1
|
Kohl Y, William N, Elje E, Backes N, Rothbauer M, Srancikova A, Rundén-Pran E, El Yamani N, Korenstein R, Madi L, Barbul A, Kozics K, Sramkova M, Steenson K, Gabelova A, Ertl P, Dusinska M, Nelson A. Rapid identification of in vitro cell toxicity using an electrochemical membrane screening platform. Bioelectrochemistry 2023; 153:108467. [PMID: 37244203 DOI: 10.1016/j.bioelechem.2023.108467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
This study compares the performance and output of an electrochemical phospholipid membrane platform against respective in vitro cell-based toxicity testing methods using three toxicants of different biological action (chlorpromazine (CPZ), colchicine (COL) and methyl methanesulphonate (MMS)). Human cell lines from seven different tissues (lung, liver, kidney, placenta, intestine, immune system) were used to validate this physicochemical testing system. For the cell-based systems, the effective concentration at 50 % cell death (EC50) values are calculated. For the membrane sensor, a limit of detection (LoD) value was extracted as a quantitative parameter describing the minimum concentration of toxicant which significantly affects the structure of the phospholipid sensor membrane layer. LoD values were found to align well with the EC50 values when acute cell viability was used as an end-point and showed a similar toxicity ranking of the tested toxicants. Using the colony forming efficiency (CFE) or DNA damage as end-point, a different order of toxicity ranking was observed. The results of this study showed that the electrochemical membrane sensor generates a parameter relating to biomembrane damage, which is the predominant factor in decreasing cell viability when in vitro models are acutely exposed to toxicants. These results lead the way to using electrochemical membrane-based sensors for rapid relevant preliminary toxicity screens.
Collapse
Affiliation(s)
- Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, Sulzbach 66280, Germany.
| | - Nicola William
- School of Chemistry and Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Elisabeth Elje
- NILU-Norwegian Institute for Air Research, Department for Environmental Chemistry, Health Effects Laboratory, Instituttveien 18, Kjeller 2007, Norway; Faculty of Medicine, Institute of Basic Medical Sciences Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway.
| | - Nadine Backes
- Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, Sulzbach 66280, Germany
| | - Mario Rothbauer
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Annamaria Srancikova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava 84505, Slovakia.
| | - Elise Rundén-Pran
- NILU-Norwegian Institute for Air Research, Department for Environmental Chemistry, Health Effects Laboratory, Instituttveien 18, Kjeller 2007, Norway.
| | - Naouale El Yamani
- NILU-Norwegian Institute for Air Research, Department for Environmental Chemistry, Health Effects Laboratory, Instituttveien 18, Kjeller 2007, Norway
| | - Rafi Korenstein
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Lea Madi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Alexander Barbul
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Katarina Kozics
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava 84505, Slovakia.
| | - Monika Sramkova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava 84505, Slovakia.
| | - Karen Steenson
- School of Chemistry and Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Alena Gabelova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava 84505, Slovakia.
| | - Peter Ertl
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Maria Dusinska
- NILU-Norwegian Institute for Air Research, Department for Environmental Chemistry, Health Effects Laboratory, Instituttveien 18, Kjeller 2007, Norway.
| | - Andrew Nelson
- School of Chemistry and Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
2
|
Gijbels E, Pieters A, De Muynck K, Vinken M, Devisscher L. Rodent models of cholestatic liver disease: A practical guide for translational research. Liver Int 2021; 41:656-682. [PMID: 33486884 PMCID: PMC8048655 DOI: 10.1111/liv.14800] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cholestatic liver disease denotes any situation associated with impaired bile flow concomitant with a noxious bile acid accumulation in the liver and/or systemic circulation. Cholestatic liver disease can be subdivided into different types according to its clinical phenotype, such as biliary atresia, drug-induced cholestasis, gallstone liver disease, intrahepatic cholestasis of pregnancy, primary biliary cholangitis and primary sclerosing cholangitis. Considerable effort has been devoted to elucidating underlying mechanisms of cholestatic liver injuries and explore novel therapeutic and diagnostic strategies using animal models. Animal models employed according to their appropriate applicability domain herein play a crucial role. This review provides an overview of currently available in vivo animal models, fit-for-purpose in modelling different types of cholestatic liver diseases. Moreover, a practical guide and workflow is provided which can be used for translational research purposes, including all advantages and disadvantages of currently available in vivo animal models.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium,Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Kevin De Muynck
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium,Hepatology Research UnitInternal Medicine and PaediatricsLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Lindsey Devisscher
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| |
Collapse
|
3
|
Ye F, Zhan Q, Xiao W, Sha W, Zhang X. Altered serum levels of glial cell line-derived neurotrophic factor in male chronic schizophrenia patients with tardive dyskinesia. Int J Methods Psychiatr Res 2018; 27:e1727. [PMID: 29901253 PMCID: PMC6877127 DOI: 10.1002/mpr.1727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 04/29/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Many research indicate that the tardive dyskinesia (TD) is generally linked with long-term antipsychotic therapy for schizophrenia. Glial cell line-derived neurotrophic factor (GDNF) is a critical role in the protection of catecholaminergic, dopaminergic, and cholinergic neurons. Thus, we examined the serum GDNF levels in schizophrenia patients with TD (WTD) and without TD (NTD) and compared with healthy controls (HC), respectively. METHODS Totally 75 males with schizophrenia were recruited into this study. All were measured by the Diagnostic and Statistical Manual of Mental Disorders, fifth edition, the Positive and Negative Syndrome Scale, and the Abnormal Involuntary Movement Scale (AIMS). The patient group was divided into two subgroups: WTD (n = 32) and NTD (n = 43) according to the AIMS score. Fifty-three healthy controls matching in age and gender were also enlisted from the region. GDNF levels were examined with sandwich enzyme-linked immunosorbent assay. RESULTS Analysis of variance indicated significant differences between the three groups (P = 0.012); GDNF levels in the WTD group were significantly different from those in the NTD (P = 0.030) and HC (P = 0.003) groups. CONCLUSION Decreased GDNF levels in TD patients indicated that alterations in neurotrophic factors may be involved in the pathophysiology of TD, but the exact mechanisms need further investigation.
