1
|
He L. Biomaterials for Regenerative Cranioplasty: Current State of Clinical Application and Future Challenges. J Funct Biomater 2024; 15:84. [PMID: 38667541 PMCID: PMC11050949 DOI: 10.3390/jfb15040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Acquired cranial defects are a prevalent condition in neurosurgery and call for cranioplasty, where the missing or defective cranium is replaced by an implant. Nevertheless, the biomaterials in current clinical applications are hardly exempt from long-term safety and comfort concerns. An appealing solution is regenerative cranioplasty, where biomaterials with/without cells and bioactive molecules are applied to induce the regeneration of the cranium and ultimately repair the cranial defects. This review examines the current state of research, development, and translational application of regenerative cranioplasty biomaterials and discusses the efforts required in future research. The first section briefly introduced the regenerative capacity of the cranium, including the spontaneous bone regeneration bioactivities and the presence of pluripotent skeletal stem cells in the cranial suture. Then, three major types of biomaterials for regenerative cranioplasty, namely the calcium phosphate/titanium (CaP/Ti) composites, mineralised collagen, and 3D-printed polycaprolactone (PCL) composites, are reviewed for their composition, material properties, and findings from clinical trials. The third part discusses perspectives on future research and development of regenerative cranioplasty biomaterials, with a considerable portion based on issues identified in clinical trials. This review aims to facilitate the development of biomaterials that ultimately contribute to a safer and more effective healing of cranial defects.
Collapse
Affiliation(s)
- Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
2
|
Mattavelli D, Verzeletti V, Deganello A, Fiorentino A, Gualtieri T, Ferrari M, Taboni S, Anfuso W, Ravanelli M, Rampinelli V, Grammatica A, Buffoli B, Maroldi R, Elisabetta C, Rezzani R, Nicolai P, Piazza C. Computer-aided designed 3D-printed polymeric scaffolds for personalized reconstruction of maxillary and mandibular defects: a proof-of-concept study. Eur Arch Otorhinolaryngol 2024; 281:1493-1503. [PMID: 38170208 PMCID: PMC10857968 DOI: 10.1007/s00405-023-08392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE To investigate the potential reconstruction of complex maxillofacial defects using computer-aided design 3D-printed polymeric scaffolds by defining the production process, simulating the surgical procedure, and explore the feasibility and reproducibility of the whole algorithm. METHODS This a preclinical study to investigate feasibility, reproducibility and efficacy of the reconstruction algorithm proposed. It encompassed 3 phases: (1) scaffold production (CAD and 3D-printing in polylactic acid); (2) surgical simulation on cadaver heads (navigation-guided osteotomies and scaffold fixation); (3) assessment of reconstruction (bone and occlusal morphological conformance, symmetry, and mechanical stress tests). RESULTS Six cadaver heads were dissected. Six types of defects (3 mandibular and 3 maxillary) with different degree of complexity were tested. In all case the reconstruction algorithm could be successfully completed. Bone morphological conformance was optimal while the occlusal one was slightly higher. Mechanical stress tests were good (mean value, 318.6 and 286.4 N for maxillary and mandibular defects, respectively). CONCLUSIONS Our reconstructive algorithm was feasible and reproducible in a preclinical setting. Functional and aesthetic outcomes were satisfactory independently of the complexity of the defect.
Collapse
Affiliation(s)
- Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili of Brescia, Brescia, Italy.
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy.
| | - Vincenzo Verzeletti
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua-Azienda Ospedale Università di Padova, Padua, Italy
| | - Alberto Deganello
- Otolaryngology Head and Neck Surgery Department of IRCCS, National Cancer Institute (INT), Milan, Italy
| | - Antonio Fiorentino
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Tommaso Gualtieri
- Department of Otorhinolaryngology, Head and Neck Surgery, "Nuovo Santo Stefano" Civil Hospital, Prato, Italy
| | - Marco Ferrari
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua-Azienda Ospedale Università di Padova, Padua, Italy
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
| | - Stefano Taboni
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua-Azienda Ospedale Università di Padova, Padua, Italy
- Artificial Intelligence in Medicine and Innovation in Clinical Research and Methodology (PhD Program), Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - William Anfuso
- Otolaryngology Head and Neck Surgery Department of IRCCS, National Cancer Institute (INT), Milan, Italy
| | - Marco Ravanelli
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy
- Unit of Radiology, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Vittorio Rampinelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alberto Grammatica
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Barbara Buffoli
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, School of Medicine, Brescia, Italy
| | - Roberto Maroldi
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy
- Unit of Radiology, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Ceretti Elisabetta
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, School of Medicine, Brescia, Italy
| | - Piero Nicolai
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua-Azienda Ospedale Università di Padova, Padua, Italy
| | - Cesare Piazza
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy
| |
Collapse
|
3
|
Liu H, Chen H, Han Q, Sun B, Liu Y, Zhang A, Fan D, Xia P, Wang J. Recent advancement in vascularized tissue-engineered bone based on materials design and modification. Mater Today Bio 2023; 23:100858. [PMID: 38024843 PMCID: PMC10679779 DOI: 10.1016/j.mtbio.2023.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bone is one of the most vascular network-rich tissues in the body and the vascular system is essential for the development, homeostasis, and regeneration of bone. When segmental irreversible damage occurs to the bone, restoring its vascular system by means other than autogenous bone grafts with vascular pedicles is a therapeutic challenge. By pre-generating the vascular network of the scaffold in vivo or in vitro, the pre-vascularization technique enables an abundant blood supply in the scaffold after implantation. However, pre-vascularization techniques are time-consuming, and in vivo pre-vascularization techniques can be damaging to the body. Critical bone deficiencies may be filled quickly with immediate implantation of a supporting bone tissue engineered scaffold. However, bone tissue engineered scaffolds generally lack vascularization, which requires modification of the scaffold to aid in enhancing internal vascularization. In this review, we summarize the relationship between the vascular system and osteogenesis and use it as a basis to further discuss surgical and cytotechnology-based pre-vascularization strategies and to describe the preparation of vascularized bone tissue engineered scaffolds that can be implanted immediately. We anticipate that this study will serve as inspiration for future vascularized bone tissue engineered scaffold construction and will aid in the achievement of clinical vascularized bone.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Qin Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Bin Sun
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Danyang Fan
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
4
|
Gao J, Liu X, Cheng J, Deng J, Han Z, Li M, Wang X, Liu J, Zhang L. Application of photocrosslinkable hydrogels based on photolithography 3D bioprinting technology in bone tissue engineering. Regen Biomater 2023; 10:rbad037. [PMID: 37250979 PMCID: PMC10219790 DOI: 10.1093/rb/rbad037] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/31/2023] Open
Abstract
Bone tissue engineering (BTE) has been proven to be an effective method for the treatment of bone defects caused by different musculoskeletal disorders. Photocrosslinkable hydrogels (PCHs) with good biocompatibility and biodegradability can significantly promote the migration, proliferation and differentiation of cells and have been widely used in BTE. Moreover, photolithography 3D bioprinting technology can notably help PCHs-based scaffolds possess a biomimetic structure of natural bone, meeting the structural requirements of bone regeneration. Nanomaterials, cells, drugs and cytokines added into bioinks can enable different functionalization strategies for scaffolds to achieve the desired properties required for BTE. In this review, we demonstrate a brief introduction of the advantages of PCHs and photolithography-based 3D bioprinting technology and summarize their applications in BTE. Finally, the challenges and potential future approaches for bone defects are outlined.
