1
|
Yongming L, Yizhe X, Zhikai Q, Yupeng W, Xiang W, Mengyuan Y, Guoqing D, Hongsheng Z. Identification of ion channel-related genes as diagnostic markers and potential therapeutic targets for osteoarthritis through bioinformatics and machine learning-based approaches. Biomarkers 2024; 29:285-297. [PMID: 38767974 DOI: 10.1080/1354750x.2024.2358316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a debilitating joint disorder characterized by the progressive degeneration of articular cartilage. Although the role of ion channels in OA pathogenesis is increasingly recognized, diagnostic markers and targeted therapies remain limited. METHODS In this study, we analyzed the GSE48556 dataset to identify differentially expressed ion channel-related genes (DEGs) in OA and normal controls. We employed machine learning algorithms, least absolute shrinkage and selection operator(LASSO), and support vector machine recursive feature elimination(SVM-RFE) to select potential diagnostic markers. Then the gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were performed to explore the potential diagnostic markers' involvement in biological pathways. Finally, weighted gene co-expression network analysis (WGCNA) was used to identify key genes associated with OA. RESULTS We identified a total of 47 DEGs, with the majority involved in transient receptor potential (TRP) pathways. Seven genes (CHRNA4, GABRE, HTR3B, KCNG2, KCNJ2, LRRC8C, and TRPM5) were identified as the best characteristic genes for distinguishing OA from healthy samples. We performed clustering analysis and identified two distinct subtypes of OA, C1, and C2, with differential gene expression and immune cell infiltration profiles. Then we identified three key genes (PPP1R3D, ZNF101, and LOC651309) associated with OA. We constructed a prediction model using these genes and validated it using the GSE46750 dataset, demonstrating reasonable accuracy and specificity. CONCLUSIONS Our findings provide novel insights into the role of ion channel-related genes in OA pathogenesis and offer potential diagnostic markers and therapeutic targets for the treatment of OA.
Collapse
Affiliation(s)
- Liu Yongming
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiong Yizhe
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qian Zhikai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wang Yupeng
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Wang Xiang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yin Mengyuan
- Department of Traditional Chinese Orthopedics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Du Guoqing
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Zhan Hongsheng
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Vieira TN, Saraiva ALL, Guimarães RM, Luiz JPM, Pinto LG, de Melo Rodrigues Ávila V, Goulart LR, Cunha-Junior JP, McNaughton PA, Cunha TM, Ferreira J, Silva CR. Angiotensin type 2 receptor antagonism as a new target to manage gout. Inflammopharmacology 2022; 30:2399-2410. [PMID: 36173505 DOI: 10.1007/s10787-022-01076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND There is a growing search for therapeutic targets in the treatment of gout. The present study aimed to evaluate the analgesic and anti-inflammatory potential of angiotensin type 2 receptor (AT2R) antagonism in an acute gout attack mouse model. METHODS Male wild-type (WT) C57BL/6 mice either with the AT2R antagonist, PD123319 (10 pmol/joint), or with vehicle injections, or AT2R KO mice, received intra-articular (IA) injection of monosodium urate (MSU) crystals (100 µg/joint), that induce the acute gout attack, and were tested for mechanical allodynia, thermal hyperalgesia, spontaneous nociception and ankle edema development at several times after the injections. To test an involvement of AT2R in joint pain, mice received an IA administration of angiotensin II (0.05-5 nmol/joint) with or without PD123319, and were also evaluated for pain and edema development. Ankle joint tissue samples from mice undergoing the above treatments were assessed for myeloperoxidase activity, IL-1β release, mRNA expression analyses and nitrite/nitrate levels, 4 h after injections. RESULTS AT2R antagonism has robust antinociceptive effects on mechanical allodynia (44% reduction) and spontaneous nociception (56%), as well as anti-inflammatory effects preventing edema formation (45%), reducing myeloperoxidase activity (54%) and IL-1β levels (32%). Additionally, Agtr2tm1a mutant mice have largely reduced painful signs of gout. Angiotensin II administration causes pain and inflammation, which was prevented by AT2R antagonism, as observed in mechanical allodynia 4 h (100%), spontaneous nociception (46%), cold nociceptive response (54%), edema formation (83%), myeloperoxidase activity (48%), and IL-1β levels (89%). PD123319 treatment also reduces NO concentrations (74%) and AT2R mRNA levels in comparison with MSU untreated mice. CONCLUSION Our findings show that AT2R activation contributes to acute pain in experimental mouse models of gout. Therefore, the antagonism of AT2R may be a potential therapeutic option to manage gout arthritis.
Collapse
Affiliation(s)
- Thiago Neves Vieira
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil
| | - André L Lopes Saraiva
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil
| | - Rafaela Mano Guimarães
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João Paulo Mesquita Luiz
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Larissa Garcia Pinto
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Veridiana de Melo Rodrigues Ávila
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil
| | - Luiz Ricardo Goulart
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil
| | - Jair Pereira Cunha-Junior
- Department of Immunology, Institute of Sciences Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, 38405-318, Brazil
| | - Peter Anthony McNaughton
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliano Ferreira
- Graduated Program in Pharmacology, Pharmacology Department, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88049-900, Brazil
| | - Cassia Regina Silva
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil.
