms and 98.26 % to 0.27, 38.48 ms and 21.42 %, respectively. Moreover, the addition of curdlan imparted a better texture to KGM gels, as reflected in the increase of hardness, springiness, water-holding capacity and whiteness value from 1400.85 g, 0.42, 87.92 % and 33.33 to 3461.68 g, 0.80, 96.50 % and 49.27, respectively. Furthermore, SEM images revealed that curdlan endowed KGM gels with a tighter structure and smaller pores, and the pore size distribution was reduced from 113.46 μm to17.91 μm, indicating a stronger interaction among molecules, as evidenced by XRD and FTIR results. KGM gels with curdlan possessed less proportion of complete crystallites and crystalline region. These findings suggested that curdlan can be the potently protectant for improving the quality of commercially sterilized KGM gel-based products.
Collapse
Affiliation(s)
- Sha Liu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Liya Niu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Jin Tu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Jianhui Xiao
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China; Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
7
|
Ren S, Guo S, Yang L, Wang C. Effect of composite biodegradable biomaterials on wound healing in diabetes. Front Bioeng Biotechnol 2022; 10:1060026. [PMID: 36507270 PMCID: PMC9732485 DOI: 10.3389/fbioe.2022.1060026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
The repair of diabetic wounds has always been a job that doctors could not tackle quickly in plastic surgery. To solve this problem, it has become an important direction to use biocompatible biodegradable biomaterials as scaffolds or dressing loaded with a variety of active substances or cells, to construct a wound repair system integrating materials, cells, and growth factors. In terms of wound healing, composite biodegradable biomaterials show strong biocompatibility and the ability to promote wound healing. This review describes the multifaceted integration of biomaterials with drugs, stem cells, and active agents. In wounds, stem cells and their secreted exosomes regulate immune responses and inflammation. They promote angiogenesis, accelerate skin cell proliferation and re-epithelialization, and regulate collagen remodeling that inhibits scar hyperplasia. In the process of continuous combination with new materials, a series of materials that can be well matched with active ingredients such as cells or drugs are derived for precise delivery and controlled release of drugs. The ultimate goal of material development is clinical transformation. At present, the types of materials for clinical application are still relatively single, and the bottleneck is that the functions of emerging materials have not yet reached a stable and effective degree. The development of biomaterials that can be further translated into clinical practice will become the focus of research.
Collapse
Affiliation(s)
- Sihang Ren
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shuaichen Guo
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Wang C, Guo Z, Liang J, Li N, Song R, Luo L, Ai Y, Li X, Tang S. An oral delivery vehicle based on konjac glucomannan acetate targeting the colon for inflammatory bowel disease therapy. Front Bioeng Biotechnol 2022; 10:1025155. [PMID: 36440435 PMCID: PMC9684466 DOI: 10.3389/fbioe.2022.1025155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Orally administered colon-targeted delivery vehicles are of major importance in the treatment of inflammatory bowel disease (IBD). However, it remains a challenge to maintain the integrity of such delivery vehicles during treatment, particularly in the gastric environment, which may cause untimely drug release before reaching the targeted colon. Herein, an oral colon-targeted drug delivery system (OCDDS) based on acetylated konjac glucomannan (AceKGM) has been developed in this work, which accomplishes colonic localization release and targets local inflammatory macrophages. The AceKGM nanoparticle-loading curcumin (Cur) was successfully fabricated by emulsion solvent evaporation techniques. DLS, AFM, and SEM were used in order to evaluate the nanoparticles’ diameter as well as their in vitro drug release profile, and reactive oxygen species (ROS) scavenging results showed that the OCDDS considerably retained the activity of Cur treated with simulated gastric fluid (SGF) and controllably released in simulated intestinal fluid (SIF). In addition, the adhesion experiment results indicated that the nanoparticle could accumulate on the colonic macrophages. Evaluations in colitis mice showed that the treatment significantly alleviated the symptoms of colitis by decreasing the local level of myeloperoxidase (MPO) and the disease activity index (DAI) score in mice. In summary, the results of our research demonstrate that Cur–AceKGM nanoparticles exhibit significantly improved therapeutic efficacy compared to orally administered free Cur and can be developed as an effective drug delivery vehicle for IBD treatment.