Collapse
Affiliation(s)
| | | | | | - Junhao Deng
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100036, China
| | - Zhenchuan Han
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100036, China
| | - Ming Li
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100036, China
| | - Xiumei Wang
- Correspondence address: E-mail: (X.W); (J.L.); (L.Z.)
| | - Jianheng Liu
- Correspondence address: E-mail: (X.W); (J.L.); (L.Z.)
| | - Licheng Zhang
- Correspondence address: E-mail: (X.W); (J.L.); (L.Z.)
| |
Collapse
|
5
|
Chen W, Zhang R, Jia S, Cui Y, Zhao K, Wang T, Lv H, Zhu Y, Tian H, Wang B, Li J, Wang T, Lyu SR, Wang J, Zhang Y. Proximal tibia osteotomy with absorbable spacer combined with fibular osteotomy versus high tibial osteotomy for medial compartmental knee osteoarthritis. INTERNATIONAL ORTHOPAEDICS 2023:10.1007/s00264-023-05808-8. [PMID: 37074375 DOI: 10.1007/s00264-023-05808-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 04/20/2023]
Abstract
PURPOSE The study aimed to compare the perioperative complications, short-term clinical outcomes, patient-reported outcomes, and radiographic parameters of tibiofibular proximal osteotomy combined with absorbable spacer insertion (TPOASI) and open-wedge high tibial osteotomy (OWHTO) in a two year postoperative time period. METHODS A total of 160 patients with Kellgren-Lawrence classification grade 3 medial compartmental knee OA were randomized to receive either TPOASI (n = 82) or OWHTO (n = 78). The primary and secondary outcomes were measured preoperatively, postoperatively, and at each follow-up examination. The primary outcomes were the between-group change in the Western Ontario and McMaster Universities Global score (WOMAC). Secondary measures included visual analog scale (VAS), radiographic parameters, American Knee Society Score (KSS), operation time, blood loss, length of incision, hospital stay, and relevant complications. Postoperative radiographic parameters, including the femorotibial angle (FTA), varus angle (VA), and joint line convergence angle (JLCA), were measured to evaluate the correction of varus deformity. RESULTS No significant differences were found in the baseline data between the two groups. Both methods improved functional status and pain postoperatively. For primary outcomes of both groups, statistical difference was observed in WOMAC scores at the 6-month follow-up (P < 0.001). For secondary outcomes, no statistical difference was observed between the groups during the 2-year follow-up (P > 0.05). For TPOASI vs. OWHTO, the mean hospital stay (6.6 ± 1.3 days vs. 7.8 ± 2.1 days) was shorter (P < 0.001), and both blood loss (70.56 ± 35.58 vs. 174.00 ± 66.33 mL) and complication rate (3.7% vs. 12.8%) were significantly lower (P < 0.005 for both). CONCLUSIONS Both approaches showed satisfactory functional outcomes and alleviated pain. However, TPOASI is a simple, feasible method with few complications, and it could be widely used.
Collapse
Affiliation(s)
- Wei Chen
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
| | - Ruipeng Zhang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
| | - Siming Jia
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
| | - Yunwei Cui
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
| | - Kuo Zhao
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
| | - Tianrui Wang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Hongzhi Lv
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
| | - Yanbin Zhu
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
| | - Hongtao Tian
- Department of Orthopedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Bo Wang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
| | - Jidong Li
- Department of Orthopedic Surgery, Jingxing Xian Hospital, No. 20 Jianshe South Road, Jingxing, 050300, China
| | - Tonglin Wang
- Department of Orthopedic Surgery, Lincheng People's Hospital, No. 86 Linquan Road, Lincheng, 054399, China
| | - Shaw-Ruey Lyu
- International Health Promotion Center of the Knee Tzu-Chi Dalin General Hospital, Min-Shen Road, Dalin, Chiayi, Taiwan, 222
| | - Juan Wang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China.
- NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Shijiazhuang, China.
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, People's Republic of China.
| | - Yingze Zhang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China.
- NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Shijiazhuang, China.
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
6
|
Niu Y, Du T, Liu Y. Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials. J Funct Biomater 2023; 14:jfb14040212. [PMID: 37103302 PMCID: PMC10146666 DOI: 10.3390/jfb14040212] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Bone has a special structure that is both stiff and elastic, and the composition of bone confers it with an exceptional mechanical property. However, bone substitute materials that are made of the same hydroxyapatite (HA) and collagen do not offer the same mechanical properties. It is important for bionic bone preparation to understand the structure of bone and the mineralization process and factors. In this paper, the research on the mineralization of collagen is reviewed in terms of the mechanical properties in recent years. Firstly, the structure and mechanical properties of bone are analyzed, and the differences of bone in different parts are described. Then, different scaffolds for bone repair are suggested considering bone repair sites. Mineralized collagen seems to be a better option for new composite scaffolds. Last, the paper introduces the most common method to prepare mineralized collagen and summarizes the factors influencing collagen mineralization and methods to analyze its mechanical properties. In conclusion, mineralized collagen is thought to be an ideal bone substitute material because it promotes faster development. Among the factors that promote collagen mineralization, more attention should be given to the mechanical loading factors of bone.
Collapse
Affiliation(s)
- Yumiao Niu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Youjun Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Abstract
Collagen is commonly used as a regenerative biomaterial due to its excellent biocompatibility and wide distribution in tissues. Different kinds of hybridization or cross-links are favored to offer improvements to satisfy various needs of biomedical applications. Previous reviews have been made to introduce the sources and structures of collagen. In addition, biological and mechanical properties of collagen-based biomaterials, their modification and application forms, and their interactions with host tissues are pinpointed. However, there is still no review about collagen-based biomaterials for tissue engineering. Therefore, we aim to summarize and discuss the progress of collagen-based materials for tissue regeneration applications in this review. We focus on the utilization of collagen-based biomaterials for bones, cartilages, skin, dental, neuron, cornea, and urological applications and hope these experiences and outcomes can provide inspiration and practical techniques for the future development of collagen-based biomaterials in related application fields. Moreover, future improving directions and challenges for collagen-based biomaterials are proposed as well.
Collapse
Affiliation(s)
- Yiyu Wang
- Department of Prosthodontics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Yan Dong
- Department of Prosthodontics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
8
|
Townsend JM, Kiyotake EA, Easley J, Seim HB, Stewart HL, Fung KM, Detamore MS. Comparison of a Thiolated Demineralized Bone Matrix Hydrogel to a Clinical Product Control for Regeneration of Large Sheep Cranial Defects. MATERIALIA 2023; 27:101690. [PMID: 36743831 PMCID: PMC9897238 DOI: 10.1016/j.mtla.2023.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Regeneration of calvarial bone remains a major challenge in the clinic as available options do not sufficiently regenerate bone in larger defect sizes. Calvarial bone regeneration cases involving secondary medical conditions, such as brain herniation during traumatic brain injury (TBI) treatment, further exacerbate treatment options. Hydrogels are well-positioned for severe TBI treatment, given their innate flexibility and potential for bone regeneration to treat TBI in a single-stage surgery. The current study evaluated a photocrosslinking pentenoate-modified hyaluronic acid polymer with thiolated demineralized bone matrix (i.e., TDBM hydrogel) capable of forming a completely interconnected hydrogel matrix for calvarial bone regeneration. The TDBM hydrogel demonstrated a setting time of 120 s, working time of 3 to 7 days, negligible change in setting temperature, physiological setting pH, and negligible cytotoxicity, illustrating suitable performance for in vivo application. Side-by-side ovine calvarial bone defects (19 mm diameter) were employed to compare the TDBM hydrogel to the standard-of-care control material DBX®. After 16 weeks, the TDBM hydrogel had comparable healing to DBX® as demonstrated by mechanical push-out testing (~800 N) and histology. Although DBX® had 59% greater new bone volume compared to the TDBM hydrogel via micro-computed tomography, both demonstrated minimal bone regeneration overall (15 to 25% of defect volume). The current work presents a method for comparing the regenerative potential of new materials to clinical products using a side-by-side cranial bone defect model. Comparison of novel biomaterials to a clinical product control (i.e., standard-of-care) provides an important baseline for successful regeneration and potential for clinical translation.
