1
|
Caria A. A Hypothalamic Perspective of Human Socioemotional Behavior. Neuroscientist 2024; 30:399-420. [PMID: 36703298 DOI: 10.1177/10738584221149647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Historical evidence from stimulation and lesion studies in animals and humans demonstrated a close association between the hypothalamus and typical and atypical socioemotional behavior. A central hypothalamic contribution to regulation of socioemotional responses was also provided indirectly by studies on oxytocin and arginine vasopressin. However, a limited number of studies have so far directly investigated the contribution of the hypothalamus in human socioemotional behavior. To reconsider the functional role of the evolutionarily conserved hypothalamic region in regulating human social behavior, here I provide a synthesis of neuroimaging investigations showing that the hypothalamus is involved in multiple and diverse facets of human socioemotional behavior through widespread functional interactions with other cortical and subcortical regions. These neuroimaging findings are then integrated with recent optogenetics studies in animals demonstrating that the hypothalamus plays a more active role in eliciting socioemotional responses and is not simply a downstream effector of higher-level brain systems. Building on the aforementioned evidence, the hypothalamus is argued to substantially contribute to a continuum of human socioemotional behaviors promoting survival and preservation of the species that extends from exploratory and approaching responses facilitating social bonding to aggressive and avoidance responses aimed to protect and defend formed relationships.
Collapse
Affiliation(s)
- Andrea Caria
- Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
2
|
Lotze M. Emotional processing impairments in patients with insula lesions following stroke. Neuroimage 2024; 291:120591. [PMID: 38552812 DOI: 10.1016/j.neuroimage.2024.120591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Functional imaging has helped to understand the role of the human insula as a major processing network for integrating input with the current state of the body. However, these studies remain at a correlative level. Studies that have examined insula damage show lesion-specific performance deficits. Case reports have provided anecdotal evidence for deficits following insula damage, but group lesion studies offer a number of advances in providing evidence for functional representation of the insula. We conducted a systematic literature search to review group studies of patients with insula damage after stroke and identified 23 studies that tested emotional processing performance in these patients. Eight of these studies assessed emotional processing of visual (most commonly IAPS), auditory (e.g., prosody), somatosensory (emotional touch) and autonomic function (heart rate variability). Fifteen other studies looked at social processing, including emotional face recognition, gaming tasks and tests of empathy. Overall, there was a bias towards testing only patients with right-hemispheric lesions, making it difficult to consider hemisphere specificity. Although many studies included an overlay of lesion maps to characterise their patients, most did not differentiate lesion statistics between insula subunits and/or applied voxel-based associations between lesion location and impairment. This is probably due to small group sizes, which limit statistical comparisons. We conclude that multicentre analyses of lesion studies with comparable patients and performance tests are needed to definitively test the specific function of parts of the insula in emotional processing and social interaction.
Collapse
Affiliation(s)
- Martin Lotze
- Functional Imaging Unit, Center for Diagnostic Radiology, University of Greifswald, Germany.
| |
Collapse
|
3
|
Grant-Jacob JA. Evolution of laughter from play. Commun Integr Biol 2024; 17:2338073. [PMID: 38601922 PMCID: PMC11005796 DOI: 10.1080/19420889.2024.2338073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
In this hypothesis, I discuss how laughter from physical play could have evolved to being induced via visual or even verbal stimuli, and serves as a signal to highlight incongruity that could potentially pose a threat to survival. I suggest how laughter's induction could have negated the need for physical contact in play, evolving from its use in tickling, to tickle-misses, and to taunting, and I discuss how the application of deep learning neural networks trained on images of spectra of a variety of laughter types from a variety of individuals or even species, could be used to determine such evolutionary pathways via the use of latent space exploration.
