1
|
Fingernail electron paramagnetic resonance dosimetry protocol for localized hand exposure accident. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Ekendahl D, Čemusová Z, Reimitz D, Vávra J. Retrospective physical dosimetry in the Czech Republic: an overview of already established methods and recent research. Int J Radiat Biol 2021; 98:890-899. [PMID: 34606411 DOI: 10.1080/09553002.2021.1988181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE The threat of serious radiation exposures to members of the public from radiological incidents and nuclear events has led to intensive study of a number of emergency dosimetry techniques for purposes of triage. As such, a national laboratory of retrospective dosimetry was established in our institute. The purpose of this work is to provide a summary of the well-established and already implemented retrospective physical dosimetry techniques based on thermoluminescence (TL), optically stimulated luminescence (OSL) and neutron activation including their specifics. Moreover, we present some new results of the experimental work, in which we compared dosimetry potential of various dental repair materials and human teeth. MATERIALS AND METHODS At first, an overview of already established retrospective physical retrospective methods including their main features was compiled. As regards recent research, an experimental comparative study was performed under defined conditions. The materials used were aliquots prepared from both pure and repaired teeth and aliquots of unused dental ceramics of known type. Following irradiation, we compared TL and OSL curves of the materials. We also compared dosimetry characteristics of OSL signal as reproducibility, dose dependence and fading. RESULTS After irradiation, the teeth aliquots of dental enamel and dentin exhibited very low OSL and TL signals compared with aliquots containing some dental repair materials or aliquots of pure dental ceramics. With a few exceptions, the OSL signal of dental enamel and dentin aliquots irradiated to 2 Gy was hardly distinguishable from OSL signal corresponding to unirradiated aliquots. In contrast, aliquots of teeth containing some dental repair material and aliquots of pure dental ceramics provided a well reproducible OSL signal exhibiting linear dose response. All the materials tested exhibited a significant fading of the OSL signal. The loss of OSL signal during the first 24 hours after irradiation was from 20 to 99% of its original value obtained immediately after the irradiation. CONCLUSIONS The already established physical methods of retrospective dosimetry use a spectrum of verified materials and techniques for dose assessment in the aftermath of serious radiological incidents and nuclear events. In the comparative study, we found that the dosimetry potential of teeth in natural state is much worse compared to teeth repaired with dental ceramics or dental cement fillings. Teeth restored with dental repair materials exhibited relatively favorable dosimetry characteristics. However, they can be usable for a dose reconstruction only on condition that the main practical problems connected with fading and optical bleaching were solved.
Collapse
Affiliation(s)
| | - Zina Čemusová
- National Radiation Protection Institute, Prague, Czech Republic
| | - Dan Reimitz
- National Radiation Protection Institute, Prague, Czech Republic
| | - Jakub Vávra
- National Radiation Protection Institute, Prague, Czech Republic
| |
Collapse
|
3
|
Swartz HM, Flood AB, Singh VK, Swarts SG. Scientific and Logistical Considerations When Screening for Radiation Risks by Using Biodosimetry Based on Biological Effects of Radiation Rather than Dose: The Need for Prior Measurements of Homogeneity and Distribution of Dose. HEALTH PHYSICS 2020; 119:72-82. [PMID: 32175928 PMCID: PMC7269859 DOI: 10.1097/hp.0000000000001244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An effective medical response to a large-scale radiation event requires prompt and effective initial triage so that appropriate care can be provided to individuals with significant risk for severe acute radiation injury. Arguably, it would be advantageous to use injury rather than radiation dose for the initial assessment; i.e., use bioassays of biological damage. Such assays would be based on changes in intrinsic biological response elements; e.g., up- or down-regulation of genes, proteins, metabolites, blood cell counts, chromosomal aberrations, micronuclei, micro-RNA, cytokines, or transcriptomes. Using a framework to evaluate the feasibility of biodosimetry for triaging up to a million people in less than a week following a major radiation event, Part 1 analyzes the logistical feasibility and clinical needs for ensuring that biomarkers of organ-specific injury could be effectively used in this context. We conclude that the decision to use biomarkers of organ-specific injury would greatly benefit by first having independent knowledge of whether the person's exposure was heterogeneous and, if so, what was the dose distribution (to determine which organs were exposed to high doses). In Part 2, we describe how these two essential needs for prior information (heterogeneity and dose distribution) could be obtained by using in vivo nail dosimetry. This novel physical biodosimetry method can also meet the needs for initial triage, providing non-invasive, point-of-care measurements made by non-experts with immediate dose estimates for four separate anatomical sites. Additionally, it uniquely provides immediate information as to whether the exposure was homogeneous and, if not, it can estimate the dose distribution. We conclude that combining the capability of methods such as in vivo EPR nail dosimetry with bioassays to predict organ-specific damage would allow effective use of medical resources to save lives.