Collapse
Affiliation(s)
- Chuang Wang
- Foshan Stomatology Hospital and School of Medicine, Foshan University, Foshan, China
- Biomedical Engineering Institute, Jinan University, Guangzhou, China
| | - Zhenzhao Guo
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jialuo Liang
- Foshan Stomatology Hospital and School of Medicine, Foshan University, Foshan, China
| | - Na Li
- Foshan Stomatology Hospital and School of Medicine, Foshan University, Foshan, China
| | - Rijian Song
- Biomedical Engineering Institute, Jinan University, Guangzhou, China
| | - Lei Luo
- Biomedical Engineering Institute, Jinan University, Guangzhou, China
| | - Yilong Ai
- Foshan Stomatology Hospital and School of Medicine, Foshan University, Foshan, China
| | - Xia Li
- Foshan Stomatology Hospital and School of Medicine, Foshan University, Foshan, China
| | - Shunqing Tang
- Biomedical Engineering Institute, Jinan University, Guangzhou, China
- *Correspondence: Shunqing Tang,
| |
Collapse
|
9
|
Chandika P, Khan F, Heo SY, Kim YM, Yi M, Jung WK. Enhanced wound-healing capability with inherent antimicrobial activities of usnic acid incorporated poly(ε-caprolactone)/decellularized extracellular matrix nanofibrous scaffold. BIOMATERIALS ADVANCES 2022; 140:213046. [PMID: 35930818 DOI: 10.1016/j.bioadv.2022.213046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 12/22/2022]
Abstract
An extracellular matrix-mimicking, biodegradable tissue-engineered skin substitute with improved antibacterial, antibiofilm, and wound healing capabilities is essential in skin tissue regeneration applications. The purpose of this study was to develop a novel biodegradable composite nanofibrous poly(ε-caprolactone) (PCL)/decellularized extracellular matrix (dECM) scaffolds loaded with usnic acid (UA); (PEU), where UA is employed as an antibacterial agent as well as a wound-healing accelerator. The architecture and fiber structure of the scaffolds were examined using scanning electron microscopy, and the results revealed that the average diameters decreased as the dECM content increased. The chemical composition, changes in the crystalline structure, homogeneity, and thermal stability of the nanofiber scaffolds with different material compositions were determined using Fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis, respectively. The composite nanofibrous scaffolds exhibited strong antibacterial activity against various bacterial species, such as Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, and Cutibactrium acnes, and fungal pathogens (such as Candida albicans). Additionally, the composite nanofibrous scaffolds exhibited biofilm inhibition properties against Klebsiella pneumoniae and Pseudomonas aeruginosa. An evaluation of the appearance of in vivo full-thickness excisional wounds treated with the composite nanofiber scaffolds, as well as a histological analysis of the wounds 21 days after surgery, revealed that treatment with nanofibrous PEU scaffolds enhanced wound healing. This study reveals that the proposed composite nanofibrous PEU scaffold has substantial potential for treating infectious full-thickness wounds.
Collapse
Affiliation(s)
- Pathum Chandika
- Major of Biomedical Engineering, Division of Smart Healthcare and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Seong-Yong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology, Jeju 63349, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Myunggi Yi
- Major of Biomedical Engineering, Division of Smart Healthcare and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
10
|
Yan XR, Li J, Na XM, Li T, Xia YF, Zhou WQ, Ma GH. Mesenchymal Stem Cells Proliferation on Konjac Glucomannan Microcarriers: Effect of Rigidity. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Bousalis D, McCrary MW, Vaughn N, Hlavac N, Evering A, Kolli S, Song YH, Morley C, Angelini T, Schmidt CE. Decellularized peripheral nerve as an injectable delivery vehicle for neural applications. J Biomed Mater Res A 2022; 110:595-611. [PMID: 34590403 PMCID: PMC8742792 DOI: 10.1002/jbm.a.37312] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
Damage to the nervous system can result in loss of sensory and motor function, paralysis, or even death. To facilitate neural regeneration and functional recovery, researchers have employed biomaterials strategies to address both peripheral and central nervous system injuries. Injectable hydrogels that recapitulate native nerve extracellular matrix are especially promising for neural tissue engineering because they offer more flexibility for minimally invasive applications and provide a growth-permissive substrate for neural cell types. Here, we explore the development of injectable hydrogels derived from decellularized rat peripheral nerves (referred to as "injectable peripheral nerve [iPN] hydrogels"), which are processed using a newly developed sodium deoxycholate and DNase (SDD) decellularization method. We assess the gelation kinetics, mechanical properties, cell bioactivity, and drug release kinetics of the iPN hydrogels. The iPN hydrogels thermally gel when exposed to 37°C in under 20 min and have mechanical properties similar to neural tissue. The hydrogels demonstrate in vitro biocompatibility through support of Schwann cell viability and metabolic activity. Additionally, iPN hydrogels promote greater astrocyte spreading compared to collagen I hydrogels. Finally, the iPN is a promising delivery vehicle of drug-loaded microparticles for a combinatorial approach to neural injury therapies.