Collapse
Affiliation(s)
| | - Emi A. Kiyotake
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Jeremiah Easley
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523
| | - Howard B. Seim
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523
| | - Holly L. Stewart
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
9
|
Pal P, Tucci MA, Fan LW, Bollavarapu R, Lee JW, Salazar Marocho SM, Janorkar AV. Functionalized Collagen/Elastin-like Polypeptide Hydrogels for Craniofacial Bone Regeneration. Adv Healthc Mater 2023; 12:e2202477. [PMID: 36507565 DOI: 10.1002/adhm.202202477] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Critical-sized cranial bone defects fail to re-ossify and require the surgical intervention of cranioplasty. To achieve superior bone healing in such cases, a hydrogel consisting of an interpenetrating network of collagen and elastin-like polypeptide to encapsulate bone morphogenetic protein-2 (BMP-2), doxycycline, and 45S5 Bioglass is developed. This hydrogel has an appropriate elastic modulus of 39 ± 2.2 kPa to allow proper handling during implantation. The hydrogel promotes human adipose-derived stem attachment, proliferation, and differentiation toward the osteogenic lineage, including the deposition of hydroxyapatite particles embedded within a collagenous fibrillar structure after 21 days of in vitro culture. After eight weeks of implantation of the acellular hydrogel in a critical-sized rat cranial defect model, only a small quantity of various pro-inflammatory (< 20 pg mg-1 ) and anti-inflammatory (< 10 pg mg-1 ) factors in the adjacent cranial tissue is noticed, indicating the overall biocompatibility of the hydrogel. Scanning electron microscopy evidenced the presence of new fibrous extracellular matrix and mineral aggregates at the defect site, with calcium/phosphorus ratio of 0.5 and 2.0 by eight and twelve weeks, respectively. Microcomputed tomography (Micro-CT) and histological analyses showed formation of mature mineralized tissue that bridged with the surrounding bone. Taken together, the acellular composite hydrogel shows great promise for superior bone healing after cranioplasty.
Collapse
Affiliation(s)
- Pallabi Pal
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Michelle A Tucci
- Department of Anesthesiology, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Lir-Wan Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Ratna Bollavarapu
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Jonathan W Lee
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Susana M Salazar Marocho
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Amol V Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| |
Collapse
|
10
|
Liu C, Wang C, Yang J. PCL-nHAC/Mg-Ca alloy composite and preliminary study of its osteogenesis property. J Biomater Appl 2023; 37:1218-1227. [PMID: 36169009 DOI: 10.1177/08853282221130273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Owing to their excellent properties, magnesium alloys are widely used in bone tissue engineering. However, considerable work has been conducted to control the degradation rate and improve the cytocompatibility of magnesium alloys. In this study, low-cost production introduced a new bone repair composite (PCL-nHAC/Mg-Ca), which was composed of nano-hydroxylapatite-collagen (nHAC), polycaprolactone (PCL) and Mg-Ca alloy substrate treated by micro- arc oxidation (MAO). The experimental results showed that compared with the Mg-Ca alloy treated by MAO alone, the PCL-nHAC/Mg-Ca composite has a porous structure and a slower degradation rate. Cell experiments showed that the PCL-nHAC/Mg-Ca composite had good biocompatibility and significantly enhanced the proliferation of the MC3T3-E1 cells. The rabbit skull defect model further proved that the PCL-nHAC/Mg-Ca composite could regulate the degradation rate of the Mg-Ca alloy and promote the formation of bone tissue. Histological analyses showed that the PCL-nHAC/Mg-Ca composite had good stability in vivo and could better accelerate bone formation.
Collapse
Affiliation(s)
- Congying Liu
- Department of Prosthodontics, 154516Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chengyue Wang
- Department of Prosthodontics, 154516Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | | |
Collapse
|
11
|
Zhang Y, Cao C, Li J, Liu C, Mi K, Zhang X. Platelet-rich fibrin combined with new bone graft material for mandibular defect repair: A in vivo study on rabbits. Dent Mater J 2023; 42:241-247. [PMID: 36624073 DOI: 10.4012/dmj.2022-076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Insufficient bone mass is still a difficult point to be solved in oral implantation, so new bone graft materials are continuously researched and discussed in clinical practice in order to obtain better bone augmentation. In order to explore whether platelet-rich fibrin (PRF) can promote the formation of new bone in mineralized collagen (MC), MC/PRF and pure MC were implanted into the bilateral mandibular defect model in rabbits, respectively. Micro-CT scan and histological evaluation of the target area at 4, 8, and 12 weeks after operation. The results of Micro-CT three-dimensional reconstruction analysis showed that the ratio of bone volume to total volume (BV/TV), trabecular bone number (Tb.N), trabecular bone thickness (Tb.Th) and trabecular bone separation (Tb.Sp) and residual material volume fraction (RMVF) in the MC/PRF group were better than those in the MC group (p<0.05). The results of HE and Masson staining showed that the new bone formation and material degradation rate of the MC/PRF group were better than those of the MC group. The results suggest that PRF can accelerate the formation of new bone in MC, and provide new ideas for the clinical application of new bone graft materials.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Stomatology, The General Hospital of the Northern Theater Command of the Chinese People's Liberation Army
| | - Can Cao
- Department of Stomatology, The General Hospital of the Northern Theater Command of the Chinese People's Liberation Army
| | - Jun Li
- Department of Stomatology, The General Hospital of the Northern Theater Command of the Chinese People's Liberation Army
| | - Chi Liu
- Department of Stomatology, The General Hospital of the Northern Theater Command of the Chinese People's Liberation Army
| | - Ketong Mi
- Department of Stomatology, The General Hospital of the Northern Theater Command of the Chinese People's Liberation Army
| | - Xiaodong Zhang
- Department of Stomatology, The General Hospital of the Northern Theater Command of the Chinese People's Liberation Army
| |
Collapse
|
12
|
Doyle ME, Dalgarno K, Masoero E, Ferreira AM. Advances in biomimetic collagen mineralisation and future approaches to bone tissue engineering. Biopolymers 2023; 114:e23527. [PMID: 36444710 PMCID: PMC10078151 DOI: 10.1002/bip.23527] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Abstract
With an ageing world population and ~20% of adults in Europe being affected by bone diseases, there is an urgent need to develop advanced regenerative approaches and biomaterials capable to facilitate tissue regeneration while providing an adequate microenvironment for cells to thrive. As the main components of bone are collagen and apatite mineral, scientists in the tissue engineering field have attempted in combining these materials by using different biomimetic approaches to favour bone repair. Still, an ideal bone analogue capable of mimicking the distinct properties (i.e., mechanical properties, degradation rate, porosity, etc.) of cancellous bone is to be developed. This review seeks to sum up the current understanding of bone tissue mineralisation and structure while providing a critical outlook on the existing biomimetic strategies of mineralising collagen for bone tissue engineering applications, highlighting where gaps in knowledge exist.
Collapse
Affiliation(s)
| | - Kenny Dalgarno
- School of EngineeringNewcastle UniversityNewcastle upon TyneUK
| | | | | |
Collapse
|
13
|
Faccioli E, Verzeletti V, Rea F, Schiavon M. Lung donation after circulatory death: A single-centre experience with uncontrolled donors with some considerations. TRANSPLANTATION REPORTS 2022. [DOI: 10.1016/j.tpr.2022.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
Zhao Q, Gao S. Poly (Butylene Succinate)/Silicon Nitride Nanocomposite with Optimized Physicochemical Properties, Biocompatibility, Degradability, and Osteogenesis for Cranial Bone Repair. J Funct Biomater 2022; 13:jfb13040231. [PMID: 36412871 PMCID: PMC9680472 DOI: 10.3390/jfb13040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Congenital disease, tumors, infections, and trauma are the main reasons for cranial bone defects. Herein, poly (butylene succinate) (PB)/silicon nitride (Si3N4) nanocomposites (PSC) with Si3N4 content of 15 w% (PSC15) and 30 w% (PSC30) were fabricated for cranial bone repair. Compared with PB, the compressive strength, hydrophilicity, surface roughness, and protein absorption of nanocomposites were increased with the increase in Si3N4 content (from 15 w% to 30 w%). Furthermore, the cell adhesion, multiplication, and osteoblastic differentiation on PSC were significantly enhanced with the Si3N4 content increasing in vitro. PSC30 exhibited optimized physicochemical properties (compressive strength, surface roughness, hydrophilicity, and protein adsorption) and cytocompatibility. The m-CT and histological results displayed that the new bone formation for SPC30 obviously increased compared with PB, and PSC30 displayed proper degradability (75.3 w% at 12 weeks) and was gradually replaced by new bone tissue in vivo. The addition of Si3N4 into PB not only optimized the surface performances of PSC but also improved the degradability of PSC, which led to the release of Si ions and a weak alkaline environment that significantly promoted cell response and tissue regeneration. In short, the enhancements of cellular responses and bone regeneration of PSC30 were attributed to the synergism of the optimized surface performances and slow release of Si ion, and PSC30 were better than PB. Accordingly, PSC30, with good biocompatibility and degradability, displayed a promising and huge potential for cranial bone construction.
