1
|
Schauren JDS, de Oliveira AH, Consiglio CR, Monticielo OA, Xavier RM, Nunes NS, Ellwanger JH, Chies JAB. CCR5 promoter region polymorphisms in systemic lupus erythematosus. Int J Immunogenet 2024; 51:20-31. [PMID: 37984413 DOI: 10.1111/iji.12646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
This study investigated the impacts of CCR5 promoter region polymorphisms on the development of systemic lupus erythematosus (SLE) by comparing CCR5 genotypes and haplotypes from SLE patients with ethnically matched controls. A total of 382 SLE patients (289 European-derived and 93 African-derived) and 375 controls (243 European-derived and 132 African-derived) were genotyped for the CCR2-64I G > A (rs1799864), CCR5-59353 C > T (rs1799988), CCR5-59356 C > T (rs41469351), CCR5-59402 A > G (rs1800023) and CCR5-59653 C > T (rs1800024) polymorphisms through polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. Previous data from CCR5Δ32 analysis was included in the study to infer the CCR5 haplotypes and as a possible confounding factor in the binary logistic regression. European-derived patients showed a higher frequency of CCR5 wild-type genotype (conversely, a reduced frequency of Δ32 allele) and a reduced frequency of the HHG*2 haplotype compared to controls; both factors significantly affecting disease risk [p = .003 (OR 3.5, 95%CI 1.6-7.5) and 2.0% vs. 7.2% (residual p = 2.9E - 5), respectively]. Additionally, the HHA/HHB, HHC and HHG*2 haplotype frequencies differed between African-derived patients and controls [10% vs. 20.5% (residual p = .003), 29.4% vs. 17.4% (residual p = .003) and 3.9% vs. 0.8% (residual p = .023), respectively]. Considering the clinical manifestations of the disease, the CCR5Δ32 presence was confirmed as a susceptibility factor to class IV nephritis in the African-derived group and when all patients were grouped for comparison [pcorrected = .012 (OR 3.0; 95%CI 3.0-333.3) and pcorrected = .0006 (OR 6.8; 95%CI 1.9-24.8), respectively]. In conclusion, this study indicates that CCR5 promoter polymorphisms are important disease modifiers in SLE. Present data reinforces the CCR5Δ32 polymorphism as a protective factor for the development of the disease in European-derived patients and as a susceptibility factor for class IV nephritis in African-derived patients. Furthermore, we also described a reduced frequency of HHA/HHB and an increased frequency of HHC and HHG*2 haplotypes in African-derived patients, which could modify the CCR5 protein expression in specific cell subsets.
Collapse
Affiliation(s)
- Juliana da Silveira Schauren
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Amanda Henrique de Oliveira
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Rosat Consiglio
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Odirlei André Monticielo
- Division of Rheumatology, Department of Internal Medicine, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ricardo Machado Xavier
- Division of Rheumatology, Department of Internal Medicine, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Natália Schneider Nunes
- Postgraduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Zagirova D, Pushkov S, Leung GHD, Liu BHM, Urban A, Sidorenko D, Kalashnikov A, Kozlova E, Naumov V, Pun FW, Ozerov IV, Aliper A, Zhavoronkov A. Biomedical generative pre-trained based transformer language model for age-related disease target discovery. Aging (Albany NY) 2023; 15:9293-9309. [PMID: 37742294 PMCID: PMC10564439 DOI: 10.18632/aging.205055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/20/2023] [Indexed: 09/26/2023]
Abstract
Target discovery is crucial for the development of innovative therapeutics and diagnostics. However, current approaches often face limitations in efficiency, specificity, and scalability, necessitating the exploration of novel strategies for identifying and validating disease-relevant targets. Advances in natural language processing have provided new avenues for predicting potential therapeutic targets for various diseases. Here, we present a novel approach for predicting therapeutic targets using a large language model (LLM). We trained a domain-specific BioGPT model on a large corpus of biomedical literature consisting of grant text and developed a pipeline for generating target prediction. Our study demonstrates that pre-training of the LLM model with task-specific texts improves its performance. Applying the developed pipeline, we retrieved prospective aging and age-related disease targets and showed that these proteins are in correspondence with the database data. Moreover, we propose CCR5 and PTH as potential novel dual-purpose anti-aging and disease targets which were not previously identified as age-related but were highly ranked in our approach. Overall, our work highlights the high potential of transformer models in novel target prediction and provides a roadmap for future integration of AI approaches for addressing the intricate challenges presented in the biomedical field.