Collapse
Affiliation(s)
- Deanna Bousalis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Michaela W. McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Natalie Vaughn
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Nora Hlavac
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Ashley Evering
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Shruti Kolli
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL,Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR
| | - Cameron Morley
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| | - Thomas Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
12
|
Wu H, Bu N, Chen J, Chen Y, Sun R, Wu C, Pang J. Construction of Konjac Glucomannan/Oxidized Hyaluronic Acid Hydrogels for Controlled Drug Release. Polymers (Basel) 2022; 14:polym14050927. [PMID: 35267750 PMCID: PMC8912606 DOI: 10.3390/polym14050927] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Konjac glucomannan (KGM) hydrogel has favorable gel-forming abilities, but its insufficient swelling capacity and poor control release characteristics limit its application. Therefore, in this study, oxidized hyaluronic acid (OHA) was used to improve the properties of KGM hydrogel. The influence of OHA on the structure and properties of KGM hydrogels was evaluated. The results show that the swelling capacity and rheological properties of the composite hydrogels increased with OHA concentration, which might be attributed to the hydrogen bond between the KGM and OHA, resulting in a compact three-dimensional gel network structure. Furthermore, epigallocatechin gallate (EGCG) was efficiently loaded into the KGM/OHA composite hydrogels and liberated in a sustained pattern. The cumulative EGCG release rate of the KGM/OHA hydrogels was enhanced by the increasing addition of OHA. The results show that the release rate of composite hydrogel can be controlled by the content of OHA. These results suggest that OHA has the potential to improve the properties and control release characteristics of KGM hydrogels.
Collapse
|
13
|
Chen J, Gu H, Fu S, Lu J, Tan H, Wei Q, Ai H. Multifunctional injectable hydrogels for three-in-one cancer therapy: Preoperative remission via mild photothermal-enhanced supramolecular chemotherapy and prevention of postoperative recurrence and adhesion. CHEMICAL ENGINEERING JOURNAL 2021; 425:130377. [DOI: 10.1016/j.cej.2021.130377] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Wang J, Yang C, Xie Y, Chen X, Jiang T, Tian J, Hu S, Lu Y. Application of Bioactive Hydrogels for Functional Treatment of Intrauterine Adhesion. Front Bioeng Biotechnol 2021; 9:760943. [PMID: 34621732 PMCID: PMC8490821 DOI: 10.3389/fbioe.2021.760943] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Intrauterine adhesion (IUA) is a common endometrial disease and one of the main causes of infertility in women of childbearing age. Current treatment strategies, such as hysteroscopic adhesion resection, hysteroscopic transcervical resection of adhesion (TCRA), the use of local hormone drugs, and anti-adhesion scaffold implantation, do not provide a satisfactory pregnancy outcome for moderate-severe IUA, which presents a great challenge in reproductive medicine. With the development of material engineering, various bioactive and functional hydrogels have been developed using natural and synthetic biomaterials. These hydrogels are not only used as barely physical barriers but are also designed as vectors of hormone drugs, growth factors, and stem cells. These characteristics give bioactive hydrogels potentially important roles in the prevention and treatment of IUA. However, there is still no systematic review or consensus on the current advances and future research direction in this field. Herein, we review recent advances in bioactive hydrogels as physical anti-adhesion barriers, in situ drug delivery systems, and 3D cell delivery and culture systems for seeded cells in IUA treatment. In addition, current limitations and future perspectives are presented for further research guidance, which may provide a comprehensive understanding of the application of bioactive hydrogels in intrauterine adhesion treatment.