Collapse
|
15
|
Duan G, Li C, Yan X, Yang S, Wang S, Sun X, Zhao L, Song T, Pan Y, Wang X. Construction of a mineralized collagen nerve conduit for peripheral nerve injury repair. Regen Biomater 2022; 10:rbac089. [PMID: 36683739 PMCID: PMC9847629 DOI: 10.1093/rb/rbac089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 01/19/2023] Open
Abstract
A new nerve guidance conduits (NGCs) named MC@Col containing Type I collagen (Col) and mineralized collagen (MC) was developed, enhancing mechanical and degradation behavior. The physicochemical properties, the mechanical properties and in vitro degradation behavior were all evaluated. The adhesion and proliferation of Schwann cells (SCs) were observed. In the in vivo experiment, MC@Col NGC and other conduits including Col, chitosan (CST) and polycaprolactone (PCL) conduit were implanted to repair a 10-mm-long Sprague-Dawley rat's sciatic nerve defect. Histological analyses, morphological analyses, electrophysiological analyses and further gait analyses were all evaluated after implantation in 12 weeks. The strength and degradation performance of the MC@Col NGC were improved by the addition of MC in comparison with pure Col NGC. In vitro cytocompatibility evaluation revealed that the SCs had good viability, attachment and proliferation in the MC@Col. In in vivo results, the regenerative outcomes of MC@Col NGC were close to those by an autologous nerve graft in some respects, but superior to those by Col, CST and PCL conduits. The MC@Col NGC exhibited good mechanical performance as well as biocompatibility to bridge nerve gap and guide nerve regeneration, thus showing great promising potential as a new type of conduit in clinical applications.
Collapse
Affiliation(s)
- Guman Duan
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China,Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Chengli Li
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China,Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xiaoqing Yan
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China,Department of Orthopedics, Beijing Changping District Hospital, Beijing 102202, China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Tianxi Song
- Beijing Allgens Medical Science and Technology Co., Ltd, Beijing 100176, China
| | - Yongwei Pan
- Correspondence address. Tel: 86-10-62782966, E-mail: (X.W.); (Y.P.)
| | - Xiumei Wang
- Correspondence address. Tel: 86-10-62782966, E-mail: (X.W.); (Y.P.)
| |
Collapse
|
16
|
Rothweiler R, Kuhn S, Stark T, Heinemann S, Hoess A, Fuessinger MA, Brandenburg LS, Roelz R, Metzger MC, Hubbe U. Development of a new critical size defect model in the paranasal sinus and first approach for defect reconstruction-An in vivo maxillary bone defect study in sheep. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:76. [PMID: 36264396 PMCID: PMC9584845 DOI: 10.1007/s10856-022-06698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Fractures of the paranasal sinuses often require surgical intervention. Persisting bone defects lead to permanent visible deformities of the facial contours. Bone substitutes for reconstruction of defects with simultaneous induction of new bone formation are not commercially available for the paranasal sinus. New materials are urgently needed and have to be tested in their future area of application. For this purpose critical size defect models for the paranasal sinus have to be developed. A ≥2.4 cm large bilateral circular defect was created in the anterior wall of the maxillary sinus in six sheep via an extraoral approach. The defect was filled with two types of an osteoconductive titanium scaffold (empty scaffold vs. scaffold filled with a calcium phosphate bone cement paste) or covered with a titanium mesh either. Sheep were euthanized after four months. All animals performed well, no postoperative complications occured. Meshes and scaffolds were safely covered with soft tissue at the end of the study. The initial defect size of ≥2.4 cm only shrunk minimally during the investigation period confirming a critical size defect. No ingrowth of bone into any of the scaffolds was observed. The anterior wall of the maxillary sinus is a region with low complication rate for performing critical size defect experiments in sheep. We recommend this region for experiments with future scaffold materials whose intended use is not only limited to the paranasal sinus, as the defect is challenging even for bone graft substitutes with proven osteoconductivity. Graphical abstract.
Collapse
Affiliation(s)
- R Rothweiler
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| | - S Kuhn
- Stryker Leibinger GmbH & Co. KG, Bötzinger Straße 41, 79111, Freiburg, Germany
| | - T Stark
- Stryker Leibinger GmbH & Co. KG, Bötzinger Straße 41, 79111, Freiburg, Germany
| | - S Heinemann
- INNOTERE GmbH, Meissner Str. 191, 01445, Radebeul, Germany
| | - A Hoess
- INNOTERE GmbH, Meissner Str. 191, 01445, Radebeul, Germany
| | - M A Fuessinger
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - L S Brandenburg
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - R Roelz
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - M C Metzger
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - U Hubbe
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| |
Collapse
|
17
|
Park Y, Lin S, Bai Y, Moeinzadeh S, Kim S, Huang J, Lee U, Huang NF, Yang YP. Dual Delivery of BMP2 and IGF1 Through Injectable Hydrogel Promotes Cranial Bone Defect Healing. Tissue Eng Part A 2022; 28:760-769. [PMID: 35357948 PMCID: PMC9508443 DOI: 10.1089/ten.tea.2022.0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/29/2022] [Indexed: 11/12/2022] Open
Abstract
Critical-sized cranial bone defect remains a great clinical challenge. With advantages in regenerative medicine, injectable hydrogels incorporated with bioactive molecules show great potential in promoting cranial bone repair. Recently, we developed a dual delivery system by sequential release of bone morphogenetic protein 2 (BMP2) followed by insulin-like growth factor 1 (IGF1) in microparticles (MPs), and an injectable alginate/collagen (alg/col)-based hydrogel. In this study, we aim to evaluate the effect of dual delivery of BMP2 and IGF1 in MPs through the injectable hydrogel in critical-sized cranial bone defect healing. The gelatin MPs loaded with BMP2 and poly(lactic-co-glycolic acid)-poly(ethylene glycol)-carboxyl (PLGA-PEG-COOH) MPs loaded with IGF1 were prepared, respectively. The encapsulation efficiency and release profile of growth factors in MPs were measured. A cranial defect model was applied to evaluate the efficacy of the dual delivery system in bone regeneration. Adult Sprague Dawley rats were subjected to osteotomy to make an ⌀8-mm cranial defect. The injectable hydrogel containing MPs loaded with BMP2 (2 μg), IGF1 (2 μg), or a combination of BMP2 (1 μg) and IGF1 (1 μg) were injected to the defect site. New bone formation was evaluated by microcomputed tomography, histological analysis, and immunohistochemistry after 4 or 8 weeks. Data showed that dual delivery of the low-dose BMP2 and IGF1 in MPs through alg/col-based hydrogel successfully restored cranial bone as early as 4 weeks after implantation, whose effect was comparable to the single delivery of high-dose BMP2 in MPs. In conclusion, this study suggests that dual delivery of BMP2 and IGF1 in MPs in alg/col-based hydrogel achieves early bone regeneration in critical-sized bone defect, with advantage in reducing the dose of BMP2. Impact Statement Sequential release of bone morphogenetic protein 2 (BMP2) followed by insulin-like growth factor 1 (IGF1) in two different microparticles promotes critical-sized bone defect healing. This dual delivery system reduces the dose of BMP2 by supplementing IGF1, which may diminish the potential side effects of BMP2.
