1
|
Zhang W, Wei C, Wang L. Identification of Key lncRNAs, circRNAs, and mRNAs in Osteoarthritis via Bioinformatics Analysis. Mol Biotechnol 2024; 66:1660-1672. [PMID: 37382793 DOI: 10.1007/s12033-023-00790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
Osteoarthritis (OA) is a common degenerative joint disorder that adversely affects the quality of life of patients. Identification of novel diagnostic biomarkers is pivotal for the early detection and prevention of OA. Dataset GSE185059 was selected from Gene Expression Omnibus database to obtain differentially expressed lncRNAs (DE-lncRNAs), mRNAs (DE-mRNAs), and circRNAs (DE-circRNAs) between OA and normal samples. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses as well as protein-protein interaction (PPI) network construction of DE-mRNAs were conducted. Hub genes were identified from PPI networks and validated by RT-qPCR. starBase database was utilized for predicting miRNAs binding with hub genes, selected DE-lncRNAs and DE-circRNAs, respectively. The competing endogenous RNA (ceRNA) networks were constructed. A total of 818 DE-mRNAs, 191 DE-lncRNAs, and 2053 DE-circRNAs were identified. The DE-mRNAs were significantly enriched in several inflammation-related GO terms and KEGG pathways such as positive regulation of cell-cell adhesion, TNF-alpha signaling pathway and NF-kappa B signaling pathway. Thirteen hub genes were identified, which were CFTR, GART, SMAD2, NCK1, TJP1, UBE2D1, EFTUD2, PRKACB, IL10, SNRPG, CHD4, RPS24, and SRSF6. OA-related DE-lncRNA/circRNA-miRNA-hub gene networks were constructed. We identified 13 hub genes and constructed the ceRNA networks related to OA, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Rheumatic Immunity, Changzhi People's Hospital, No. 502, Changxing Middle Road, Luzhou District, Changzhi, 046099, Shanxi, China
| | - Chun Wei
- Department of Rheumatic Immunity, Changzhi People's Hospital, No. 502, Changxing Middle Road, Luzhou District, Changzhi, 046099, Shanxi, China
| | - Ling Wang
- Department of Rheumatic Immunity, Changzhi People's Hospital, No. 502, Changxing Middle Road, Luzhou District, Changzhi, 046099, Shanxi, China.
| |
Collapse
|
2
|
Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res 2024; 34:101-123. [PMID: 38267638 PMCID: PMC10837209 DOI: 10.1038/s41422-023-00918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis, osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner. BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical applications in treating bone and cartilage disorders.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
3
|
Naselli F, Bellavia D, Costa V, De Luca A, Raimondi L, Giavaresi G, Caradonna F. Osteoarthritis in the Elderly Population: Preclinical Evidence of Nutrigenomic Activities of Flavonoids. Nutrients 2023; 16:112. [PMID: 38201942 PMCID: PMC10780745 DOI: 10.3390/nu16010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that is age-related and progressive. It causes the destruction of articular cartilage and underlying bone, often aggravated by inflammatory processes and oxidative stresses. This pathology impairs the quality of life of the elderly, causing pain, reduced mobility, and functional disabilities, especially in obese patients. Phytochemicals with anti-inflammatory and antioxidant activities may be used for long-term treatment of OA, either in combination with current anti-inflammatories and painkillers, or as an alternative to other products such as glucosamine and chondroitin, which improve cartilage structure and elasticity. The current systematic review provides a comprehensive understanding of the use of flavonoids. It highlights chondrocyte, cartilage, and subchondral bone activities, with a particular focus on their nutrigenomic effects. The molecular mechanisms of these molecules demonstrate how they can be used for the prevention and treatment of OA in the elderly population. However, clinical trials are still needed for effective use in clinical practice.