Collapse
Affiliation(s)
- Jingying Wang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Chao Yang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Yuxin Xie
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Xiaoxu Chen
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Ting Jiang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Jing Tian
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Sihui Hu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Yingli Lu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
15
|
Guerreiro F, Swedrowska M, Patel R, Flórez-Fernández N, Torres MD, Rosa da Costa AM, Forbes B, Grenha A. Engineering of konjac glucomannan into respirable microparticles for delivery of antitubercular drugs. Int J Pharm 2021; 604:120731. [PMID: 34029661 DOI: 10.1016/j.ijpharm.2021.120731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 11/25/2022]
Abstract
Few medically-approved excipients are available for formulation strategies to endow microcarriers with improved performance in lung drug targeting. Konjac glucomannan (KGM) is a novel, biocompatible material, comprising mannose units potentially inducing macrophage uptake for the treatment of macrophage-mediated diseases. This work investigated spray-dried KGM microparticles as inhalable carriers of model antitubercular drugs, isoniazid (INH) and rifabutin (RFB). The polymer was characterised and different polymer/drug ratios tested in the production of microparticles for which respirability was assessed in vitro. The swelling of KGM microparticles and release of drugs in simulated lung fluid were characterised and the biodegradability in presence of β-mannosidase, a lung hydrolase, determined. KGM microparticles were drug loaded with 66-91% association efficiency and had aerodynamic diameter around 3 µm, which enables deep lung penetration. The microparticles swelled upon liquid contact by 40-50% but underwent size reduction (>62% in 90 min) in presence of β-mannosidase, indicating biodegradability. Finally, drug release was tested showing slower release of RFB compared with INH but complete release of both within 24 h. This work identifies KGM as a biodegradable polymer of natural origin that can be engineered to encapsulate and release drugs in respirable microparticles with physical and chemical macrophage-targeting properties.
Collapse
Affiliation(s)
- Filipa Guerreiro
- Centre for Marine Sciences (CCMar), Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Magda Swedrowska
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK.
| | - Roshnee Patel
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK.
| | - Noelia Flórez-Fernández
- Centre for Marine Sciences (CCMar), Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Department of Chemical Engineering, University of Vigo, Faculty of Sciences, As Lagoas, Ourense 32004, Spain.
| | - María Dolores Torres
- Department of Chemical Engineering, University of Vigo, Faculty of Sciences, As Lagoas, Ourense 32004, Spain.
| | - Ana M Rosa da Costa
- Algarve Chemistry Research Centre (CIQA), Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal.
| | - Ben Forbes
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK.
| | - Ana Grenha
- Centre for Marine Sciences (CCMar), Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal.
| |
Collapse
|
16
|
Prasathkumar M, Sadhasivam S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing-Know-how. Int J Biol Macromol 2021; 186:656-685. [PMID: 34271047 DOI: 10.1016/j.ijbiomac.2021.07.067] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Biomaterials are being extensively used in regenerative medicine including tissue engineering applications, as these enhance tissue development, repair, and help in the process of angiogenesis. Wound healing is a crucial biological process of regeneration of ruptured tissue after getting injury to the skin and other soft tissue in humans and animals. Besides, the accumulation of microbial biofilms around the wound surface can increase the risk and physically obstruct the wound healing activity, and may even lead to amputation. Hence, in both acute and chronic wounds, prominent biomaterials are required for wound healing along with antimicrobial agents. This review comprehensively addresses the antimicrobial and wound healing effects of chitosan, chitin, cellulose acetate, hyaluronic acid, pullulan, bacterial cellulose, fibrin, alginate, etc. based wound dressing biomaterials fabricated with natural resources such as honey, plant bioactive compounds, and marine-based polymers. Due to their excellent biocompatibility and biodegradability, bioactive compounds derived from honey, plants, and marine resources are commonly used in biomedical and tissue engineering applications. Different types of polymer-based biomaterials including hydrogel, film, scaffold, nanofiber, and sponge dressings fabricated with bioactive agents including honey, curcumin, tannin, quercetin, andrographolide, gelatin, carrageenan, etc., can exhibit significant wound healing process in, diabetic wounds, diabetic ulcers, and burns, and help in cartilage repair along with good biocompatibility and antimicrobial effects. Among the reviewed biomaterials, carbohydrate polymers such as chitosan-based biomaterials are prominent and widely used for wound healing applications followed by hyaluronic acid and alginate-based biomaterials loaded with honey, plant, and marine compounds. This review first provides an overview of the vast natural resources used to formulate different biomaterials for the treatment of antimicrobial, acute, and chronic wound healing processes.
