1
|
Lopes JJ, Rae CD, Meyer D, Yolland C, Neill E, Castle D, Dean B, Rossell SL. Glutamate concentrations and cognitive deficits in ultra-treatment-resistant schizophrenia: An exploratory and comparative 1H-MRS study. Psychiatry Res Neuroimaging 2025; 347:111926. [PMID: 39642669 DOI: 10.1016/j.pscychresns.2024.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND AND AIMS Glutamate plays a crucial role in cognition, learning, and mood regulation, with studies suggesting glutamatergic dysfunction in chronic schizophrenia. This study explored glutamate levels in the occipital cortex (OCC) and cognitive function in ultra-treatment resistant schizophrenia (uTRS) compared to healthy controls. METHODS Fifteen uTRS participants and 19 healthy controls underwent 3T proton magnetic resonance spectroscopy (1H-MRS) to measure glutamate levels in the OCC. Cognitive performance was assessed using the MATRICS Consensus Cognitive Battery (MCCB). RESULTS No significant differences in OCC glutamate levels were found between uTRS participants and healthy controls. uTRS participants performed significantly worse on the MCCB compared to healthy controls, with a large effect size (η² = 0.72). Although no significant direct relationships were observed between Glu levels and cognitive performance, significant regression models for certain cognitive domains suggest a modest association between Glu levels and cognitive outcomes. CONCLUSION Participants with uTRS exhibited significant cognitive deficits compared to healthy controls, though no significant differences in OCC Glu levels were found. While no clear linear or quadratic relationships emerged, Glu explained a small portion of the variance in cognitive performance, indicating a more complex role for Glu in cognition that warrants further investigation.
Collapse
Affiliation(s)
- Jamie J Lopes
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia.
| | - Caroline D Rae
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Psychology, The University of New South Wales, Kensington, NSW, Australia
| | - Denny Meyer
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Caitlin Yolland
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Erica Neill
- Orygen, Melbourne, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - David Castle
- Tasmanian Centre for Mental Health Service Innovation, Tasmanian Department of Health, TAS, Australia; Psychiatry, University of Tasmania, TAS, Australia
| | - Brian Dean
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia; Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3065, Australia
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia; Psychiatry, St Vincent's Hospital, Melbourne, VIC 3065, Australia
| |
Collapse
|
2
|
An L, Hong S, Turon T, Pavletic A, Johnson CS, Derbyshire JA, Shen J. Enhanced detection of glutamate via transverse relaxation encoding with narrowband decoupling in the human brain. Magn Reson Med 2025. [PMID: 39834120 DOI: 10.1002/mrm.30431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/23/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE This study aims to improve the detection of glutamate (Glu) concentration and T2 using an enhanced transverse relaxation encoding with narrowband decoupling (TREND) technique. METHODS A new editing pulse was designed to simultaneously invert both Glu H3 spins (2.12 ppm and 2.05 ppm) while minimizing the excitation of Glu H4. Additionally, a frequency band was created to invert the lactate (Lac) H2 spin (4.10 ppm) while saturating the NAA aspartyl H2 spin (4.38 ppm). Numerical simulations compared Glu and Lac signals using the original and new editing pulses. In vivo experiments were conducted on healthy participants at 7 T to validate this enhanced TREND technique. RESULTS Numerical simulations showed prominently enhanced Glu and Lac resonance signals with the new editing pulse. In vivo spectra showed a 47% ± 14% increase in Glu/Cr peak amplitude ratios with the new editing pulse. Using the enhanced TREND sequence, Glu/Cr concentration ratios in the anterior cingulate cortex were 1.03 ± 0.07 with Cramer-Rao lower bounds (CRLBs) of 1.1% ± 0.1%, and Glu T2 values were 179 ± 18 ms with CRLBs of 1.2% ± 0.1%. The Lac/Cr concentration ratios in the same voxels were 0.05 ± 0.01 with CRLBs of 26% ± 14%, and Lac T2 values were 196 ± 23 ms with CRLBs of 22% ± 15%. CONCLUSION The new editing pulse significantly enhanced the detection of Glu and enabled the detection of Lac using TREND for measuring both the concentration and T2 of the markers of oxidative metabolism and glycolysis.