Collapse
Affiliation(s)
- Diana Zagirova
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Stefan Pushkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Geoffrey Ho Duen Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Bonnie Hei Man Liu
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Anatoly Urban
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Denis Sidorenko
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Aleksandr Kalashnikov
- Insilico Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE
| | - Ekaterina Kozlova
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Vladimir Naumov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Frank W. Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Ivan V. Ozerov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Alex Aliper
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
- Insilico Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
- Insilico Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE
| |
Collapse
|
3
|
Murayama MA, Shimizu J, Miyabe C, Yudo K, Miyabe Y. Chemokines and chemokine receptors as promising targets in rheumatoid arthritis. Front Immunol 2023; 14:1100869. [PMID: 36860872 PMCID: PMC9968812 DOI: 10.3389/fimmu.2023.1100869] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that commonly causes inflammation and bone destruction in multiple joints. Inflammatory cytokines, such as IL-6 and TNF-α, play important roles in RA development and pathogenesis. Biological therapies targeting these cytokines have revolutionized RA therapy. However, approximately 50% of the patients are non-responders to these therapies. Therefore, there is an ongoing need to identify new therapeutic targets and therapies for patients with RA. In this review, we focus on the pathogenic roles of chemokines and their G-protein-coupled receptors (GPCRs) in RA. Inflamed tissues in RA, such as the synovium, highly express various chemokines to promote leukocyte migration, tightly controlled by chemokine ligand-receptor interactions. Because the inhibition of these signaling pathways results in inflammatory response regulation, chemokines and their receptors could be promising targets for RA therapy. The blockade of various chemokines and/or their receptors has yielded prospective results in preclinical trials using animal models of inflammatory arthritis. However, some of these strategies have failed in clinical trials. Nonetheless, some blockades showed promising results in early-phase clinical trials, suggesting that chemokine ligand-receptor interactions remain a promising therapeutic target for RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Jun Shimizu
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Chie Miyabe
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazuo Yudo
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yoshishige Miyabe
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
4
|
Assessment of NKG2C copy number variation in HIV-1 infection susceptibility, and considerations about the potential role of lacking receptors and virus infection. J Hum Genet 2022; 67:475-479. [PMID: 35314764 PMCID: PMC8938163 DOI: 10.1038/s10038-022-01029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022]
Abstract
Human Immunodeficiency Virus (HIV) infection dynamics is strongly influenced by the host genetic background. NKG2C is an activating receptor expressed mainly on Natural Killer (NK) cells, and a polymorphism of copy number variation in the gene coding for this molecule has been pointed as a potential factor involved in HIV infection susceptibility. We evaluated the impact of the NKG2C deletion on HIV-1 susceptibility, with or without HBV/HCV co-infection, in a total of 780 individuals, including 385 HIV-infected patients and 395 healthy blood donors. NKG2C deletion genotyping was performed by standard PCR. To our knowledge, this is the first study to access the impact of complete NKG2C deletion among HIV-infected Brazilian individuals. The frequency of NKG2C deletion (range: 19–22%) was similar in cases and controls. No association of NKG2C deletion with HIV-1 susceptibility or influence on clinical features, HBV or HCV co-infection was observed in the evaluated population. Our findings suggest that NKG2C deletion, and the consequent absence of this receptor expression, does not directly impact HIV susceptibility, HBV/HCV-co-infection in the studied population, suggesting that other signaling pathways might be triggered and perform similar functions in cell activity in the absence of this specific receptor, preventing the development of disadvantageous phenotypes. Larger cohorts and studies involving protein expression are necessary to confirm our findings.
Collapse
|
5
|
Kulmann-Leal B, Ellwanger JH, Chies JAB. CCR5Δ32 in Brazil: Impacts of a European Genetic Variant on a Highly Admixed Population. Front Immunol 2021; 12:758358. [PMID: 34956188 PMCID: PMC8703165 DOI: 10.3389/fimmu.2021.758358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/23/2021] [Indexed: 01/10/2023] Open
Abstract
The genetic background of Brazilians encompasses Amerindian, African, and European components as a result of the colonization of an already Amerindian inhabited region by Europeans, associated to a massive influx of Africans. Other migratory flows introduced into the Brazilian population genetic components from Asia and the Middle East. Currently, Brazil has a highly admixed population and, therefore, the study of genetic factors in the context of health or disease in Brazil is a challenging and remarkably interesting subject. This phenomenon is exemplified by the genetic variant CCR5Δ32, a 32 base-pair deletion in the CCR5 gene. CCR5Δ32 originated in Europe, but the time of origin as well as the selective pressures that allowed the maintenance of this variant and the establishment of its current frequencies in the different human populations is still a field of debates. Due to its origin, the CCR5Δ32 allele frequency is high in European-derived populations (~10%) and low in Asian and African native human populations. In Brazil, the CCR5Δ32 allele frequency is intermediate (4-6%) and varies on the Brazilian States, depending on the migratory history of each region. CCR5 is a protein that regulates the activity of several immune cells, also acting as the main HIV-1 co-receptor. The CCR5 expression is influenced by CCR5Δ32 genotypes. No CCR5 expression is observed in CCR5Δ32 homozygous individuals. Thus, the CCR5Δ32 has particular effects on different diseases. At the population level, the effect that CCR5Δ32 has on European populations may be different than that observed in highly admixed populations. Besides less evident due to its low frequency in admixed groups, the effect of the CCR5Δ32 variant may be affected by other genetic traits. Understanding the effects of CCR5Δ32 on Brazilians is essential to predict the potential use of pharmacological CCR5 modulators in Brazil. Therefore, this study reviews the impacts of the CCR5Δ32 on the Brazilian population, considering infectious diseases, inflammatory conditions, and cancer. Finally, this article provides a general discussion concerning the impacts of a European-derived variant, the CCR5Δ32, on a highly admixed population.