Collapse
Affiliation(s)
- James A. Grant-Jacob
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
4
|
Dagher S, Ishiyama S. Tickle fetishism: pleasure beyond playfulness. Front Psychol 2024; 15:1342342. [PMID: 38633879 PMCID: PMC11021705 DOI: 10.3389/fpsyg.2024.1342342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/19/2024] Open
Abstract
Tickling is commonly perceived as juvenile play associated with laughter. However, its potential connection to adult sexual behavior has largely remained unexplored. Our online survey, primarily distributed among individuals interested in tickle fetishism, explored tickling and its association with sexual behavior. Ticklishness types, tools, preferred body parts, and partner preferences, were examined. Results revealed diverse patterns of ticklishness changes over time and distinct body-part preferences for different types of tickling. Childhood experiences and exposure to tickling content in television were found to shape individuals' affinity for tickle fetishism. A quarter of respondents reported experiencing orgasms exclusively from tickling, while around 88% expressed sexual satisfaction through tickling alone, indicating its sufficiency as a sexual stimulus among fetishists. Tickling desire decreased after orgasm, indicating an association between tickling and sexual activity. Moreover, ticklishness degree predicted preferences for being tickled rather than tickling others. Exploratory factor analysis identified three factors underlying tickling and sexual experiences: enjoyment and frequency of tickling during sexual activity; preference for intense sexual experiences; age of becoming sexually active. In conclusion, this study provides unique insights into tickling and its connections to sexual context, enhancing our understanding of diverse human sexual behavior and tickle fetishism as a distinct preference.
Collapse
|
5
|
Elide Vanutelli M, Daum MM, Manfredi M. Mini-review: Wild laughs: Ontogenesis and phylogenesis of humour. Neurosci Lett 2024; 822:137615. [PMID: 38169243 DOI: 10.1016/j.neulet.2023.137615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
This mini-review discusses the existing evidence on various forms of humour and humour-like behaviour in non-human animals, combining ontogenetic and phylogenetic perspectives. The first section describes humour-like behaviours, from the simplest to the most complex form (from laughing, tickling, joking, and chasing to ToM humour). In the second section, we propose the SPeCies (Social, Physiological, and Cognitive) Perspective, which frames the various types of humour based on Social motivation, Physiological state, and Cognitive skills. Finally, in the third section, we discuss future directions for further development.
Collapse
Affiliation(s)
- Maria Elide Vanutelli
- Department of Psychology, University of Milan-Bicocca, Milan, Italy; Department of Philosophy "Piero Martinetti", Università degli Studi di Milano, Milan, Italy.
| | - Moritz M Daum
- Department of Psychology, University of Zurich, Switzerland; Jacobs Center for Productive Youth Development, University of Zurich, Switzerland
| | - Mirella Manfredi
- Department of Psychology, University of Zurich, Switzerland; Jacobs Center for Productive Youth Development, University of Zurich, Switzerland
| |
Collapse
|
6
|
Ahmed IA, Froemke RC. Play behavior: Tickle and play in the periaqueductal gray. Curr Biol 2023; 33:R1145-R1147. [PMID: 37935126 DOI: 10.1016/j.cub.2023.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A new study has identified the periaqueductal gray as an important brain region for play and tickle behavior in rats.
Collapse
Affiliation(s)
- Ismail A Ahmed
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Robert C Froemke
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
7
|
Gloveli N, Simonnet J, Tang W, Concha-Miranda M, Maier E, Dvorzhak A, Schmitz D, Brecht M. Play and tickling responses map to the lateral columns of the rat periaqueductal gray. Neuron 2023; 111:3041-3052.e7. [PMID: 37516112 PMCID: PMC10552647 DOI: 10.1016/j.neuron.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/31/2023]
Abstract
The persistence of play after decortication points to a subcortical mechanism of play control. We found that global blockade of the rat periaqueductal gray with either muscimol or lidocaine interfered with ticklishness and play. We recorded vocalizations and neural activity from the periaqueductal gray of young, playful rats during interspecific touch, play, and tickling. Rats vocalized weakly to touch and more strongly to play and tickling. Periaqueductal gray units showed diverse but strong modulation to tickling and play. Hierarchical clustering based on neuronal responses to play and tickling revealed functional clusters mapping to different periaqueductal gray columns. Specifically, we observed play-neutral/tickling-inhibited and tickling/play-neutral units in dorsolateral and dorsomedial periaqueductal gray columns. In contrast, strongly play/tickling-excited units mapped to the lateral columns and were suppressed by anxiogenic conditions. Optogenetic inactivation of lateral periaqueductal columns disrupted ticklishness and play. We conclude that the lateral periaqueductal gray columns are decisive for play and laughter.
