Akyea-Larbi KO, Hasford F, Inkoom S, Tetteh MA, Gyekye PK. Evaluation of organ and effective doses using anthropomorphic phantom: A comparison between experimental measurement and a commercial dose calculator.
Radiography (Lond) 2024;
30:1-5. [PMID:
37864985 DOI:
10.1016/j.radi.2023.10.003]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023]
Abstract
INTRODUCTION
The aim of this study was to experimentally measure organ doses for computed tomography (CT) procedures using thermoluminescence dosimeters (TLDs) on a RANDO anthropomorphic phantom and verify the measured doses using CT-Expo software.
METHODS
The phantom was irradiated using clinical CT scan protocols routinely used for specific procedures in the radiology department. Fifty TLD chips were used in this study. The scanning parameters (kVp, mA, s) used to scan the phantom were used as input parameters for CT-Expo dose estimations.
RESULTS
The TLD measured organ doses varied between 3.97 mGy for the esophagus and 56.22 mGy for the brain. High doses were recorded in the brain (37.80-56.22 mGy) and the eye lens (29.94-36.16 mGy). Comparing the organ dose measurements between TLD and CT-Expo, the maximum organ dose difference was obtained for the eye lens. A comparison between the two methods for the other organs were all less than 32 %. The effective doses from the TLD measurements for the head, chest, and abdominopelvic CT examinations were 2.78, 6.67, and 17 mSv, respectively and CT-Expo were 2.20, 10.30, and 16.70 mSv, respectively.
CONCLUSION
The experimental and computational results are comparable, and the reliability of the TLD measurements and CT-Expo dose calculator has been proven.
IMPLICATIONS FOR STUDY
A reason for the difference in dose measurements between the two methods has been attributed to the dissimilarity in the organ position in the Rando anthropomorphic phantom and the standard mathematical phantom used by CT-Expo. The experimental and computational results have been found to be comparable.
Collapse