Collapse
Affiliation(s)
- Flores Naselli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, University of Palermo, 90133 Palermo, Italy; (F.N.); (F.C.)
| | - Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche—SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy (A.D.L.); (L.R.); (G.G.)
| | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche—SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy (A.D.L.); (L.R.); (G.G.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche—SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy (A.D.L.); (L.R.); (G.G.)
| | - Lavinia Raimondi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche—SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy (A.D.L.); (L.R.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche—SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy (A.D.L.); (L.R.); (G.G.)
| | - Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, University of Palermo, 90133 Palermo, Italy; (F.N.); (F.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
4
|
Liu Z, Wang T, Sun X, Nie M. Autophagy and apoptosis: regulatory factors of chondrocyte phenotype transition in osteoarthritis. Hum Cell 2023:10.1007/s13577-023-00926-2. [PMID: 37277675 DOI: 10.1007/s13577-023-00926-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
Osteoarthritis (OA) is the main pathogenic factor in diseases that cause joint deformities. As the main manifestation of the progress of OA, cartilage degradation has been closely associated with the degeneration of chondrocytes, which is induced by inflammatory factors and other trauma factors. Autophagy and apoptosis are the main mechanisms for cells to maintain homeostasis and play crucial roles in OA. Under the influence of external environmental factors (such as aging and injury), the metabolism of cells can be altered, which may affect the extent of autophagy and apoptosis. With the progression of OA, these changes can alter the cell phenotypes, and the cells of different phenotypes display distinct differences in morphology and function. In this review, we have summarized the alteration in cell metabolism, autophagy, and the extent of apoptosis during OA progression and its effects on the cell phenotypes to provide new ideas for further research on the mechanisms of phenotypic transition and therapeutic strategies so as to reverse the cell phenotypes.
Collapse
Affiliation(s)
- Zhibo Liu
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, People's Republic of China
| | - Ting Wang
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, People's Republic of China
| | - Xianding Sun
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, People's Republic of China.
| | - Mao Nie
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, People's Republic of China.
| |
Collapse
|
5
|
Wang H, Li Z, Liu Y, Zhang M, Shi Y, Zhang Y, Mi G, Wang M, He Y, Chen Y, Chen C, Chen J. Effects of Selenoprotein S Knockdown on Endoplasmic Reticulum Stress in ATDC5 Cells and Gene Expression Profiles in Hypertrophic Chondrocytes. Biol Trace Elem Res 2023; 201:1965-1976. [PMID: 35725994 DOI: 10.1007/s12011-022-03313-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022]
Abstract
Selenoprotein S (SelS), a member of the selenoprotein family, is mainly located on the endoplasmic reticulum (ER) membrane. SelS is involved in a variety of biological processes, including oxidative stress, inflammation, glucose metabolism regulation, and ER-associated protein degradation (ERAD). This study was designed to explore the role of SelS in chondrocytes. It was confirmed that SelS is a Se-sensitive selenoprotein in low-selenium rat and cell models. ER stress was not induced in SelS knockdown ATDC5 cells. However, treatment of ATDC5 cells with tunicamycin (Tm), an ER stress inducer, increased the expression of SelS, and knockdown of SelS aggravated ER stress induced by Tm, suggesting that SelS is a regulatory molecule involved in ER stress in chondrocytes. Both osteoarthritis and Kashin-Beck disease are osteochondral diseases associated with hypertrophic chondrocyte abnormalities. Therefore, ATDC5 cells were induced to hypertrophic chondrocytes. SelS was knocked down and RNA sequencing was performed. Bioinformatics analysis of the differentially expressed genes (DEGs) revealed that SelS knockdown affected a variety of biological processes, including cell adhesion, osteoclast differentiation, and extracellular matrix homeostasis. Collectively, this study verified that SelS is sensitive to selenium levels and is an ER stress-responsive molecule. Knocking down SelS can cause abnormal expression of adhesion molecules and matrix homeostasis disorder in hypertrophic chondrocytes.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhengzheng Li
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yinan Liu
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meng Zhang