Collapse
Affiliation(s)
- YoungBum Park
- Department of Orthopedic Surgery, Stanford University, Stanford, California, USA
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul, Korea
| | - Sien Lin
- Department of Orthopedic Surgery, Stanford University, Stanford, California, USA
| | - Yan Bai
- Department of Orthopedic Surgery, Stanford University, Stanford, California, USA
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Seyedsina Moeinzadeh
- Department of Orthopedic Surgery, Stanford University, Stanford, California, USA
| | - Sungwoo Kim
- Department of Orthopedic Surgery, Stanford University, Stanford, California, USA
| | - Jianping Huang
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul, Korea
| | - Uilyong Lee
- Department of Oral and Maxillofacial Surgery, Chung-Ang University Hospital, Seoul, Korea
| | - Ngan Fong Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA
| | - Yunzhi Peter Yang
- Department of Orthopedic Surgery, Stanford University, Stanford, California, USA
- Department of Materials Science and Engineering, and Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
18
|
Zhao Y, Zhao S, Ma Z, Ding C, Chen J, Li J. Chitosan-Based Scaffolds for Facilitated Endogenous Bone Re-Generation. Pharmaceuticals (Basel) 2022; 15:ph15081023. [PMID: 36015171 PMCID: PMC9414235 DOI: 10.3390/ph15081023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
Facilitated endogenous tissue engineering, as a facile and effective strategy, is emerging for use in bone tissue regeneration. However, the development of bioactive scaffolds with excellent osteo-inductivity to recruit endogenous stem cells homing and differentiation towards lesion areas remains an urgent problem. Chitosan (CS), with versatile qualities including good biocompatibility, biodegradability, and tunable physicochemical and biological properties is undergoing vigorously development in the field of bone repair. Based on this, the review focus on recent advances in chitosan-based scaffolds for facilitated endogenous bone regeneration. Initially, we introduced and compared the facilitated endogenous tissue engineering with traditional tissue engineering. Subsequently, the various CS-based bone repair scaffolds and their fabrication methods were briefly explored. Furthermore, the functional design of CS-based scaffolds in bone endogenous regeneration including biomolecular loading, inorganic nanomaterials hybridization, and physical stimulation was highlighted and discussed. Finally, the major challenges and further research directions of CS-based scaffolds were also elaborated. We hope that this review will provide valuable reference for further bone repair research in the future.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Sinuo Zhao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhengxin Ma
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chunmei Ding
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- Correspondence: (C.D.); (J.C.); (J.L.)
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China
- Correspondence: (C.D.); (J.C.); (J.L.)
| | - Jianshu Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
- Correspondence: (C.D.); (J.C.); (J.L.)
| |
Collapse
|
19
|
Wang R, Che L, Feng Q, Cai K. Tough, Flexible, and Bioactive Amphoteric Copolymer-Based Hydrogel for Bone Regeneration without Encapsulation of Seed Cells/Simulating Cues. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12038-12049. [PMID: 35238538 DOI: 10.1021/acsami.1c23017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bone tissue scaffolds with good bulk or surface osteoconductivity are always pursued by biomaterial scientists. In this paper, we design a tough and flexible amphoteric copolymer-based (AC) hydrogel with bioactive groups for bone regeneration. In detail, our hydrogels are copolymerized with N-acyl glycinamide (NAGA), anionic acrylate alendronate (AcAln), and cationic (2-(acryloyloxy)ethyl) trimethyl ammonium chloride (DMAEA-Q) by free radical polymerization. There are three kinds of synergetic physical cross-links among our polyamphion hydrogels: (1) double hydrogen bonds between amide groups in NAGA to provide toughness, (2) hydrogen bonds between dual bisphosphite groups in AcAln, and (3) weak ionic pairs between the anionic bisphosphite groups and the cationic quaternary ammonium groups in DMAEA-Q to offer flexibility. The AC hydrogel shows osteoid-like viscoelasticity, which makes the AC hydrogel osteogenesis inductive. During the repairing process, the bioactive bisphosphite groups accelerate the calcium fixation to expedite the mineralization of the new-formed bone. At the same time, the surface charge property of AC hydrogels also prevents fibrous cyst formation, thus guaranteeing osseointegration. Our in vitro data strongly demonstrate that the AC hydrogel is an excellent matrix to induce osteogenesis of rat bone marrow mesenchymal stem cells. More importantly, the following in vivo experiments further prove that the AC hydrogel can reach satisfactory bone regeneration without encapsulation of seed cells or application of external simulating cues. These exciting results demonstrate that our AC hydrogel is a promising scaffold for bone regeneration. Our work can also inspire the constituent and structure design of biomaterial scaffolds for tissue regeneration.
Collapse
Affiliation(s)
- Rong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Lingbin Che
- Department of Orthopedics Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
20
|
Xu Y, Zhang F, Zhai W, Cheng S, Li J, Wang Y. Unraveling of Advances in 3D-Printed Polymer-Based Bone Scaffolds. Polymers (Basel) 2022; 14:566. [PMID: 35160556 PMCID: PMC8840342 DOI: 10.3390/polym14030566] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The repair of large-area irregular bone defects is one of the complex problems in orthopedic clinical treatment. The bone repair scaffolds currently studied include electrospun membrane, hydrogel, bone cement, 3D printed bone tissue scaffolds, etc., among which 3D printed polymer-based scaffolds Bone scaffolds are the most promising for clinical applications. This is because 3D printing is modeled based on the im-aging results of actual bone defects so that the printed scaffolds can perfectly fit the bone defect, and the printed components can be adjusted to promote Osteogenesis. This review introduces a variety of 3D printing technologies and bone healing processes, reviews previous studies on the characteristics of commonly used natural or synthetic polymers, and clinical applications of 3D printed bone tissue scaffolds, analyzes and elaborates the characteristics of ideal bone tissue scaffolds, from t he progress of 3D printing bone tissue scaffolds were summarized in many aspects. The challenges and potential prospects in this direction were discussed.
Collapse
Affiliation(s)
- Yuanhang Xu
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Feiyang Zhang
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Weijie Zhai
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Shujie Cheng
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Jinghua Li
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Yi Wang
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
- National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471000, China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Zheng J, Zhao Z, Yang Y, Wang S, Zhao Y, Xiong Y, Yang S, Qiu Z, Song T, Zhang C, Wang X. Biphasic mineralized collagen based composite scaffold for cranial bone regeneration in developing sheep. Regen Biomater 2022; 9:rbac004. [PMID: 35592140 PMCID: PMC9113234 DOI: 10.1093/rb/rbac004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Appropriate mechanical support and excellent osteogenic capability are two essential prerequisites of customized implants for regenerating large-sized cranial bone defect. Although porous bone scaffolds have been widely proven to promote bone regeneration, their weak mechanical properties limit the clinical applications in cranioplasty. Herein, we applied two previously developed mineralized collagen-based bone scaffolds (MC), porous MC (pMC) and compact MC (cMC) to construct a biphasic MC composite bone scaffold (bMC) to repair the large-sized cranial bone defect in developing sheep. A supporting frame composed of cMC phase in the shape of tic–tac–toe structure was fabricated first and then embedded in pMC phase. The two phases had good interfacial bond, attributing to the formation of an interfacial zone. The in vivo performance of the bMC scaffold was evaluated by using a cranial bone defect model in 1-month-old sheep. The computed tomography imaging, X-ray scanning and histological evaluation showed that the pMC phase in the bMC scaffold, similar to the pMC scaffold, was gradually replaced by the regenerative bone tissues with comprehensively increased bone mineral density and complete connection of bone bridge in the whole region. The cMC frame promoted new bone formation beneath the frame without obvious degradation, thus providing appropriate mechanical protection and ensuring the structural integrity of the implant. In general, the sheep with bMC implantation exhibited the best status of survival, growth and the repair effect. The biphasic structural design may be a prospective strategy for developing new generation of cranioplasty materials to regenerate cranial bone defect in clinic.
Collapse
Affiliation(s)
- Jingchuan Zheng
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhijun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical School, Baotou, 014010, China
| | - Yongdong Yang
- Dongzhimen Hospital Affiliated Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yonggang Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yang Xiong
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhiye Qiu
- Beijing Allgens Medical Science and Technology Co., Ltd., 100176, China, Beijing
| | - Tianxi Song
- Beijing Allgens Medical Science and Technology Co., Ltd., 100176, China, Beijing
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical School, Baotou, 014010, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
22
|
The Ability and Mechanism of nHAC/CGF in Promoting Osteogenesis and Repairing Mandibular Defects. NANOMATERIALS 2022; 12:nano12020212. [PMID: 35055231 PMCID: PMC8781663 DOI: 10.3390/nano12020212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
Nano-hydroxyapatite/collagen (nHAC) is a new type of bone tissue engineering scaffold material. To speed up the new bone formation of nHAC, this study used concentrated growth factor (CGF) and nHAC in combination to repair rabbit mandibular defects. nHAC/CGF and nHAC were implanted into rabbit mandibles, and X-ray, Micro-CT, HE and Masson staining, immunohistochemical staining and biomechanical testing were performed at 8, 16 and 24 weeks after surgery. The results showed that as the material degraded, the rate of new bone formation in the nHAC/CGF group was better than that in the nHAC group. The results of the HE and Masson staining showed that the bone continuity or maturity of the nHAC/CGF group was better than that of the nHAC group. Immunohistochemical staining showed that OCN expression gradually increased with time. The nHAC/CGF group showed significantly higher BMP2 than the nHAC group at 8 weeks and the difference gradually decreased with time. The biomechanical test showed that the compressive strength and elastic modulus of the nHAC/CGF group were higher than those of the nHAC group. The results suggest that nHAC/CGF materials can promote new bone formation, providing new ideas for the application of bone tissue engineering scaffold materials in oral clinics.