- LABITOX, Post-Graduated Program in Genetics and Biochemistry, Biotechnology Institute, Federal University of Uberlândia, Av. Pará 1720-Campus Umuarama, Jardim Umuarama-Bloco 2E-Officeroom 224, Uberlândia, MG, 38408-100, Brazil.
| |
Collapse
|
3
|
Circular RNA circHIPK3 Activates Macrophage NLRP3 Inflammasome and TLR4 Pathway in Gouty Arthritis via Sponging miR-561 and miR-192. Inflammation 2021; 44:2065-2077. [PMID: 34085163 DOI: 10.1007/s10753-021-01483-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Increasing evidences indicate that circular RNAs (circRNAs) play important roles in regulating gene expressions in various diseases. However, the role of circRNAs in inflammatory response of gouty arthritis remains unknown. This study aims to investigate the role and underlying mechanism of circHIPK3 in inflammatory response of gouty arthritis. Quantitative real-time PCR was used to detect the expressions of circHIPK3, miR-192 and miR-561. Western blot was used to detect the protein levels of TLR4, NLRP3, nuclear factor-κB (NF-κB) related proteins, and Caspase-1. Dual luciferase reporter assay, RNA pull-down assay, and FISH assay were used to confirm the interaction between circHIPK3 and miR-192/miR-561. ELISA was used to detect interleukin (IL)-1β and tumor necrosis factor (TNF)-α levels. circHIPK3 was elevated in synovial fluid mononuclear cells (SFMCs) from patients with gouty arthritis and monosodium urate (MSU)-stimulated THP-1 cells. circHIPK3 overexpression promoted the inflammatory cytokines levels in MSU-stimulated THP-1 cells, and circHIPK3 silencing obtained the opposite effect. Mechanistically, circHIPK3 sponged miR-192 and miR-561, and subsequently promoted the expressions of miR-192 and miR-561 target gene TLR4 and NLRP3. In vivo experiments confirmed circHIPK3 knockdown suppressed gouty arthritis. circHIPK3 sponges miR-192 and miR-561 to promote TLR4 and NLRP3 expressions, thereby promoting inflammatory response in gouty arthritis.
Collapse
|
4
|
Jung JY, Kim JW, Suh CH, Kim HA. Roles of Interactions Between Toll-Like Receptors and Their Endogenous Ligands in the Pathogenesis of Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still's Disease. Front Immunol 2020; 11:583513. [PMID: 33224145 PMCID: PMC7674197 DOI: 10.3389/fimmu.2020.583513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Systemic juvenile idiopathic arthritis (JIA) and adult-onset Still’s disease (AOSD) are systemic inflammatory disorders that manifest as high-spiking fever, joint pain, evanescent skin rash, and organomegaly. Their pathogenesis is unclear, but inflammation is triggered by activation of the innate immune system with aberrant production of proinflammatory cytokines. Along with extrinsic factors, intrinsic pathways can trigger an unexpected immune response. Damage-associated molecular patterns (DAMPs) induce the activation of innate immune cells, leading to sterile inflammation in systemic JIA and AOSD. These endogenous proteins interact with Toll-like receptors (TLRs), which are pattern recognition receptors, and mediate immune signaling following stimulation by pathogen-associated molecular patterns and DAMPs. Several DAMPs, such as S100 proteins, play a role in the development or severity of systemic JIA and AOSD, in which their interactions with TLRs are altered. Also, the expression levels of genes encoding DAMPs contribute to the susceptibility to systemic JIA and AOSD. Herein, we review reports that TLR and DAMP signaling initiates and/or maintains the inflammatory response in systemic JIA and AOSD, and their correlations with the clinical characteristics of those diseases. In addition, we assess their utility as biomarkers or therapeutics for systemic JIA and AOSD.
Collapse
Affiliation(s)
- Ju-Yang Jung
- Department of Rheumatology, Ajou University of Medical School, Suwon, South Korea
| | - Ji-Won Kim
- Department of Rheumatology, Ajou University of Medical School, Suwon, South Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University of Medical School, Suwon, South Korea
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University of Medical School, Suwon, South Korea
| |
Collapse
|
6
|
Protective effects of a polyphenol-enriched fraction of the fruit peel of Annona crassiflora Mart. on acute and persistent inflammatory pain. Inflammopharmacology 2019; 28:759-771. [PMID: 31845053 DOI: 10.1007/s10787-019-00673-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/21/2019] [Indexed: 12/23/2022]
Abstract
Different parts of Annona crassiflora Mart., a native species from Brazilian savanna, were traditionally used for the treatment of a wide variety of ailments including arthritis. Thus, this study aimed to investigate the possible antinociceptive and anti-inflammatory properties of a polyphenol-enriched fraction of the fruit peel of A. crassiflora, named here as EtOAc, in mice. Pro-inflammatory cytokines and nitric oxide (NO) production were evaluated in LPS-activated macrophages. Then, EtOAc fraction was administered by oral route in male C57BL/6/J mice, and the animals were submitted to glutamate-induced nociception and complete Freund's adjuvant (CFA)-induced monoarthritis tests to assess nociception (mechanical, spontaneous and cold pain) and inflammation (edema and neutrophil infiltration), and to the open-field and rotarod tests for motor performance analysis. EtOAc fraction inhibited the production of IL-6 and NO in the LPS-induced macrophages, and reduced spontaneous nociception induced by glutamate, without altering the animals' locomotor activity. In addition, the polyphenol-enriched fraction was able to revert the early and late hyperalgesia induced by CFA, as well as edema at the acute phase. Reduction of myeloperoxidase activity and inflammatory cell infiltration was observed in the paw tissue of mice injected with CFA and treated with EtOAc fraction. Together, our results support the antinociceptive and anti-inflammatory effects of the polyphenol-enriched fraction of A. crassiflora fruit peel and suggest that these effects are triggered, at least in part, by suppressing pro-inflammatory cytokines and neutrophils infiltration.
Collapse
|