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yawen Shi
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Zhang
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ge Mi
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengying Wang
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying He
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yonghui Chen
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jinghong Chen
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Clinical Research Center for Endemic Disease of Shaanxi Province, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Ge Q, Shi Z, Zou KA, Ying J, Chen J, Yuan W, Wang W, Xiao L, Lin X, Chen D, Feng XH, Wang PE, Tong P, Jin H. Protein phosphatase PPM1A inhibition attenuates osteoarthritis via regulating TGF-β/Smad2 signaling in chondrocytes. JCI Insight 2023; 8:166688. [PMID: 36752205 PMCID: PMC9926971 DOI: 10.1172/jci.insight.166688] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/21/2022] [Indexed: 02/09/2023] Open
Abstract
TGF-β signaling is crucial for modulating osteoarthritis (OA), and protein phosphatase magnesium-dependent 1A (PPM1A) has been reported as a phosphatase of SMAD2 and regulates TGF-β signaling, while the role of PPM1A in cartilage homeostasis and OA development remains largely unexplored. In this study, we found increased PPM1A expression in OA chondrocytes and confirmed the interaction between PPM1A and phospho-SMAD2 (p-SMAD2). Importantly, our data show that PPM1A KO substantially protected mice treated with destabilization of medial meniscus (DMM) surgery against cartilage degeneration and subchondral sclerosis. Additionally, PPM1A ablation reduced the cartilage catabolism and cell apoptosis after the DMM operation. Moreover, p-SMAD2 expression in chondrocytes from KO mice was higher than that in WT controls with DMM induction. However, intraarticular injection with SD-208, repressing TGF-β/SMAD2 signaling, dramatically abolished protective phenotypes in PPM1A-KO mice. Finally, a specific pharmacologic PPM1A inhibitor, Sanguinarine chloride (SC) or BC-21, was able to ameliorate OA severity in C57BL/6J mice. In summary, our study identified PPM1A as a pivotal regulator of cartilage homeostasis and demonstrated that PPM1A inhibition attenuates OA progression via regulating TGF-β/SMAD2 signaling in chondrocytes and provided PPM1A as a potential target for OA treatment.
Collapse
Affiliation(s)
- Qinwen Ge
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenyu Shi
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kai-ao Zou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Ying
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiali Chen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Weidong Wang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Luwei Xiao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia Lin
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute and
| | - Ping-er Wang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Zhang Y, Fang Q, Liu Y, Zhang D, He Y, Liu F, Sun K, Chen J. Increased FGFR3 is involved in T-2 toxin-induced lesions of hypertrophic cartilage associated with endemic osteoarthritis. Hum Exp Toxicol 2023; 42:9603271231219480. [PMID: 38059300 DOI: 10.1177/09603271231219480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
This study evaluated the effect of fibroblast growth factor receptor 3 (FGFR3) on damaged hypertrophic chondrocytes of Kashin-Beck disease (KBD). Immunohistochemical staining was used to evaluate FGFR3 expression in growth plates from KBD rat models and engineered cartilage. In vitro study, hypertrophic chondrocytes were pretreated by FGFR3 binding inhibitor (BGJ398) for 24 h before incubation at different T-2 toxin concentrations. Differentiation -related genes (Runx2, Sox9, and Col Ⅹ) and ECM degradation -related genes (MMP-13, Col Ⅱ) in the hypertrophic chondrocytes were analyzed using RT-PCR, and the corresponding proteins were analyzed using western blotting. Hypertrophic chondrocytes death was detected by the Annexin V/PI double staining assay. The integrated optical density of FGFR3 staining was increased in knee cartilage of rats and engineered cartilage treated with T-2 toxin. Both protein and mRNA levels of Runx2, Sox9, Col Ⅱ, and Col Ⅹ were decreased in a dose-dependent manner when exposed to the T-2 toxin and significantly upregulated by 1 μM BGJ398. The expression of MMP-1, MMP-9, and MMP-13 increased in a dose-dependent manner when exposed to T-2 toxin and significantly reduced by 1 μM BGJ398. 1 μM BGJ398 could prevent early apoptosis and necrosis induced by the T-2 toxin. Inhibiting the FGFR3 signal could alleviate extracellular matrix degradation, abnormal chondrocytes differentiation, and excessive cell death in T-2 toxin-induced hypertrophic chondrocytes.