Collapse
Affiliation(s)
- Harold M. Swartz
- Dept of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
- Dept of Medicine/Radiation Oncology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
| | - Ann Barry Flood
- Dept of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
| | - Vijay K. Singh
- Dept. Pharmacology & Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Steven G. Swarts
- Dept of Radiation Oncology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Sholom S, McKeever SWS. AN ADVANCE IN EPR DOSIMETRY WITH NAILS. RADIATION PROTECTION DOSIMETRY 2019; 186:60-64. [PMID: 30806471 DOI: 10.1093/rpd/ncz019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/15/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Olive oil is proposed as a medium for storage of nails in the time between nail harvesting and electron paramagnetic resonance (EPR) measurements to minimise the decay of the radiation-induced EPR signals (RIS). The behaviours of three main EPR signals, namely, RIS, mechanically induced and the background signals (MIS and BG, respectively), were studied for storage in olive oil. The properties of the MIS and BG signals were very similar to those previously observed for the storage in a vacuum. The RIS singlet slightly increased during the first day of storage and then remained practically unchanged at least for 6 days. Dose recovery test revealed that doses at the level 2 Gy may be reconstructed with an accuracy of about ±20%.
Collapse
Affiliation(s)
- S Sholom
- Radiation Dosimetry Laboratory, Department of Physics, Oklahoma State University, Stillwater, OK, USA
| | - S W S McKeever
- Radiation Dosimetry Laboratory, Department of Physics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
5
|
Marciniak A, Ciesielski B, Czajkowski P, Krefft K, Boguś P, Prawdzik – Dampc A, Lipniewicz J. EPR dosimetry in nail samples irradiated in vivo during total body irradiation procedures. RADIAT MEAS 2018. [DOI: 10.1016/j.radmeas.2018.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Swarts SG, Sidabras JW, Grinberg O, Tipikin DS, Kmiec M, Petryakov S, Schreiber W, Wood VA, Williams BB, Flood AB, Swartz HM. Developments in Biodosimetry Methods for Triage With a Focus on X-band Electron Paramagnetic Resonance In Vivo Fingernail Dosimetry. HEALTH PHYSICS 2018; 115:140-150. [PMID: 29787440 PMCID: PMC5967651 DOI: 10.1097/hp.0000000000000874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Instrumentation and application methodologies for rapidly and accurately estimating individual ionizing radiation dose are needed for on-site triage in a radiological/nuclear event. One such methodology is an in vivo X-band, electron paramagnetic resonance, physically based dosimetry method to directly measure the radiation-induced signal in fingernails. The primary components under development are key instrument features, such as resonators with unique geometries that allow for large sampling volumes but limit radiation-induced signal measurements to the nail plate, and methodological approaches for addressing interfering signals in the nail and for calibrating dose from radiation-induced signal measurements. One resonator development highlighted here is a surface resonator array designed to reduce signal detection losses due to the soft tissues underlying the nail plate. Several surface resonator array geometries, along with ergonomic features to stabilize fingernail placement, have been tested in tissue-equivalent nail models and in vivo nail measurements of healthy volunteers using simulated radiation-induced signals in their fingernails. These studies demonstrated radiation-induced signal detection sensitivities and quantitation limits approaching the clinically relevant range of ≤ 10 Gy. Studies of the capabilities of the current instrument suggest that a reduction in the variability in radiation-induced signal measurements can be obtained with refinements to the surface resonator array and ergonomic features of the human interface to the instrument. Additional studies are required before the quantitative limits of the assay can be determined for triage decisions in a field application of dosimetry. These include expanded in vivo nail studies and associated ex vivo nail studies to provide informed approaches to accommodate for a potential interfering native signal in the nails when calculating the radiation-induced signal from the nail plate spectral measurements and to provide a method for calibrating dose estimates from the radiation-induced signal measurements based on quantifying experiments in patients undergoing total-body irradiation or total-skin electron therapy.