Collapse
Affiliation(s)
- Fei Ye
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou, China
| | - Qiongqiong Zhan
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou, China
| | - Wenhuan Xiao
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou, China
| | - Weiwei Sha
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou, China
| | - Xiaobin Zhang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Yang Q, Yang F, Tang X, Ding L, Xu Y, Xiong Y, Wang Z, Yang L. Chlorpromazine-induced perturbations of bile acids and free fatty acids in cholestatic liver injury prevented by the Chinese herbal compound Yin-Chen-Hao-Tang. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:122. [PMID: 25887351 PMCID: PMC4410582 DOI: 10.1186/s12906-015-0627-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 03/20/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUNDS Yin-Chen-Hao-Tang (YCHT), a commonly used as a traditional chinese medicine for liver disease. Several studies indicated that YCHT may improving hepatic triglyceride metabolism and anti-apoptotic response as well as decreasing oxidative stress .However, little is known about the role of YCHT in chlorpromazine (CPZ) -induced chlolestatic liver injury. Therefore, we aimed to facilitate the understanding of the pathogenesis of cholestatic liver injury and evaluate the effect of Yin-Chen-Hao-Tang (YCHT) on chlorpromazine (CPZ)-induced cholestatic liver injury in rats based on the change of bile acids (BAs) and free fatty acids (FFAs) alone with the biochemical indicators and histological examination. METHODS We conducted an experiment on CPZ-induced cholestatic liver injury in Wistar rats with and without YCHT for nine consecutive days. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), total bilirubin (TBIL), total cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C) were measured to evaluate the protective effect of YCHT against chlorpromazine (CPZ)-induced cholestatic liver injury. Histopathology of the liver tissue showed that pathological injuries were relieved after YCHT pretreatment. In addition, ultra-performance lipid chromatography coupled with quadrupole mass spectrometry (UPLC-MS) and gas chromatography coupled with mass spectrometry (GC-MS) was applied to determine the content of bile acids, free fatty acids, respectively. RESULTS Obtained data showed that YCHT attenuated the effect of CPZ-induced cholestatic liver injury, which was manifested by the serum biochemical parameters and histopathology of the liver tissue. YCHT regulated the lipid levels as indicated by the reversed serum levels of TC, TG, and LDL-C. YCHT also regulated the disorder of BA and FFA metabolism by CPZ induction. CONCLUSIONS Results indicated that YCHT exerted a protective effect on CPZ-induced cholestasis liver injury. The variance of BA and FFA concentrations can be used to evaluate the cholestatic liver injury caused by CPZ and the hepatoprotective effect of YCHT.
Collapse
Affiliation(s)
- Qiaoling Yang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 201210, Shanghai, China.
| | - Fan Yang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 201210, Shanghai, China.
| | - Xiaowen Tang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 201210, Shanghai, China.
| | - Lili Ding
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 201210, Shanghai, China.
| | - Ying Xu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 201210, Shanghai, China.
| | - Yinhua Xiong
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 201210, Shanghai, China.
| | - Zhengtao Wang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 201210, Shanghai, China.
| | - Li Yang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 201210, Shanghai, China.
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201210, China.
| |
Collapse
|
5
|
Remington G, Fervaha G, Foussias G, Agid O, Turrone P. Antipsychotic dosing: found in translation. J Psychiatry Neurosci 2014; 39:223-31. [PMID: 24467943 PMCID: PMC4074233 DOI: 10.1503/jpn.130191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the field of schizophrenia research, as in other areas of psychiatry, there is a sense of frustration that greater advances have not been made over the years, calling into question existing research strategies. Arguably, many purported gains claimed by research have been "lost in translation," resulting in limited impact on diagnosis and treatment in the clinical setting. There are exceptions; for example, we would argue that different lines of preclinical and clinical research have substantially altered how we look at antipsychotic dosing. While this story remains a work in progress, advances "found in translation" have played an important role. Detailing these changes, the present paper speaks to a body of evidence that has already shifted clinical practice and raises questions that may further alter the manner in which antipsychotics have been administered over the last 6 decades.
Collapse
Affiliation(s)
- Gary Remington
- Correspondence to: G. Remington, Complex Mental Illness Division, Schizophrenia Program, Centre for Addiction and Mental Health, 250 College St., Toronto ON M5T 1R8;
| | | | | | | | | |
Collapse
|