1
|
Bashford-Largo J, Blair RJR, Blair KS, Dobbertin M, Elowsky J, Dominguez A, Hatch M, Bajaj S. Cortical volume alterations in the limbic network in adolescents with high reactive aggression. Dev Psychopathol 2024:1-9. [PMID: 38584251 DOI: 10.1017/s0954579424000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Previous studies show aggression-related structural alterations in frontal and limbic brain regions. Most studies have focused on overall aggression, instead of its subtypes, and on specific regions instead of networks. This study aims to identify both brain networks and regions that are associated with reactive and proactive subtypes of aggression. Structural MRI data were collected from 340 adolescents (125 F/215 M) with a mean age of 16.29 (SD = 1.20). Aggression symptomology was indexed via the Reactive Proactive Aggression Questionnaire (RPQ). Freesurfer was used to estimate Cortical Volume (CV) from seven networks and regions within specific networks associated with aggression. Two multivariate analyses of covariance (MANCOVAs) were conducted on groups for low versus higher reactive and proactive RPQ scores. Our reactive aggression MANCOVA showed a main effect in CV [F(14,321) = 1.935, p = 0.022,ηp2 = 0.078] across all the 7-Networks. Unpacking this main effect revealed significant volumetric differences in the right Limbic Network (LN) (p = 0.029) and the Temporal Pole (p = 0.011), where adolescents in the higher reactive aggression group showed higher cortical volumes. Such findings are consistent with region/voxel-specific analyses that have associated atypical structure within the LN and reactive aggression. Moreover, the temporal pole is highly interconnected with regions important in the regulation and initiation of reactive aggression.
Collapse
Affiliation(s)
- Johannah Bashford-Largo
- Child and Family Translational Research Center, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - R James R Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Karina S Blair
- Child and Family Translational Research Center, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Matthew Dobbertin
- Child and Family Translational Research Center, Boys Town National Research Hospital, Boys Town, NE, USA
- Child and Adolescent Psychiatric Inpatient Center, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jaimie Elowsky
- Clinical Psychology Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ahria Dominguez
- Clinical Health, Emotion, and Neuroscience (CHEN) Laboratory, Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Melissa Hatch
- Mind and Brain Health Laboratories (MBHL), Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sahil Bajaj
- Department of Cancer Systems Imaging, MD Anderson Center, University of Texas, Houston, TX, USA
| |
Collapse
|
2
|
Boccadoro S, Wagels L, Puiu AA, Votinov M, Weidler C, Veselinovic T, Demko Z, Raine A, Neuner I. A meta-analysis on shared and distinct neural correlates of the decision-making underlying altruistic and retaliatory punishment. Hum Brain Mapp 2021; 42:5547-5562. [PMID: 34415078 PMCID: PMC8559514 DOI: 10.1002/hbm.25635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Individuals who violate social norms will most likely face social punishment sanctions. Those sanctions are based on different motivation aspects, depending on the context. Altruistic punishment occurs if punishment aims to re‐establish the social norms even at cost for the punisher. Retaliatory punishment is driven by anger or spite and aims to harm the other. While neuroimaging research highlighted the neural networks supporting decision‐making in both types of punishment in isolation, it remains unclear whether they rely on the same or distinct neural systems. We ran an activation likelihood estimation meta‐analysis on functional magnetic resonance imaging data on 24 altruistic and 19 retaliatory punishment studies to investigate the neural correlates of decision‐making underlying social punishment and whether altruistic and retaliatory punishments share similar brain networks. Social punishment reliably activated the bilateral insula, inferior frontal gyrus, midcingulate cortex (MCC), and superior and medial frontal gyri. This network largely overlapped with activation clusters found for altruistic punishment. However, retaliatory punishment revealed only one cluster in a posterior part of the MCC, which was not recruited in altruistic punishment. Our results support previous models on social punishment and highlight differential involvement of the MCC in altruistic and retaliatory punishments, reflecting the underlying different motivations.
Collapse
Affiliation(s)
- Sara Boccadoro
- Departments of Psychiatry, Psychotherapy, and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lisa Wagels
- Departments of Psychiatry, Psychotherapy, and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.,JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Andrei A Puiu
- Departments of Psychiatry, Psychotherapy, and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mikhail Votinov
- Departments of Psychiatry, Psychotherapy, and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.,JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Carmen Weidler
- Departments of Psychiatry, Psychotherapy, and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Tanja Veselinovic
- Departments of Psychiatry, Psychotherapy, and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Zachary Demko
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Adrian Raine
- Departments of Criminology, Psychiatry, and Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Irene Neuner
- Departments of Psychiatry, Psychotherapy, and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany.,JARA-BRAIN - Translational Medicine, Aachen, Germany
| |
Collapse
|
3
|
Zhang R, Bashford-Largo J, Lukoff J, Elowsky J, Carollo E, Schwartz A, Dobbertin M, Bajaj S, Blair KS, Leibenluft E, Blair RJR. Callous-Unemotional Traits Moderate the Relationship Between Irritability and Threatening Responding. Front Psychiatry 2021; 12:617052. [PMID: 34867494 PMCID: PMC8635046 DOI: 10.3389/fpsyt.2021.617052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Irritability and callous-unemotional (CU; reduced guilt/empathy) traits vary dimensionally in the typically developing population but may be particularly marked in youth with conduct disorder (CD). While these dimensional traits are positively correlated, they have been associated with divergent forms of dysfunction, particularly with respect to threat processing (i.e., irritability with increased, and CU traits with decreased, threat responsiveness). This suggests that interactions between these two dimensions may be complex at the neurobiological level. However, this issue has received minimal empirical attention. Methods: The study included 105 adolescents (typically developing and cases with CD; N = 59). They were scanned with fMRI during a looming threat task that involved images of threatening and neutral human faces or animals that appeared to be either looming or receding. Results: Significant irritability-by-CU traits-by-Direction-by-Emotion interactions were seen within right thalamus/PAG, left lingual gyrus and right fusiform gyrus; irritability was positively associated with the BOLD response for Looming Threatening vs. Receding Threatening trials, particularly for youth with low CU traits. In contrast, CU traits were negatively associated with the same differential BOLD response but particularly for youth showing higher levels of irritability. Similar findings were seen within left ventral anterior and posterior cingulate cortices, though the addition of the interaction with CU traits was only seen at slightly more lenient thresholds. Conclusions: The results support previous work linking irritability to increased, and CU traits to reduced, threat responsiveness. However, for adolescents with high irritability, if CU traits are also high, the underlying neuropathology appears to relate to reduced, rather than increased, threat responsiveness.
Collapse
Affiliation(s)
- Ru Zhang
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Johannah Bashford-Largo
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Jennie Lukoff
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Jaimie Elowsky
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Erin Carollo
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Amanda Schwartz
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Matthew Dobbertin
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Sahil Bajaj
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Karina S Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Ellen Leibenluft
- Section on Mood Dysregulation and Neuroscience, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - R James R Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| |
Collapse
|