Collapse
Affiliation(s)
- Steven G. Swarts
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32618
| | - Jason W. Sidabras
- Max Planck for Chemical Energy Conversion, Biophysical Chemistry, Mülheim, Germany
| | - Oleg Grinberg
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | | | - Maciej Kmiec
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | - Sergey Petryakov
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | - Wilson Schreiber
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | - Victoria A. Wood
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | | | - Ann Barry Flood
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | - Harold M. Swartz
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| |
Collapse
|
7
|
Sholom S, McKeever S. Stability of X-band EPR signals from fingernails under vacuum storage. Radiat Phys Chem Oxf Engl 1993 2017; 141:78-87. [PMID: 28781435 DOI: 10.1016/j.radphyschem.2017.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
EPR signals of different origin have been tested in human finger- and toe-nails with an X-band EPR technique for different conditions of nail storage. Three different signals were identified, namely a singlet at g=2.005, a doublet at g=2.004 with a splitting constant A=1.8 mT, and an anisotropic signal at g1=2.057, g2=2.029 and g3=2.003 (positions of local extrema). All EPR spectra from nails, whether irradiated or mechanically stressed, can be described as a superposition of these three signals. The singlet is responsible for the background signal (BG), is the main component of radiation-induced signals (RIS) for low doses (100 Gy or lower) and also contributes to mechanically-induced signals (MIS). This signal is quite stable under vacuum storage, but can be reduced almost to zero by soaking in water. The behavior of this signal under ambient conditions depends on many factors, such as absorbed dose, air humidity, and ambient illumination intensity at the place of storage. The doublet arises after exposure of nails to high (few hundreds Gy and higher) doses or after mechanical stress of samples. Depending on how this signal was obtained, it may have bulk or surface locations with quite different stability properties. The surface-located doublet (generated on the nail edges during cutting or clipping) is quite unstable and decays over about two hours for samples stored at ambient conditions and within several seconds for samples immersed in water. The volume-distributed doublet decays within a few minutes in water, several hours at ambient conditions and several days in vacuum. The anisotropic signal may also be generated by both ionizing radiation and mechanical stress; this signal is quite stable in vacuum and decays over several days at ambient conditions or a few tens of minutes in water. The reference lines for the above-described three EPR signals were obtained and a procedure of spectra deconvolution was developed and tested on samples exposed to both ionizing radiation and mechanical stress.
Collapse
Affiliation(s)
- Sergey Sholom
- Radiation Dosimetry Group, Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Stephen McKeever
- Radiation Dosimetry Group, Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
8
|
Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E. Ionizing radiation biomarkers in epidemiological studies - An update. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2017; 771:59-84. [PMID: 28342453 DOI: 10.1016/j.mrrev.2017.01.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.
Collapse
Affiliation(s)
- Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Univ Lyon, Université Claude Bernard, Lyon 1, Lyon, F-69424, France.
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Catharine West
- Translational Radiobiology Group, Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, United Kingdom
| | - Maria Gomolka
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Olivier Laurent
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute, Clinical Department, Ozyorsk, Russia
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Eric Blanchardon
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Yann Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Mats Harms-Ringhdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Julia Hess
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Ellina Macaeva
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Grainne Manning
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Eileen Pernot
- INSERM U897, Université de Bordeaux, F-33076 Bordeaux cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France; Commissariat à l'Énergie Atomique, INAC-SyMMES, F-38000 Grenoble, France
| | - Laure Sabatier
- Commissariat à l'Énergie Atomique, BP6, F-92265 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Centre for Research in Environmental Epidemiology, Radiation Programme, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF) (MTD formerly), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
9
|
Swartz HM. Using Stable Free Radicals to Obtain Unique and Clinically Useful Data In Vivo in Human Subjects. RADIATION PROTECTION DOSIMETRY 2016; 172:3-15. [PMID: 27886997 PMCID: PMC6061194 DOI: 10.1093/rpd/ncw323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
This paper attempts to: (1) provide a critical overview of the challenges and opportunities to extend electron paramagnetic resonance (EPR) into practical applications in human subjects, based on EPR measurements made in vivo; (2) summarize the clinical applications of EPR for improving treatments in cancer, wound healing and diabetic care, emphasizing EPR's unique capability to measure tissue oxygen repeatedly and with particular sensitivity to hypoxia and (3) summarize the capabilities of in vivo EPR to measure radiation dose for triage and medical guidance after a large-scale radiation exposure. The conclusion is that while still at a relatively early stage of its development and availability, clinical applications of EPR already have demonstrated significant value and the field is likely to grow in both the extent of its applications and its impact on significant problems.