Collapse
Affiliation(s)
- Natalie Gloveli
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences, Berlin, 10117 Berlin, Germany
| | - Jean Simonnet
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Wei Tang
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Miguel Concha-Miranda
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Eduard Maier
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Anton Dvorzhak
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Dietmar Schmitz
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences, Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences, Berlin, 10117 Berlin, Germany.
| |
Collapse
|
8
|
Palagi E, Caruana F, de Waal FBM. The naturalistic approach to laughter in humans and other animals: towards a unified theory. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210175. [PMID: 36126670 PMCID: PMC9489289 DOI: 10.1098/rstb.2021.0175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/15/2022] [Indexed: 12/18/2022] Open
Abstract
This opinion piece aims to tackle the biological, psychological, neural and cultural underpinnings of laughter from a naturalistic and evolutionary perspective. A naturalistic account of laughter requires the revaluation of two dogmas of a longstanding philosophical tradition, that is, the quintessential link between laughter and humour, and the uniquely human nature of this behaviour. In the spirit of Provine's and Panksepp's seminal studies, who firstly argued against the anti-naturalistic dogmas, here we review compelling evidence that (i) laughter is first and foremost a social behaviour aimed at regulating social relationships, easing social tensions and establishing social bonds, and that (ii) homologue and homoplasic behaviours of laughter exist in primates and rodents, who also share with humans the same underpinning neural circuitry. We make a case for the hypothesis that the contagiousness of laughter and its pervasive social infectiousness in everyday social interactions is mediated by a specific mirror mechanism. Finally, we argue that a naturalistic account of laughter should not be intended as an outright rejection of classic theories; rather, in the last part of the piece we argue that our perspective is potentially able to integrate previous viewpoints-including classic philosophical theories-ultimately providing a unified evolutionary explanation of laughter. This article is part of the theme issue 'Cracking the laugh code: laughter through the lens of biology, psychology and neuroscience'.
Collapse
Affiliation(s)
- Elisabetta Palagi
- Unit of Ethology, Department of Biology, University of Pisa, via A. Volta 6, Pisa 56126, Italy
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Via Volturno 39/E, Parma 43125, Italy
| | | |
Collapse
|
9
|
Westermann B, Lotze M, Varra L, Versteeg N, Domin M, Nicolet L, Obrist M, Klepzig K, Marbot L, Lämmler L, Fiedler K, Wattendorf E. When laughter arrests speech: fMRI-based evidence. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210182. [PMID: 36126674 PMCID: PMC9489293 DOI: 10.1098/rstb.2021.0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/13/2022] [Indexed: 01/07/2023] Open
Abstract
Who has not experienced that sensation of losing the power of speech owing to an involuntary bout of laughter? An investigation of this phenomenon affords an insight into the neuronal processes that underlie laughter. In our functional magnetic resonance imaging study, participants were made to laugh by tickling in a first condition; in a second one they were requested to produce vocal utterances under the provocation of laughter by tickling. This investigation reveals increased neuronal activity in the sensorimotor cortex, the anterior cingulate gyrus, the insula, the nucleus accumbens, the hypothalamus and the periaqueductal grey for both conditions, thereby replicating the results of previous studies on ticklish laughter. However, further analysis indicates the activity in the emotion-associated regions to be lower when tickling is accompanied by voluntary vocalization. Here, a typical pattern of activation is identified, including the primary sensory cortex, a ventral area of the anterior insula and the ventral tegmental field, to which belongs to the nucleus ambiguus, namely, the common effector organ for voluntary and involuntary vocalizations. During the conflictual voluntary-vocalization versus laughter experience, the laughter-triggering network appears to rely heavily on a sensory and a deep interoceptive analysis, as well as on motor effectors in the brainstem. This article is part of the theme issue 'Cracking the laugh code: laughter through the lens of biology, psychology and neuroscience'.
