1
|
Tang KY, Zhang HL, Zhang XY, Jin HZ. Clinical and laboratory features between anti-TIF1γ dermatomyositis with and without malignancy: 37 case series and a review. J Dermatol 2024; 51:1646-1657. [PMID: 39258818 DOI: 10.1111/1346-8138.17426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/21/2024] [Accepted: 07/26/2024] [Indexed: 09/12/2024]
Abstract
We aimed to analyze the clinical profile and malignancy indicators in dermatomyositis (DM) with anti-transcriptional intermediary factor 1 antibody (anti-TIF1γ-Ab). A comparison was made between clinical information of anti-TIF1γ DM patients with and without malignancy. Additionally, a review of the literature on anti-TIF1γ DM and malignancy was conducted by searching PubMed and EMBASE databases. In our cohort of 37 patients, 27.0% (10/37) developed malignancy. The timeframe during which these 10 patients developed malignancy ranged from 21 months prior to the diagnosis of DM to 36 months following the diagnosis of DM. Specifically, one patient was diagnosed with breast cancer at the age of 36. Comparing the groups with and without malignancy, we found that age over 65 years (40% vs 7.4%, P = 0.035), a shorter duration from the onset of symptoms to the diagnosis of DM (2.5 vs 10 months, P = 0.003), and higher erythrocyte sedimentation rate (ESR) levels (23 vs 10 mm/h, P = 0.048) were found to be associated with an increased risk of malignancy. Conversely, the presence of Gottron's papules (63% vs 20%, P = 0.029) may suggest a lower likelihood of malignancy. The literature review revealed that the prevalence of myositis-associated malignancy was 40.7% (340/836), with variations ranging from 19% to 82.9% across different series. In summary, factors such as age over 65 years, a shorter duration between symptom onset and diagnosis of DM, and elevated ESR levels may indicate an increased risk of malignancy in anti-TIF1γ DM patients.
Collapse
Affiliation(s)
- Ke-Yun Tang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Han-Lin Zhang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xin-Yi Zhang
- Department of Internal Medicine, Yale School of Medicine, Connecticut, New Haven, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, Connecticut, New Haven, USA
| | - Hong-Zhong Jin
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Jia Q, Che Q, Zhang X, Chen J, Ren C, Wu Y, Liang W, Zhang X, Li Y, Li Z, Zhang Z, Shu Q. Knockdown of Galectin-9 alleviates rheumatoid arthritis through suppressing TNF-α-induced activation of fibroblast-like synoviocytes. Biochem Pharmacol 2024; 220:115994. [PMID: 38141929 DOI: 10.1016/j.bcp.2023.115994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The role of Galectin-9 (Gal-9) in the pathogenesis of rheumatoid arthritis (RA) remains unclear. This study aimed to investigate the mechanism of action and therapeutic potential of Gal-9 in RA. We detected Gal-9 expression in clinical samples, explored the mechanism of function of Gal-9 by knockdown and overexpression in fibroblast-like synoviocytes (FLSs), and further verified it in collagen-induced arthritis (CIA) model. We found that the levels of Gal-9 were considerably elevated in RA synovium than in osteoarthritis (OA) patients. A substantial decrease of Gal-9 was demonstrated after tumor necrosis factor (TNF-α) inhibitor treatment in the plasma of patients with RA. Additionally, transcriptome sequencing revealed that Gal-9 was involved in the regulation of the TNF-α pathway. Gal-9 was considerably upregulated after TNF-α stimulation in FLSs, and knockdown of Gal-9 substantially inhibited TNF-α activated proliferation, migration and inflammatory response. According to cell transcriptome sequencing results, we further confirmed that Gal-9 could achieve these effects by interacting with MAFB and affecting PI3K/AKT/mTOR pathway. Finally, we knocked down Gal-9 on the CIA model and found that it could alleviate the progression of arthritis. In conclusion, our study revealed that the knockdown of Gal-9 could inhibited TNF-α induced activation in RA through MAFB, PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Qian Jia
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, China; Department of Rheumatology, Linyi People's Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Linyi, China
| | - Qincheng Che
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Xiaoyu Zhang
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Jie Chen
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Chunfeng Ren
- Department of Rheumatology and Immunology, Jining NO.1 People's Hospital, Jining, China
| | - Yunpeng Wu
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weiqiang Liang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiaojie Zhang
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Yanshan Li
- Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, China; Department of Rheumatology, Linyi People's Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Linyi, China
| | - Zunzhong Li
- Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, China; Department of Rheumatology, Linyi People's Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Linyi, China
| | - Zhenchun Zhang
- Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, China; Department of Rheumatology, Linyi People's Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Linyi, China
| | - Qiang Shu
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China.
| |
Collapse
|