Collapse
Affiliation(s)
- Harold M Swartz
- EPR Center for the Study of Viable Systems at Dartmouth, Department of Radiology, Geisel School of Medicine at Dartmouth, HB 7785 One Medical Center Drive, Lebanon, NH 03756, USA
- Division of Radiation Oncology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
10
|
Grinberg O, Sidabras JW, Tipikin DS, Krymov V, Mariani M, Feldman MM, Kmiec MM, Petryakov SV, Brugger S, Carr B, Schreiber W, Swarts SG, Swartz HM. Dielectric-Backed Aperture Resonators for X-Band in vivo EPR Nail Dosimetry. RADIATION PROTECTION DOSIMETRY 2016; 172:121-126. [PMID: 27412507 PMCID: PMC5225980 DOI: 10.1093/rpd/ncw163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A new resonator for X-band in vivo EPR nail dosimetry, the dielectric-backed aperture resonator (DAR), is developed based on rectangular TE102 geometry. This novel geometry for surface spectroscopy improves at least a factor of 20 compared to a traditional non-backed aperture resonator. Such an increase in EPR sensitivity is achieved by using a non-resonant dielectric slab, placed on the aperture inside the cavity. The dielectric slab provides an increased magnetic field at the aperture and sample, while minimizing sensitive aperture resonance conditions. This work also introduces a DAR semi-spherical (SS)-TE011 geometry. The SS-TE011 geometry is attractive due to having twice the incident magnetic field at the aperture for a fixed input power. It has been shown that DAR provides sufficient sensitivity to make biologically relevant measurements both in vitro and in vivo Although in vivo tests have shown some effects of physiological motions that suggest the necessity of a more robust finger holder, equivalent dosimetry sensitivity of approximately 1.4 Gy has been demonstrated.
Collapse
Affiliation(s)
- Oleg Grinberg
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jason W Sidabras
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53211, USA
| | | | - Vladimir Krymov
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Michael Mariani
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | - Maciej M Kmiec
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | - Spencer Brugger
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Brandon Carr
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | - Steven G Swarts
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610, USA
| | - Harold M Swartz
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
11
|
Bailiff I, Sholom S, McKeever S. Retrospective and emergency dosimetry in response to radiological incidents and nuclear mass-casualty events: A review. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2016.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Trompier F, Burbidge C, Bassinet C, Baumann M, Bortolin E, De Angelis C, Eakins J, Della Monaca S, Fattibene P, Quattrini MC, Tanner R, Wieser A, Woda C. Overview of physical dosimetry methods for triage application integrated in the new European network RENEB. Int J Radiat Biol 2016; 93:65-74. [DOI: 10.1080/09553002.2016.1221545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Christopher Burbidge
- C2TN, Instituto Superior Técnico, Universidade de Lisboa, Portugal, now at SUERC, University of Glasgow, UK
| | - Céline Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
| | - Marion Baumann
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
| | | | | | - Jonathan Eakins
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), UK
| | | | | | | | - Rick Tanner
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), UK
| | | | | |
Collapse
|
13
|
Flood AB, Ali AN, Boyle HK, Du G, Satinsky VA, Swarts SG, Williams BB, Demidenko E, Schreiber W, Swartz HM. Evaluating the Special Needs of The Military for Radiation Biodosimetry for Tactical Warfare Against Deployed Troops: Comparing Military to Civilian Needs for Biodosimetry Methods. HEALTH PHYSICS 2016; 111:169-82. [PMID: 27356061 PMCID: PMC4930006 DOI: 10.1097/hp.0000000000000538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The aim of this paper is to delineate characteristics of biodosimetry most suitable for assessing individuals who have potentially been exposed to significant radiation from a nuclear device explosion when the primary population targeted by the explosion and needing rapid assessment for triage is civilians vs. deployed military personnel. The authors first carry out a systematic analysis of the requirements for biodosimetry to meet the military's needs to assess deployed troops in a warfare situation, which include accomplishing the military mission. Then the military's special capabilities to respond and carry out biodosimetry for deployed troops in warfare are compared and contrasted systematically, in contrast to those available to respond and conduct biodosimetry for civilians who have been targeted by terrorists, for example. Then the effectiveness of different biodosimetry methods to address military vs. civilian needs and capabilities in these scenarios was compared and, using five representative types of biodosimetry with sufficient published