Collapse
Affiliation(s)
- Murugan Prasathkumar
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Subramaniam Sadhasivam
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India; Department of Extension and Career Guidance, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
17
|
Ng S, Kurisawa M. Integrating biomaterials and food biopolymers for cultured meat production. Acta Biomater 2021; 124:108-129. [PMID: 33472103 DOI: 10.1016/j.actbio.2021.01.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cultured meat has recently achieved mainstream prominence due to the emergence of societal and industrial interest. In contrast to animal-based production of traditional meat, the cultured meat approach entails laboratory cultivation of engineered muscle tissue. However, bioengineers have hitherto engineered tissues to fulfil biomedical endpoints, and have had limited experience in engineering muscle tissue for its post-mortem traits, which broadly govern consumer definitions of meat quality. Furthermore, existing tissue engineering approaches face fundamental challenges in technical feasibility and industrial scalability for cultured meat production. This review discusses how animal-based meat production variables influence meat properties at both the molecular and functional level, and whether current cultured meat approaches recapitulate these properties. In addition, this review considers how conventional meat producers employ exogenous biopolymer-based meat ingredients and processing techniques to mimic desirable meat properties in meat products. Finally, current biomaterial strategies for engineering muscle and adipose tissue are surveyed in the context of emerging constraints that pertain to cultured meat production, such as edibility, sustainability and scalability, and potential areas for integrating biomaterials and food biopolymer approaches to address these constraints are discussed. STATEMENT OF SIGNIFICANCE: Laboratory-grown or cultured meat has gained increasing interest from industry and the public, but currently faces significant impediment to market feasibility. This is due to fundamental knowledge gaps in producing realistic meat tissues via conventional tissue engineering approaches, as well as translational challenges in scaling up these approaches in an efficient, sustainable and high-volume manner. By defining the molecular basis for desirable meat quality attributes, such as taste and texture, and introducing the fundamental roles of food biopolymers in mimicking these properties in conventional meat products, this review aims to bridge the historically disparate fields of meat science and biomaterials engineering in order to inspire potentially synergistic strategies that address some of these challenges.
Collapse
|
18
|
Sarrigiannidis S, Rey J, Dobre O, González-García C, Dalby M, Salmeron-Sanchez M. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater Today Bio 2021; 10:100098. [PMID: 33763641 PMCID: PMC7973388 DOI: 10.1016/j.mtbio.2021.100098] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Collagen hydrogels are among the most well-studied platforms for drug delivery and in situ tissue engineering, thanks to their low cost, low immunogenicity, versatility, biocompatibility, and similarity to the natural extracellular matrix (ECM). Despite collagen being largely responsible for the tensile properties of native connective tissues, collagen hydrogels have relatively low mechanical properties in the absence of covalent cross-linking. This is particularly problematic when attempting to regenerate stiffer and stronger native tissues such as bone. Furthermore, in contrast to hydrogels based on ECM proteins such as fibronectin, collagen hydrogels do not have any growth factor (GF)-specific binding sites and often cannot sequester physiological (small) amounts of the protein. GF binding and in situ presentation are properties that can aid significantly in the tissue regeneration process by dictating cell fate without causing adverse effects such as malignant tumorigenic tissue growth. To alleviate these issues, researchers have developed several strategies to increase the mechanical properties of collagen hydrogels using physical or chemical modifications. This can expand the applicability of collagen hydrogels to tissues subject to a continuous load. GF delivery has also been explored, mathematically and experimentally, through the development of direct loading, chemical cross-linking, electrostatic interaction, and other carrier systems. This comprehensive article explores the ways in which these parameters, mechanical properties and GF delivery, have been optimized in collagen hydrogel systems and examines their in vitro or in vivo biological effect. This article can, therefore, be a useful tool to streamline future studies in the field, by pointing researchers into the appropriate direction according to their collagen hydrogel design requirements.