Collapse
|
23
|
Tang S, Dong Z, Ke X, Luo J, Li J. Advances in biomineralization-inspired materials for hard tissue repair. Int J Oral Sci 2021; 13:42. [PMID: 34876550 PMCID: PMC8651686 DOI: 10.1038/s41368-021-00147-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Biomineralization is the process by which organisms form mineralized tissues with hierarchical structures and excellent properties, including the bones and teeth in vertebrates. The underlying mechanisms and pathways of biomineralization provide inspiration for designing and constructing materials to repair hard tissues. In particular, the formation processes of minerals can be partly replicated by utilizing bioinspired artificial materials to mimic the functions of biomolecules or stabilize intermediate mineral phases involved in biomineralization. Here, we review recent advances in biomineralization-inspired materials developed for hard tissue repair. Biomineralization-inspired materials are categorized into different types based on their specific applications, which include bone repair, dentin remineralization, and enamel remineralization. Finally, the advantages and limitations of these materials are summarized, and several perspectives on future directions are discussed.
Collapse
Affiliation(s)
- Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
- Med-X Center for Materials, Sichuan University, Chengdu, PR China.
| |
Collapse
|
24
|
Cheikho K, Laurent C, Ganghoffer JF. An advanced method to design graded cylindrical scaffolds with versatile effective cross-sectional mechanical properties. J Mech Behav Biomed Mater 2021; 125:104887. [PMID: 34700106 DOI: 10.1016/j.jmbbm.2021.104887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
The selection of the most-suited bone scaffold for a given clinical application is challenging, and has motivated numerous studies. They are mostly based on the characterization of cellular structures, generated from the three-dimensional repetition of a unit cell. However, the interest of circular graded bone scaffolds has been emphasized since they facilitate nutrient transport from the periphery to the core of the scaffold. In the present contribution, we present an advanced and versatile method to design graded circular porous 2D structures based on the conformal mapping of unit cells. We propose a method to generate 3D porous scaffolds by a multilayer repetition of the circular cross-section, resulting in tunable anisotropy depending on the clinical application. We then analyze the link between the porosities of the obtained structures and their effective elastic mechanical cross-sectional properties, making use of a novel and computationally efficient method allowing exhaustive parametric studies. The comparison of various conformal transformations and unit cell designs emphasizes the extent of mechanical properties and porosities that may be reached for a given constitutive material, including non-standard mechanical properties that open large perspectives towards the development of self-fitting scaffolds.
Collapse
Affiliation(s)
- K Cheikho
- CNRS UMR 7239 LEM3, Université de Lorraine, Nancy, France.
| | - C Laurent
- CNRS UMR 7239 LEM3, Université de Lorraine, Nancy, France
| | - J F Ganghoffer
- CNRS UMR 7239 LEM3, Université de Lorraine, Nancy, France
| |
Collapse
|
25
|
Song T, Zhao F, Wang Y, Li D, Lei N, Li X, Xiao Y, Zhang X. Constructing a biomimetic nanocomposite with the in situ deposition of spherical hydroxyapatite nanoparticles to induce bone regeneration. J Mater Chem B 2021; 9:2469-2482. [PMID: 33646220 DOI: 10.1039/d0tb02648d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by the nanostructure of bone, biomimetic nanocomposites comprising natural polymers and inorganic nanoparticles have gained much attention for bone regenerative applications. However, the mechanical and biological performances of nanocomposites are largely limited by the inhomogeneous distribution, uncontrolled size and irregular morphology of inorganic nanoparticles at present. In this work, an innovative in situ precipitation method has been developed to construct a biomimetic nanocomposite which consists of spherical hydroxyapatite (HA) nanoparticles and gelatin (Gel). The homogeneous dispersion of HA nanoparticles in nHA-Gel endowed it with a low swelling ratio, enhanced mechanical properties and slow degradation. Moreover, strontium (Sr) was incorporated into HA nanoparticles to further enhance the bioactivity of nanocomposites. In vitro experiments suggested that nHA-Gel and Sr-nHA-Gel facilitated cell spreading and promoted osteogenic differentiation of bone-marrow-derived mesenchymal stem cells (BMSCs) as compared to pure Gel and mHA-Gel conventional composites developed by mechanical mixing. In vivo rat critical-sized calvarial defect repair further confirmed that nHA-Gel and Sr-nHA-Gel possessed relatively effective bone regenerative abilities among the four groups. Collectively, the biomimetic nanocomposites of nHA-Gel and Sr-nHA-Gel have good efficacy in inducing bone regeneration and would be a promising alternative to bone grafts for clinical applications.
Collapse
Affiliation(s)
- Tao Song
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Fengxin Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Dongxiao Li
- Sichuan Academy of Chinese Medicine Science, Chengdu, 610064, Sichuan, China
| | - Ning Lei
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610064, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
26
|
Di Y, Wang C, Zhu H, Yu S, Ren Y, Li X. [Experimental study on repairing rabbit skull defect with bone morphogenetic protein 2 peptide/functionalized carbon nanotube composite]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:286-294. [PMID: 33719235 DOI: 10.7507/1002-1892.202009014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To observe and compare the effects of peptides on the repair of rabbit skull defects through two different binding modes of non-covalent and covalent, and the combination of carboxyl (-COOH) and amino (-NH 2) groups with materials. Methods Twenty-one 3-month-old male ordinary New Zealand white rabbits were numbered 1 to 42 on the left and right parietal bones. They were divided into 5 groups using a random number table, the control group (group A, 6 sides) and the material group 1, 2, 3, 4 (respectively group B, C, D, E, 9 sides in each group). All animals were prepared with 12-mm-diameter skull defect models, and bone morphogenetic protein 2 (BMP-2) non-covalently bound multiwalled carbon nanotubes (MWCNT)-COOH+poly ( L-lactide) (PLLA), BMP-2 non-covalently bound MWCNT-NH 2+PLLA, BMP-2 covalently bound MWCNT-COOH+PLLA, and BMP-2 covalently bound MWCNT-NH 2+PLLA were implanted into the defects of groups B, C, D, and E, respectively. At 4, 8, and 12 weeks after operation, the samples were taken for CT scanning and three-dimensional reconstruction, the ratio of bone tissue regeneration volume to total volume and bone mineral density were measured, and the histological observation of HE staining and Masson trichrome staining were performed to quantitatively analyze the volume ratio of new bone tissue. Results CT scanning and three-dimensional reconstruction showed that with the extension of time, the defects in groups A-E were filled gradually, and the defect in group E was completely filled at 12 weeks after operation. HE staining and Masson trichrome staining showed that the volume of new bone tissue in each group gradually increased with time, and regenerated mature bone tissue appeared in groups D and E at 12 weeks after operation. Quantitative analysis showed that at 4, 8, and 12 weeks after operation, the ratio of bone tissue regeneration volume to total volume, bone mineral density, and the volume ratio of new bone tissue increased gradually over time; and at each time point, the above indexes increased gradually from group A to group E, and the differences between groups were significant ( P<0.05). Conclusion Through covalent binding and using -NH 2 to bound peptides with materials, the best bone repair effect can be achieved.