data to be useful for the simulations, the number of individuals are estimated who could be assessed by military vs. civilian responders within the timeframe needed for triage decisions. Analyses based on these scenarios indicate that, in comparison to responses for a civilian population, a wartime military response for deployed troops has both more complex requirements for and greater capabilities to use different types of biodosimetry to evaluate radiation exposure in a very short timeframe after the exposure occurs. Greater complexity for the deployed military is based on factors such as a greater likelihood of partial or whole body exposure, conditions that include exposure to neutrons, and a greater likelihood of combined injury. These simulations showed, for both the military and civilian response, that a very fast rate of initiating the processing (24,000 d) is needed to have at least some methods capable of completing the assessment of 50,000 people within a 2- or 6-d timeframe following exposure. This in turn suggests a very high capacity (i.e., laboratories, devices, supplies and expertise) would be necessary to achieve these rates. These simulations also demonstrated the practical importance of the military's superior capacity to minimize time to transport samples to offsite facilities and use the results to carry out triage quickly. Assuming sufficient resources and the fastest daily rate to initiate processing victims, the military scenario revealed that two biodosimetry methods could achieve the necessary throughput to triage 50,000 victims in 2 d (i.e., the timeframe needed for injured victims), and all five achieved the targeted throughput within 6 d. In contrast, simulations based on the civilian scenario revealed that no method could process 50,000 people in 2 d and only two could succeed within 6 d.
Collapse
Affiliation(s)
- Ann Barry Flood
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Arif N. Ali
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA
| | - Holly K. Boyle
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Gaixin Du
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | | | - Steven G. Swarts
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL
| | - Benjamin B. Williams
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Radiation Oncology Division, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Wilson Schreiber
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Harold M. Swartz
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Radiation Oncology Division, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
14
|
Abstract
Human finger- and toenails have been tested with an X-band EPR technique for different conditions of nail storage. The main radiation-induced signal at g=2.005 demonstrated good stability if the samples were stored in a vacuum at room temperature after nail harvesting and irradiation. On the basis of this phenomenon, a new protocol is proposed to use the nails as possible emergency EPR dosimeters. The dosimetry protocol was tested on laboratory-exposed samples and demonstrated the ability to recover doses in the region 0-10 Gy with an estimated uncertainty of approximately 0.3-0.4 Gy for doses in the range < 2 Gy, increasing to 0.6-0.7 Gy for doses in the range 5-10 Gy.
Collapse
Affiliation(s)
- S Sholom
- Radiation Dosimetry Group, Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA
| | - S W S McKeever
- Radiation Dosimetry Group, Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
15
|
Şahiner E, Meriç N, Polymeris GS. Impact of different mechanical pre-treatment to the EPR signals of human fingernails towards studying dose response and fading subjected to UV exposure or beta irradiation. RADIAT MEAS 2015. [DOI: 10.1016/j.radmeas.2015.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Khailov A, Ivannikov AI, Skvortsov V, Stepanenko V, Orlenko S, Flood A, Williams B, Swartz H. Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air. RADIAT MEAS 2015; 82:1-7. [PMID: 26347593 PMCID: PMC4559862 DOI: 10.1016/j.radmeas.2015.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Absorbed doses to fingernails and organs were calculated for a set of homogenous external gamma-ray irradiation geometries in air. The doses were obtained by stochastic modeling of the ionizing particle transport (Monte Carlo method) for a mathematical human phantom with arms and hands placed loosely along the sides of the body. The resulting dose conversion factors for absorbed doses in fingernails can be used to assess the dose distribution and magnitude in practical dose reconstruction problems. For purposes of estimating dose in a large population exposed to radiation in order to triage people for treatment of acute radiation syndrome, the calculated data for a range of energies having a width of from 0.05 to 3.5 MeV were used to convert absorbed doses in fingernails to corresponding doses in organs and the whole body as well as the effective dose. Doses were assessed based on assumed rates of radioactive fallout at different time periods following a nuclear explosion.