Collapse
Affiliation(s)
- B. Westermann
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - M. Lotze
- Faculty of Medicine, University of Greifswald, Greifswald, Germany
| | - L. Varra
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - N. Versteeg
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - M. Domin
- Faculty of Medicine, University of Greifswald, Greifswald, Germany
| | - L. Nicolet
- College of Health Sciences Fribourg, Fribourg, Switzerland
| | - M. Obrist
- College of Health Sciences Fribourg, Fribourg, Switzerland
| | - K. Klepzig
- College of Health Sciences Fribourg, Fribourg, Switzerland
| | - L. Marbot
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - L. Lämmler
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - K. Fiedler
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - E. Wattendorf
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- College of Health Sciences Fribourg, Fribourg, Switzerland
| |
Collapse
|
10
|
Caria A, Dall’Ò GM. Functional Neuroimaging of Human Hypothalamus in Socioemotional Behavior: A Systematic Review. Brain Sci 2022; 12:brainsci12060707. [PMID: 35741594 PMCID: PMC9221465 DOI: 10.3390/brainsci12060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
There exist extensive animal research and lesion studies in humans demonstrating a tight association between the hypothalamus and socioemotional behavior. However, human neuroimaging literature in this direction is still rather limited. In order to reexamine the functional role of this region in regulating human social behavior, we here provided a synthesis of neuroimaging studies showing hypothalamic activation during affiliative, cooperative interactions, and in relation to ticklish laughter and humor. In addition, studies reporting involvement of the hypothalamus during aggressive and antisocial interactions were also considered. Our systematic review revealed a growing number of investigations demonstrating that the evolutionary conserved hypothalamic neural circuity is involved in multiple and diverse aspects of human socioemotional behavior. On the basis of the observed heterogeneity of hypothalamus-mediated socioemotional responses, we concluded that the hypothalamus might play an extended functional role for species survival and preservation, ranging from exploratory and approaching behaviors promoting social interactions to aggressive and avoidance responses protecting and defending the established social bonds.
Collapse
|
11
|
Bartolo A, Ballotta D, Nocetti L, Baraldi P, Nichelli PF, Benuzzi F. Uncover the Offensive Side of Disparagement Humor: An fMRI Study. Front Psychol 2021; 12:750597. [PMID: 34880811 PMCID: PMC8645564 DOI: 10.3389/fpsyg.2021.750597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Disparagement humor is a kind of humor that denigrates, belittles an individual or a social group. In the aim to unveil the offensive side of these kinds of jokes, we have run an event-related fMRI study asking 30 healthy volunteers to judge the level of fun of a series of verbal stimuli that ended with a sentence that was socially inappropriate but funny (disparagement joke -DJ), socially inappropriate but not funny (SI) or neutral (N). Behavioral results showed disparagement jokes are perceived as funny and at the same time offensive. However, the level of offense in DJ is lower than that registered in SI stimuli. Functional data showed that DJ activated the insula, the SMA, the precuneus, the ACC, the dorsal striatum (the caudate nucleus), and the thalamus. These activations suggest that in DJ a feeling of mirth (and/or a desire to laugh) derived from the joke (e.g., SMA and precuneus) and the perception of the jokes’ social inappropriateness (e.g., ACC and insula) coexist. Furthermore, DJ and SI share a common network related to mentalizing and to the processing of negative feelings, namely the medial prefrontal cortex, the putamen and the right thalamus.
Collapse
Affiliation(s)
- Angela Bartolo
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, Lille, France.,Institut Universitaire de France (IUF), Paris, France
| | - Daniela Ballotta
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Luca Nocetti
- Fisica Medica, Azienda Ospedaliera Universitaria di Modena, Modena, Italy
| | - Patrizia Baraldi
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Paolo Frigio Nichelli
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Francesca Benuzzi
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
12
|
Sivasathiaseelan H, Marshall CR, Benhamou E, van Leeuwen JEP, Bond RL, Russell LL, Greaves C, Moore KM, Hardy CJD, Frost C, Rohrer JD, Scott SK, Warren JD. Laughter as a paradigm of socio-emotional signal processing in dementia. Cortex 2021; 142:186-203. [PMID: 34273798 PMCID: PMC8438290 DOI: 10.1016/j.cortex.2021.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/01/2021] [Accepted: 05/21/2021] [Indexed: 11/03/2022]
Abstract