Collapse
Affiliation(s)
| | | | - O. Dobre
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - C. González-García
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - M.J. Dalby
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - M. Salmeron-Sanchez
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| |
Collapse
|
19
|
Hybrid Collagen Hydrogel/Chondroitin-4-Sulphate Fortified with Dermal Fibroblast Conditioned Medium for Skin Therapeutic Application. Polymers (Basel) 2021; 13:polym13040508. [PMID: 33567703 PMCID: PMC7914873 DOI: 10.3390/polym13040508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
The current strategy for rapid wound healing treatment involves combining a biomaterial and cell-secreted proteins or biomolecules. This study was aimed at characterizing 3-dimensional (3D) collagen hydrogels fortified with dermal fibroblast-conditioned medium (DFCM) as a readily available acellular skin substitute. Confluent fibroblasts were cultured with serum-free keratinocyte-specific medium (KM1 and KM2) and fibroblast-specific medium (FM) to obtain DFCM. Subsequently, the DFCM was mixed with collagen (Col) hydrogel and chondroitin-4-sulphate (C4S) to fabricate 3D constructs termed Col/C4S/DFCM-KM1, Col/C4S/DFCM-KM2, and Col/C4S/DFCM-FM. The constructs successfully formed soft, semi-solid and translucent hydrogels within 1 h of incubation at 37 °C with strength of <2.5 Newton (N). The Col/C4S/DFCM demonstrated significantly lower turbidity compared to the control groups. The Col/C4S/DFCM also showed a lower percentage of porosity (KM1: 35.15 ± 9.76%; KM2: 6.85 ± 1.60%; FM: 14.14 ± 7.65%) compared to the Col (105.14 ± 11.87%) and Col/C4S (143.44 ± 27.72%) constructs. There were no changes in both swelling and degradation among all constructs. Fourier transform infrared spectrometry showed that all groups consisted of oxygen–hydrogen bonds (O-H) and amide I, II, and III. In conclusion, the Col/C4S/DFCM constructs maintain the characteristics of native collagen and can synergistically deliver essential biomolecules for future use in skin therapeutic applications.
Collapse
|
20
|
Design and evaluation of Konjac glucomannan-based bioactive interpenetrating network (IPN) scaffolds for engineering vascularized bone tissues. Int J Biol Macromol 2020; 143:30-40. [DOI: 10.1016/j.ijbiomac.2019.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/12/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023]
|
21
|
Chen J, Cai Z, Wei Q, Wang D, Wu J, Tan Y, Lu J, Ai H. Proanthocyanidin-crosslinked collagen/konjac glucomannan hydrogel with improved mechanical properties and MRI trackable biodegradation for potential tissue engineering scaffolds. J Mater Chem B 2019; 8:316-331. [PMID: 31819938 DOI: 10.1039/c9tb02053e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Collagen (Col) has been intensively exploited as a biomaterial for its excellent biocompatibility, biodegradation and bioactivity. However, the poor mechanical properties and rapid biodegradation of reconstituted collagen hydrogels have always been the bottlenecks for their further development especially for vascular tissue engineering. Herein, based on the self-assembly characteristics of collagen, a ternary hydrogel scaffold, comprising rigid collagen molecules, flexible konjac glucomannan (KGM) chains and biocompatible crosslinkers of proanthocyanidin (PA), has been designed to achieve a synergistic interaction for essentially optimizing the mechanical properties of the so-obtained Col/KGM/PA hydrogel, which possesses not only substantially improved strength but also good elasticity. PA endows these scaffolds with controllable biodegradation and anti-calcification and antioxidant activities. TEM discovered the co-existence of two types of fibrils with distinctly different arrangement patterns, explaining the contribution of KGM macromolecules to elasticity generation. The in vivo variations of Col/KGM/PA implants are visualized in real-time by magnetic resonance imaging (MRI). Moreover, a quantitative technique of MRI T2-mapping combined with histology is designed to visualize the in vivo biodegradation mechanism of layer-by-layer erosion for these hydrogels. Simultaneously, three different relationships between the respective processes of in vivo degradation and in vivo dehydration of these controlled hydrogel implants were clearly revealed by this technique. Such a designed Col/KGM/PA composite hydrogel realizes the essential integration of good biocompatibility, controllable biodegradation and improved mechanical properties for developing a desired scaffold material for tissue engineering applications.