Collapse
Affiliation(s)
- A.M. Khailov
- Medical Radiological Research Center named by A. Tsyb, Obninsk, Russia
| | - A. I. Ivannikov
- Medical Radiological Research Center named by A. Tsyb, Obninsk, Russia
| | - V.G. Skvortsov
- Medical Radiological Research Center named by A. Tsyb, Obninsk, Russia
| | - V.F. Stepanenko
- Medical Radiological Research Center named by A. Tsyb, Obninsk, Russia
| | - S.P. Orlenko
- Medical Radiological Research Center named by A. Tsyb, Obninsk, Russia
| | - A.B. Flood
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - B.B. Williams
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - H.M. Swartz
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
17
|
Flood AB, Boyle HK, Du G, Demidenko E, Nicolalde RJ, Williams BB, Swartz HM. Advances in a framework to compare bio-dosimetry methods for triage in large-scale radiation events. RADIATION PROTECTION DOSIMETRY 2014; 159:77-86. [PMID: 24729594 PMCID: PMC4067227 DOI: 10.1093/rpd/ncu120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Planning and preparation for a large-scale nuclear event would be advanced by assessing the applicability of potentially available bio-dosimetry methods. Using an updated comparative framework the performance of six bio-dosimetry methods was compared for five different population sizes (100-1,000,000) and two rates for initiating processing of the marker (15 or 15,000 people per hour) with four additional time windows. These updated factors are extrinsic to the bio-dosimetry methods themselves but have direct effects on each method's ability to begin processing individuals and the size of the population that can be accommodated. The results indicate that increased population size, along with severely compromised infrastructure, increases the time needed to triage, which decreases the usefulness of many time intensive dosimetry methods. This framework and model for evaluating bio-dosimetry provides important information for policy-makers and response planners to facilitate evaluation of each method and should advance coordination of these methods into effective triage plans.
Collapse
Affiliation(s)
- Ann Barry Flood
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Holly K Boyle
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Gaixin Du
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Eugene Demidenko
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | | | | | - Harold M Swartz
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| |
Collapse
|
18
|
Swartz HM, Williams BB, Flood AB. Overview of the principles and practice of biodosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:221-32. [PMID: 24519326 PMCID: PMC5982531 DOI: 10.1007/s00411-014-0522-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/02/2014] [Indexed: 05/05/2023]
Abstract
The principle of biodosimetry is to utilize changes induced in the individual by ionizing radiation to estimate the dose and, if possible, to predict or reflect the clinically relevant response, i.e., the biological consequences of the dose. Ideally, the changes should be specific for ionizing radiation, and the response should be unaffected by prior medical or physiological variations among subjects, including changes that might be caused by the stress and trauma from a radiation event. There are two basic types of biodosimetry with different and often complementary characteristics: those based on changes in biological parameters such as gene activation or chromosomal abnormalities and those based on physical changes in tissues (detected by techniques such as EPR). In this paper, we consider the applicability of the various techniques for different scenarios: small- and large-scale exposures to levels of radiation that could lead to the acute radiation syndrome and exposures with lower doses that do not need immediate care, but should be followed for evidence of long-term consequences. The development of biodosimetry has been especially stimulated by the needs after a large-scale event where it is essential to have a means to identify those individuals who would benefit from being brought into the medical care system. Analyses of the conventional methods officially recommended for responding to such events indicate that these methods are unlikely to achieve the results needed for timely triage of thousands of victims. Emerging biodosimetric methods can fill this critically important gap.
Collapse
Affiliation(s)
- Harold M Swartz
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,
| | | | | |
Collapse
|