Collapse
Affiliation(s)
- Yuntao Di
- Department of Neurosurgery, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | | | - Huixue Zhu
- Department of Neurosurgery, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - Suxiang Yu
- Department of Pathology, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - Yixing Ren
- Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P.R.China
| |
Collapse
|
27
|
Li B, Wang S, Zhao Y, Wang X. [The latest study on biomimetic mineralized collagen-based bone materials for pediatric skull regeneration and repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:278-285. [PMID: 33719234 DOI: 10.7507/1002-1892.202009078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a worldwide challenge in the field of neurosurgery, there is no effective treatment method for pediatric skull defects repair in clinic. Currently clinical used cranioplasty materials couldn't undergo adjustment in response to skull growth and deformation. An ideal material for pediatric cranioplasty should fulfill the requirements of achieving complete closure, good osseointegration, biodegradability and conformability, sufficient cerebral protection and optimal aesthetic, and functional restoration of calvaria. Biomimetic mineralized collagen-based bone material is a kind of material that simulates the microstructural unit of natural bone on the nanometer scale. Because of its high osteogenic activity, it is widely used in repair of all kinds of bone defects. Recently, the biomimetic mineralized collagen-based bone materials have successfully been applied for cranial regeneration and repair with satisfactory results. This review mainly introduces the characteristics of the biomimetic mineralized collagen-based bone materials, the advantages for the repair of pediatric skull defects, and the related progresses.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R.China
| | | | - Yonggang Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R.China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R.China
| |
Collapse
|
28
|
Zhu Y, Goh C, Shrestha A. Biomaterial Properties Modulating Bone Regeneration. Macromol Biosci 2021; 21:e2000365. [PMID: 33615702 DOI: 10.1002/mabi.202000365] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/17/2021] [Indexed: 12/19/2022]
Abstract
Biomaterial scaffolds have been gaining momentum in the past several decades for their potential applications in the area of tissue engineering. They function as three-dimensional porous constructs to temporarily support the attachment of cells, subsequently influencing cell behaviors such as proliferation and differentiation to repair or regenerate defective tissues. In addition, scaffolds can also serve as delivery vehicles to achieve sustained release of encapsulated growth factors or therapeutic agents to further modulate the regeneration process. Given the limitations of current bone grafts used clinically in bone repair, alternatives such as biomaterial scaffolds have emerged as potential bone graft substitutes. This review summarizes how physicochemical properties of biomaterial scaffolds can influence cell behavior and its downstream effect, particularly in its application to bone regeneration.
Collapse
Affiliation(s)
- Yi Zhu
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, M5G 1G6, Canada
| | - Cynthia Goh
- Department of Chemistry, University of Toronto, 80 George Street, Toronto, Ontario, M5S 3H6, Canada.,Department of Materials Science and Engineering, University of Toronto, 84 College Street, Suite 140, Toronto, Ontario, M5S 3E4, Canada
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, M5G 1G6, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
29
|
Glaeser JD, Behrens P, Stefanovic T, Salehi K, Papalamprou A, Tawackoli W, Metzger MF, Eberlein S, Nelson T, Arabi Y, Kim K, Baloh RH, Ben-David S, Cohn-Schwartz D, Ryu R, Bae HW, Gazit Z, Sheyn D. Neural crest-derived mesenchymal progenitor cells enhance cranial allograft integration. Stem Cells Transl Med 2021; 10:797-809. [PMID: 33512772 PMCID: PMC8046069 DOI: 10.1002/sctm.20-0364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/10/2020] [Accepted: 11/09/2020] [Indexed: 01/17/2023] Open
Abstract
Replacement of lost cranial bone (partly mesodermal and partly neural crest‐derived) is challenging and includes the use of nonviable allografts. To revitalize allografts, bone marrow‐derived mesenchymal stromal cells (mesoderm‐derived BM‐MSCs) have been used with limited success. We hypothesize that coating of allografts with induced neural crest cell‐mesenchymal progenitor cells (iNCC‐MPCs) improves implant‐to‐bone integration in mouse cranial defects. Human induced pluripotent stem cells were reprogramed from dermal fibroblasts, differentiated to iNCCs and then to iNCC‐MPCs. BM‐MSCs were used as reference. Cells were labeled with luciferase (Luc2) and characterized for MSC consensus markers expression, differentiation, and risk of cellular transformation. A calvarial defect was created in non‐obese diabetic/severe combined immunodeficiency (NOD/SCID) mice and allografts were implanted, with or without cell coating. Bioluminescence imaging (BLI), microcomputed tomography (μCT), histology, immunofluorescence, and biomechanical tests were performed. Characterization of iNCC‐MPC‐Luc2 vs BM‐MSC‐Luc2 showed no difference in MSC markers expression and differentiation in vitro. In vivo, BLI indicated survival of both cell types for at least 8 weeks. At week 8, μCT analysis showed enhanced structural parameters in the iNCC‐MPC‐Luc2 group and increased bone volume in the BM‐MSC‐Luc2 group compared to controls. Histology demonstrated improved integration of iNCC‐MPC‐Luc2 allografts compared to BM‐MSC‐Luc2 group and controls. Human osteocalcin and collagen type 1 were detected at the allograft‐host interphase in cell‐seeded groups. The iNCC‐MPC‐Luc2 group also demonstrated improved biomechanical properties compared to BM‐MSC‐Luc2 implants and cell‐free controls. Our results show an improved integration of iNCC‐MPC‐Luc2‐coated allografts compared to BM‐MSC‐Luc2 and controls, suggesting the use of iNCC‐MPCs as potential cell source for cranial bone repair.
Collapse
Affiliation(s)
- Juliane D Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Phillip Behrens
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tina Stefanovic
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Angela Papalamprou
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Melodie F Metzger
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Orthopaedic Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Samuel Eberlein
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Trevor Nelson
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yasaman Arabi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kevin Kim
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Orthopaedic Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shiran Ben-David
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Doron Cohn-Schwartz
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Division of Internal Medicine, Rambam Health Care Campus, Haifa, Israel
| | - Robert Ryu
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hyun W Bae
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zulma Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
30
|
Garot C, Bettega G, Picart C. Additive Manufacturing of Material Scaffolds for Bone Regeneration: Toward Application in the Clinics. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2006967. [PMID: 33531885 PMCID: PMC7116655 DOI: 10.1002/adfm.202006967] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 05/07/2023]
Abstract
Additive manufacturing (AM) allows the fabrication of customized bone scaffolds in terms of shape, pore size, material type and mechanical properties. Combined with the possibility to obtain a precise 3D image of the bone defects using computed tomography or magnetic resonance imaging, it is now possible to manufacture implants for patient-specific bone regeneration. This paper reviews the state-of-the-art of the different materials and AM techniques used for the fabrication of 3D-printed scaffolds in the field of bone tissue engineering. Their advantages and drawbacks are highlighted. For materials, specific criteria, were extracted from a literature study: biomimetism to native bone, mechanical properties, biodegradability, ability to be imaged (implantation and follow-up period), histological performances and sterilization process. AM techniques can be classified in three major categories: extrusion-based, powder-based and liquid-base. Their price, ease of use and space requirement are analyzed. Different combinations of materials/AM techniques appear to be the most relevant depending on the targeted clinical applications (implantation site, presence of mechanical constraints, temporary or permanent implant). Finally, some barriers impeding the translation to human clinics are identified, notably the sterilization process.
Collapse
Affiliation(s)
- Charlotte Garot
- CEA, Université de Grenoble Alpes, CNRS, ERL 5000, IRIG Institute, 17 rue des Martyrs, F-38054, Grenoble, France
- CNRS and Grenoble Institute of Engineering, UMR 5628, LMGP, 3 parvis Louis Néel F-38016 Grenoble, France
| | - Georges Bettega
- Service de chirurgie maxillo-faciale, Centre Hospitalier Annecy-Genevois, 1 avenue de l’hôpital, F-74370 Epagny Metz-Tessy, France
- INSERM U1209, Institut Albert Bonniot, F-38000 Grenoble, France
| | - Catherine Picart
- CEA, Université de Grenoble Alpes, CNRS, ERL 5000, IRIG Institute, 17 rue des Martyrs, F-38054, Grenoble, France
- CNRS and Grenoble Institute of Engineering, UMR 5628, LMGP, 3 parvis Louis Néel F-38016 Grenoble, France
| |
Collapse
|
31
|
Yanyan S, Guangxin W, Guoqing S, Yaming W, Wuhui L, Osaka A. Effects of amino acids on conversion of calcium carbonate to hydroxyapatite. RSC Adv 2020; 10:37005-37013. [PMID: 35521267 PMCID: PMC9057079 DOI: 10.1039/d0ra07636h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022] Open
Abstract
Conversion of calcium carbonate (calcite; CC) to hydroxyapatite (HAp) was examined when the CC particles of sub μm size were soaked at 37 °C for up to 10 d in 0.15 M K2HPO4 (20 ml), whose pH was set to 3-12. Here, the solution contained amino acids, such as glutamine (Glu), arginine (Arg), and glycine (Gly), and their content varied from 0-1.0 g per ml of solution. From the X-ray diffraction (XRD) intensity of the 104 and 211 diffractions of calcite and apatite, respectively, it was seen that the presence of the amino acids promoted the conversion. This was supported by the thermogravimetry (TG) results. The highest promotion was observed at 0.5 g addition of amino acids to the phosphate solution, while Glu showed the highest promotion among the amino acids and Gly the lowest. A scanning electron microscopy study indicated that petal-like HAp nano-crystallites covered the entire surface of the CC particles when they were soaked in the phosphate solution with 0.1 g or more of amino acid for 10 d. The XRD intensity ratio 104(CC)/211(HAp) indicated greater CC to HAp conversion in the solutions at pH 3 and 6 than in the more alkaline solutions. This was attributed to the dissolution of CC in the acidic solutions, which was confirmed by bubbling in these solutions.