Laughter is a fundamental communicative signal in our relations with other people and is used to convey a diverse repertoire of social and emotional information. It is therefore potentially a useful probe of impaired socio-emotional signal processing in neurodegenerative diseases. Here we investigated the cognitive and affective processing of laughter in forty-seven patients representing all major syndromes of frontotemporal dementia, a disease spectrum characterised by severe socio-emotional dysfunction (twenty-two with behavioural variant frontotemporal dementia, twelve with semantic variant primary progressive aphasia, thirteen with nonfluent-agrammatic variant primary progressive aphasia), in relation to fifteen patients with typical amnestic Alzheimer's disease and twenty healthy age-matched individuals. We assessed cognitive labelling (identification) and valence rating (affective evaluation) of samples of spontaneous (mirthful and hostile) and volitional (posed) laughter versus two auditory control conditions (a synthetic laughter-like stimulus and spoken numbers). Neuroanatomical associations of laughter processing were assessed using voxel-based morphometry of patients' brain MR images. While all dementia syndromes were associated with impaired identification of laughter subtypes relative to healthy controls, this was significantly more severe overall in frontotemporal dementia than in Alzheimer's disease and particularly in the behavioural and semantic variants, which also showed abnormal affective evaluation of laughter. Over the patient cohort, laughter identification accuracy was correlated with measures of daily-life socio-emotional functioning. Certain striking syndromic signatures emerged, including enhanced liking for hostile laughter in behavioural variant frontotemporal dementia, impaired processing of synthetic laughter in the nonfluent-agrammatic variant (consistent with a generic complex auditory perceptual deficit) and enhanced liking for numbers ('numerophilia') in the semantic variant. Across the patient cohort, overall laughter identification accuracy correlated with regional grey matter in a core network encompassing inferior frontal and cingulo-insular cortices; and more specific correlates of laughter identification accuracy were delineated in cortical regions mediating affective disambiguation (identification of hostile and posed laughter in orbitofrontal cortex) and authenticity (social intent) decoding (identification of mirthful and posed laughter in anteromedial prefrontal cortex) (all p < .05 after correction for multiple voxel-wise comparisons over the whole brain). These findings reveal a rich diversity of cognitive and affective laughter phenotypes in canonical dementia syndromes and suggest that laughter is an informative probe of neural mechanisms underpinning socio-emotional dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Harri Sivasathiaseelan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Charles R Marshall
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
| | - Elia Benhamou
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Janneke E P van Leeuwen
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rebecca L Bond
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lucy L Russell
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Caroline Greaves
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Katrina M Moore
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chris J D Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chris Frost
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sophie K Scott
- Institute of Cognitive Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
13
|
Gerbella M, Pinardi C, Di Cesare G, Rizzolatti G, Caruana F. Two Neural Networks for Laughter: A Tractography Study. Cereb Cortex 2020; 31:899-916. [DOI: 10.1093/cercor/bhaa264] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract
Laughter is a complex motor behavior occurring in both emotional and nonemotional contexts. Here, we investigated whether the different functions of laughter are mediated by distinct networks and, if this is the case, which are the white matter tracts sustaining them. We performed a multifiber tractography investigation placing seeds in regions involved in laughter production, as identified by previous intracerebral electrical stimulation studies in humans: the pregenual anterior cingulate (pACC), ventral temporal pole (TPv), frontal operculum (FO), presupplementary motor cortex, and ventral striatum/nucleus accumbens (VS/NAcc). The primary motor cortex (M1) and two subcortical territories were also studied to trace the descending projections. Results provided evidence for the existence of two relatively distinct networks. A first network, including pACC, TPv, and VS/NAcc, is interconnected through the anterior cingulate bundle, the accumbofrontal tract, and the uncinate fasciculus, reaching the brainstem throughout the mamillo-tegmental tract. This network is likely involved in the production of emotional laughter. A second network, anchored to FO and M1, projects to the brainstem motor nuclei through the internal capsule. It is most likely the neural basis of nonemotional and conversational laughter. The two networks interact throughout the pre-SMA that is connected to both pACC and FO.
Collapse
Affiliation(s)
- M Gerbella
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy
| | - C Pinardi
- Neuroradiology Department, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - G Di Cesare
- Cognitive Architecture for Collaborative Technologies Unit, Italian Institute of Technology, Genova 16163, Italy
| | - G Rizzolatti
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy
- Institute of Neuroscience, Italian National Research Council (CNR), Parma 43125, Italy
| | - F Caruana
- Institute of Neuroscience, Italian National Research Council (CNR), Parma 43125, Italy
| |
Collapse
|