Collapse
Affiliation(s)
- Jinlin Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Qingrong Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Dan Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jun Wu
- School of medical imaging, North Sichuan Medical College, Nanchong, 637000, China
| | - Yanfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Jian Lu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
22
|
Karathanasopoulos N, Ganghoffer JF. Exploiting Viscoelastic Experimental Observations and Numerical Simulations to Infer Biomimetic Artificial Tendon Fiber Designs. Front Bioeng Biotechnol 2019; 7:85. [PMID: 31134193 PMCID: PMC6513967 DOI: 10.3389/fbioe.2019.00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/05/2019] [Indexed: 11/18/2022] Open
Abstract
Designing biomimetic artificial tendons requires a thorough, data-based understanding of the tendon's inner material properties. The current work exploits viscoelastic experimental observations at the tendon fascicle scale, making use of mechanical and data analysis methods. More specifically, based on reported elastic, volumetric and relaxation fascicle scale properties, we infer most probable, mechanically compatible material attributes at the fiber scale. In particular, the work provides pairs of elastic and viscous fiber-scale moduli, which can reproduce the upper scale tendon mechanics. The computed range of values for the fiber-scale tendon viscosity attest to the substantial stress relaxation capabilities of tendons. More importantly, the reported mechanical parameters constitute a basis for the design of tendon-specific restoration materials, such as fiber-based, engineering scaffolds.
Collapse
|
23
|
Veeruraj A, Liu L, Zheng J, Wu J, Arumugam M. Evaluation of astaxanthin incorporated collagen film developed from the outer skin waste of squid Doryteuthis singhalensis for wound healing and tissue regenerative applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 95:29-42. [PMID: 30573252 DOI: 10.1016/j.msec.2018.10.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 08/26/2018] [Accepted: 10/15/2018] [Indexed: 11/26/2022]
Abstract
The present investigation was aimed to evaluate in vivo wound healing activity of astaxanthin incorporated collagen hydrogel film biomaterials extracted from the outer skin waste of squid Doryteuthis singhalensis, to releases antibiotic, delivering potentialities of excisional and incisional wound model in Wistar rats. These results suggested that the astaxanthin incorporated collagen film (ACF) and gentamicin incorporated collagen film (GCF) exhibited excellent wound healing activity (71%) in both full thickness excision and linear incision in rats. The in-vitro antioxidant abilities of extracted astaxanthin exhibited strongly significant 1,1‑diphenyl‑2‑picrylhydrazyl (DPPH) radical scavenging activity. In addition, tensile strength, epithelialization, hydroxyproline content and protein content in ACF and GCF treated groups were significantly increased. Histopathological assessment revealed an increase in collagen content, fibroblasts, granulation, thickness of scar formation, effective neovascularization and faster epithelialization within the short duration after the treatment of ACF and GCF compared to the control groups. The structure of prepared ACF and GCF biomaterials were characterized by SEM, EDS, and XRD. The in vivo biological study of the collagen-based film releases the antibiotic substance. The composite of collagen based biomaterials displays a promising biocompatibility through the dermal wound healing process as well as an evidence of biodegradability. Thus, the marine-derived biomaterials gave a substantial pledge for the development of biodegradable materials in drug delivery and soft tissue regeneration process.
Collapse
Affiliation(s)
- Anguchamy Veeruraj
- Fuli Institute of Food Science (FIFS), College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamilnadu, India; ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Ling Liu
- Fuli Institute of Food Science (FIFS), College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jiexia Zheng
- Fuli Institute of Food Science (FIFS), College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jianping Wu
- Fuli Institute of Food Science (FIFS), College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Muthuvel Arumugam
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamilnadu, India
| |
Collapse
|