Collapse
Affiliation(s)
- Sun Yanyan
- Department of Materials Science and Engineering, Henan University of Science and Technology Luoyang Henan Province 471023 China
| | - Wang Guangxin
- Department of Materials Science and Engineering, Henan University of Science and Technology Luoyang Henan Province 471023 China
| | - Sun Guoqing
- School of Vehicle Engineering, Luoyang Institute of Technology Luoyang Henan Province 471023 China
| | - Wang Yaming
- Department of Materials Science and Engineering, Henan University of Science and Technology Luoyang Henan Province 471023 China
| | - Li Wuhui
- Department of Materials Science and Engineering, Henan University of Science and Technology Luoyang Henan Province 471023 China
| | - Akiyoshi Osaka
- Department of Materials Science and Engineering, Henan University of Science and Technology Luoyang Henan Province 471023 China
- Faculty of Engineering, Okayama University Tsushima Okayama 700-8530 Japan
| |
Collapse
|
32
|
Zheng Y, Han Q, Wang J, Li D, Song Z, Yu J. Promotion of Osseointegration between Implant and Bone Interface by Titanium Alloy Porous Scaffolds Prepared by 3D Printing. ACS Biomater Sci Eng 2020; 6:5181-5190. [PMID: 33455268 DOI: 10.1021/acsbiomaterials.0c00662] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Titanium alloy prostheses have been widely used for the treatment of orthopedic diseases, in which the interconnected porosity and appropriate pore size are crucial for the osseointegration capacity. Three-dimensional (3D) printing technology provides an efficient method to construct prosthesis scaffolds with controllable internal and surface structure, but printing high-porosity (>60%) scaffolds with pore diameters below 300 μm as implants structures has not yet been studied. In this work, four types of titanium alloy scaffolds with interconnected porosity more than 70% were successfully prepared by selective laser melting (SLM). The actual mean pore sizes of cylindrical scaffolds are 542, 366, 202, and 134 μm. Through the in vitro characterization of the scaffolds, in vivo experiments, and mechanical experiments, it is concluded that as the scaffold pore diameter decreases, the titanium alloy scaffold with diameter of 202 μm has the strongest osseointegration ability and is also the most stable one with the surrounding bone. These findings provide a reference for the clinical pore-size design of porous scaffolds with optimal bone growth stability on the surface of the titanium alloy implant.
Collapse
Affiliation(s)
- Yuhao Zheng
- Department of Sports Medicine, First Hospital of Jilin University, Changchun 130021, P. R. China.,State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| | - Qing Han
- Department of Joint Surgery, Orthopedic Medical Center, Second Hospital of Jilin University, Changchun 130000, P. R. China
| | - Jincheng Wang
- Department of Joint Surgery, Orthopedic Medical Center, Second Hospital of Jilin University, Changchun 130000, P. R. China
| | - Dongdong Li
- Key Laboratory of Automobile Materials of MOE, Department of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Zhiming Song
- Department of Sports Medicine, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
33
|
Ding Z, Lu G, Cheng W, Xu G, Zuo B, Lu Q, Kaplan DL. Tough Anisotropic Silk Nanofiber Hydrogels with Osteoinductive Capacity. ACS Biomater Sci Eng 2020; 6:2357-2367. [PMID: 33455344 DOI: 10.1021/acsbiomaterials.0c00143] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple physical cues such as hierarchical microstructures, topography, and stiffness influence cell fate during tissue regeneration. Yet, introducing multiple physical cues to the same biomaterial remains a challenge. Here, a synergistic cross-linking strategy was developed to fabricate protein hydrogels with multiple physical cues based on combinations of two types of silk nanofibers. β-sheet-rich silk nanofibers (BSNFs) were blended with amorphous silk nanofibers (ASNFs) to form composite nanofiber systems. The composites were transformed into tough hydrogels through horseradish peroxidase (HRP) cross-linking in an electric field, where ASNFs were cross-linked with HRP, while BSNFs were aligned by the electrical field. Anisotropic morphologies and higher stiffness of 120 kPa were achieved. These anisotropic hydrogels induced osteogenic differentiation and the aligned aggregation of stem cells in vitro while also exhibiting osteoinductive capacity in vivo. Improved tissue outcomes with the hydrogels suggest promising applications in bone tissue engineering, as the processing strategy described here provides options to form hydrogels with multiple physical cues.
Collapse
Affiliation(s)
- Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361000, People's Republic of China
| | - Gang Xu
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Lianyungang 222061, People's Republic of China
| | - Baoqi Zuo
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.,Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
34
|
Feng P, He J, Peng S, Gao C, Zhao Z, Xiong S, Shuai C. Characterizations and interfacial reinforcement mechanisms of multicomponent biopolymer based scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:809-825. [PMID: 30948118 DOI: 10.1016/j.msec.2019.03.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/02/2019] [Accepted: 03/09/2019] [Indexed: 12/20/2022]
Abstract
It is difficult for a single component biopolymer to meet the requirements of scaffold at present. The development of multicomponent biopolymer based scaffold provides an effective method to solve the issue based on the advantages of each kind of the biomaterials. However, the compatibility between different components might be very poor due to the difficulties in forming strong interfacial bonding, and thereby significantly degrading the integrated mechanical properties of the scaffold. In recent years, interface phase introduction, surface modification and in situ growth have been the major strategies for enhancing interfacial bonding. This article presents a comprehensive overview on the research in the area of constructing multicomponent biopolymer based scaffold and reinforcing their interfacial properties, and more importantly, the interfacial bonding mechanisms are systematically summarized. Detailly, interface phase introduction can build a bridge between biopolymer and other components to form strong interface bonding with the two phases under the action of interface phase. Surface modification can graft organic molecules or polymers containing functional groups onto other components to crosslink with biopolymer. In situ growth can directly in situ synthesize other components with the action of nucleating agent serving as an adherent platform for the nucleation and growth of other components to biopolymer surface by chemical bonding. In addition, the mechanical properties (including strength and modulus) and biological properties (including bioactivity, cytocompatibility and biosensing in vitro, and tissue compatibility, bone regeneration capacity in vivo) of multicomponent biopolymer based scaffold after interfacial reinforcing are also reviewed and discussed. Finally, suggestions for further research are given with highlighting the need for specific investigations to assess the interface formation, structure, properties, and more in vivo studies of scaffold before applications.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Jiyao He
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Zhenyu Zhao
- Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Shixian Xiong
- Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Jiangxi University of Science and Technology, Ganzhou 341000, China; Shenzhen Institute of Information Technology, Shenzhen 518172, China.
| |
Collapse
|
35
|
Liu S, Wang Y, Wang J, Qiu P, Wang S, Shi Y, Li M, Chen P, Lin X, Fang X. A cancellous bone matrix system with specific mineralisation degrees for mesenchymal stem cell differentiation and bone regeneration. Biomater Sci 2019; 7:2452-2467. [PMID: 30942200 DOI: 10.1039/c8bm01657g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone regenerative therapies have been explored using various biomaterial systems.
Collapse
|