Collapse
Affiliation(s)
- Ying Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qian Fang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
- Lanzhou Center for Disease Control and Prevention, Lanzhou, China
| | - Yinan Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
| | - Dan Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
| | - Ying He
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
| | - Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medical Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Kun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Jinghong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
| |
Collapse
|
8
|
Ning Y, Hu M, Diao J, Gong Y, Huang R, Chen S, Zhang F, Liu Y, Chen F, Zhang P, Zhao G, Chang Y, Xu K, Zhou R, Li C, Zhang F, Lammi M, Wang X, Guo X. Genetic Variants and Protein Alterations of Selenium- and T-2 Toxin-Responsive Genes Are Associated With Chondrocytic Damage in Endemic Osteoarthropathy. Front Genet 2022; 12:773534. [PMID: 35087566 PMCID: PMC8787141 DOI: 10.3389/fgene.2021.773534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
The mechanism of environmental factors in Kashin–Beck disease (KBD) remains unknown. We aimed to identify single nucleotide polymorphisms (SNPs) and protein alterations of selenium- and T-2 toxin–responsive genes to provide new evidence of chondrocytic damage in KBD. This study sampled the cubital venous blood of 258 subjects including 129 sex-matched KBD patients and 129 healthy controls for SNP detection. We applied an additive model, a dominant model, and a recessive model to identify significant SNPs. We then used the Comparative Toxicogenomics Database (CTD) to select selenium- and T-2 toxin–responsive genes with the candidate SNP loci. Finally, immunohistochemistry was applied to verify the protein expression of candidate genes in knee cartilage obtained from 15 subjects including 5 KBD, 5 osteoarthritis (OA), and 5 healthy controls. Forty-nine SNPs were genotyped in the current study. The C allele of rs6494629 was less frequent in KBD than in the controls (OR = 0.63, p = 0.011). Based on the CTD database, PPARG, ADAM12, IL6, SMAD3, and TIMP2 were identified to interact with selenium, sodium selenite, and T-2 toxin. KBD was found to be significantly associated with rs12629751 of PPARG (additive model: OR = 0.46, p = 0.012; dominant model: OR = 0.45, p = 0.049; recessive model: OR = 0.18, p = 0.018), rs1871054 of ADAM12 (dominant model: OR = 2.19, p = 0.022), rs1800796 of IL6 (dominant model: OR = 0.30, p = 0.003), rs6494629 of SMAD3 (additive model: OR = 0.65, p = 0.019; dominant model: OR = 0.52, p = 0.012), and rs4789936 of TIMP2 (recessive model: OR = 5.90, p = 0.024). Immunohistochemistry verified significantly upregulated PPARG, ADAM12, SMAD3, and TIMP2 in KBD compared with OA and normal controls (p < 0.05). Genetic polymorphisms of PPARG, ADAM12, SMAD3, and TIMP2 may contribute to the risk of KBD. These genes could promote the pathogenesis of KBD by disturbing ECM homeostasis.
Collapse
Affiliation(s)
- Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Minhan Hu
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Jiayu Diao
- Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yi Gong
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Ruitian Huang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Sijie Chen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Feiyu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Yanli Liu
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Feihong Chen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Pan Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | | | - Yanhai Chang
- Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ke Xu
- Xi'an Honghui Hospital, Xi'an, China
| | - Rong Zhou
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China.,Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Cheng Li
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China.,Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Mikko Lammi
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China.,Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| | - Xi Wang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| |
Collapse
|