Collapse
Affiliation(s)
| | | | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
6
|
Martín‐Leal A, Blanco R, Casas J, Sáez ME, Rodríguez‐Bovolenta E, de Rojas I, Drechsler C, Real LM, Fabrias G, Ruíz A, Castro M, Schamel WWA, Alarcón B, van Santen HM, Mañes S. CCR5 deficiency impairs CD4 + T-cell memory responses and antigenic sensitivity through increased ceramide synthesis. EMBO J 2020; 39:e104749. [PMID: 32525588 PMCID: PMC7396835 DOI: 10.15252/embj.2020104749] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
CCR5 is not only a coreceptor for HIV-1 infection in CD4+ T cells, but also contributes to their functional fitness. Here, we show that by limiting transcription of specific ceramide synthases, CCR5 signaling reduces ceramide levels and thereby increases T-cell antigen receptor (TCR) nanoclustering in antigen-experienced mouse and human CD4+ T cells. This activity is CCR5-specific and independent of CCR5 co-stimulatory activity. CCR5-deficient mice showed reduced production of high-affinity class-switched antibodies, but only after antigen rechallenge, which implies an impaired memory CD4+ T-cell response. This study identifies a CCR5 function in the generation of CD4+ T-cell memory responses and establishes an antigen-independent mechanism that regulates TCR nanoclustering by altering specific lipid species.
Collapse
Affiliation(s)
- Ana Martín‐Leal
- Department of Immunology and OncologyCentro Nacional de Biotecnología (CNB/CSIC)MadridSpain
| | - Raquel Blanco
- Department of Immunology and OncologyCentro Nacional de Biotecnología (CNB/CSIC)MadridSpain
| | - Josefina Casas
- Department of Biological ChemistryInstitute of Advanced Chemistry of Catalonia (IQAC‐CSIC)BarcelonaSpain
- CIBER Liver and Digestive Diseases (CIBER‐EDH)Instituto de Salud Carlos IIIMadridSpain
| | - María E Sáez
- Centro Andaluz de Estudios Bioinformáticos (CAEBi)SevilleSpain
| | - Elena Rodríguez‐Bovolenta
- Department of Cell Biology and ImmunologyCentro de Biología Molecular Severo Ochoa (CBMSO/CSIC)MadridSpain
| | - Itziar de Rojas
- Alzheimer Research CenterMemory Clinic of the Fundació ACEInstitut Català de Neurociències AplicadesBarcelonaSpain
| | - Carina Drechsler
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
- Department of ImmunologyFaculty of BiologyUniversity of FreiburgFreiburgGermany
- Institute for Pharmaceutical SciencesUniversity of FreiburgFreiburgGermany
| | - Luis Miguel Real
- Unit of Infectious Diseases and MicrobiologyHospital Universitario de ValmeSevilleSpain
- Department of Biochemistry, Molecular Biology and ImmunologySchool of MedicineUniversidad de MálagaMálagaSpain
| | - Gemma Fabrias
- Department of Biological ChemistryInstitute of Advanced Chemistry of Catalonia (IQAC‐CSIC)BarcelonaSpain
- CIBER Liver and Digestive Diseases (CIBER‐EDH)Instituto de Salud Carlos IIIMadridSpain
| | - Agustín Ruíz
- Alzheimer Research CenterMemory Clinic of the Fundació ACEInstitut Català de Neurociències AplicadesBarcelonaSpain
- CIBER Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Mario Castro
- Interdisciplinary Group of Complex SystemsEscuela Técnica Superior de IngenieríaUniversidad Pontificia ComillasMadridSpain
| | - Wolfgang WA Schamel
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
- Department of ImmunologyFaculty of BiologyUniversity of FreiburgFreiburgGermany
- Centre for Chronic Immunodeficiency (CCI)University of FreiburgFreiburgGermany
| | - Balbino Alarcón
- Department of Cell Biology and ImmunologyCentro de Biología Molecular Severo Ochoa (CBMSO/CSIC)MadridSpain
| | - Hisse M van Santen
- Department of Cell Biology and ImmunologyCentro de Biología Molecular Severo Ochoa (CBMSO/CSIC)MadridSpain
| | - Santos Mañes
- Department of Immunology and OncologyCentro Nacional de Biotecnología (CNB/CSIC)MadridSpain
| |
Collapse
|