Stendel MS, Chavez RS. Beyond the brain localization of complex traits: Distributed white matter markers of personality.
J Pers 2023;
91:1140-1151. [PMID:
36273276 DOI:
10.1111/jopy.12788]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/09/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE
Extensive work in personality neuroscience has shown mixed results in the ability to localize reliable relationships between personality traits and neuroimaging measures. However, recent work in translational neuroimaging has recognized that multifaceted psychological dispositions are not represented in discrete, highly localized brain areas. As such, standard univariate neuroimaging analyses may not be well-suited for capturing broad personality traits supported by distributed networks.
METHOD
The present study uses an out-of-sample predictive modeling approach to identify multivariate signatures of Big Five personality traits within the structural integrity of white matter pathways using diffusion magnetic resonance imaging. In Study 1 (N = 491), we trained a ridge regression model to predict each of the Big Five traits and tested these models in an independent hold-out subsample.
RESULTS
We found that models for both Neuroticism and Openness were significantly related to predictive accuracy in the hold-out sample. Study 2 (N = 108) applied Study 1's predictive models to an independent set of data collected on a different scanner and using a different Big Five scale. Here, we found that the model for Neuroticism remained a significant predictor of individual difference.
CONCLUSION
Our findings provide evidence that this white matter signature of Neuroticism generalizes across differences in measurement and samples.
Collapse