Collapse
Affiliation(s)
- Li An
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sungtak Hong
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Tara Turon
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Adriana Pavletic
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher S Johnson
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - John A Derbyshire
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Shen
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Bissonnette JN, Anderson TJ, Crocker CE, Tibbo PG, Salisbury DF, Fisher DJ. Examining the Complex Mismatch Negativity in Early Phase Psychosis Using the Dual Rule Paradigm. Clin EEG Neurosci 2025; 56:91-99. [PMID: 39150248 PMCID: PMC11664881 DOI: 10.1177/15500594241273287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Using electroencephalography (EEG) to examine the simple mismatch negativity (MMN), a marker of auditory cortex function, has been of great interest in the exploration of biomarkers for psychotic illness. Despite many studies reporting MMN deficits in chronic schizophrenia, there are inconsistent reports of MMN reductions in the early phases of psychotic illness, suggesting the MMN elicited by traditional paradigms may not be a sensitive enough measure of vulnerability to be used as a biomarker. Recently, a more computationally complex measure of auditory cortex function (the complex mismatch negativity; cMMN) has been hypothesized to provide a more sensitive marker of illness vulnerability. The current study employed a novel dual rule paradigm, in which two pattern rules are established and violated, to examine the cMMN in 14 individuals with early phase psychosis (EPP, < 5 years illness) and 15 healthy controls (HC). Relationships between cMMN waveforms, symptom severity, and measures of functioning were explored. We found reductions of cMMN amplitudes at the site of maximal amplitude in EPP (p = .017) with large effect sizes (Hedges' g = 0.96). This study is an early step in the exploration of the cMMN as a biomarker for psychosis. Our results provide evidence that the dual rule cMMN paradigm shows promise as a method for cMMN elicitation that captures more subtle neurofunctional changes in the early stages of illness.
Collapse
Affiliation(s)
- Jenna N. Bissonnette
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - T-Jay Anderson
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Candice E. Crocker
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Philip G. Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dean F. Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Derek J. Fisher
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Abdolizadeh A, Torres-Carmona E, Kambari Y, Amaev A, Song J, Ueno F, Koizumi T, Nakajima S, Agarwal SM, De Luca V, Gerretsen P, Graff-Guerrero A. Evaluation of the Glymphatic System in Schizophrenia Spectrum Disorder Using Proton Magnetic Resonance Spectroscopy Measurement of Brain Macromolecule and Diffusion Tensor Image Analysis Along the Perivascular Space Index. Schizophr Bull 2024; 50:1396-1410. [PMID: 38748498 PMCID: PMC11548937 DOI: 10.1093/schbul/sbae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2024]
Abstract
BACKGROUND AND HYPOTHESIS The glymphatic system (GS), a brain waste clearance pathway, is disrupted in various neurodegenerative and vascular diseases. As schizophrenia shares clinical characteristics with these conditions, we hypothesized GS disruptions in patients with schizophrenia spectrum disorder (SCZ-SD), reflected in increased brain macromolecule (MM) and decreased diffusion-tensor-image-analysis along the perivascular space (DTI-ALPS) index. STUDY DESIGN Forty-seven healthy controls (HCs) and 103 patients with SCZ-SD were studied. Data included 135 proton magnetic resonance spectroscopy (1H-MRS) sets, 96 DTI sets, with 79 participants contributing both. MM levels were quantified in the dorsal-anterior cingulate cortex (dACC), dorsolateral prefrontal cortex, and dorsal caudate (point resolved spectroscopy, echo-time = 35ms). Diffusivities in the projection and association fibers near the lateral ventricle were measured to calculate DTI-ALPS indices. General linear models were performed, adjusting for age, sex, and smoking. Correlation analyses examined relationships with age, illness duration, and symptoms severity. STUDY RESULTS MM levels were not different between patients and HCs. However, left, right, and bilateral DTI-ALPS indices were lower in patients compared with HCs (P < .001). In HCs, age was positively correlated with dACC MM and negatively correlated with left, right, and bilateral DTI-ALPS indices (P < .001). In patients, illness duration was positively correlated with dACC MM and negatively correlated with the right DTI-ALPS index (P < .05). In the entire population, dACC MM and DTI-ALPS indices showed an inverse correlation (P < .01). CONCLUSIONS Our results suggest potential disruptions in the GS of patients with SCZ-SD. Improving brain's waste clearance may offer a potential therapeutic approach for patients with SCZ-SD.
Collapse
Affiliation(s)
- Ali Abdolizadeh
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Edgardo Torres-Carmona
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yasaman Kambari
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aron Amaev
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jianmeng Song
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fumihiko Ueno
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Teruki Koizumi
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Shinichiro Nakajima
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Sri Mahavir Agarwal
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Vincenzo De Luca
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| |
Collapse
|
5
|
Lopes JJ, Carruthers SP, Meyer D, Dean B, Rossell SL. Glutamatergic neurotransmission in schizophrenia: A systematic review and quantitative synthesis of proton magnetic resonance spectroscopy studies across schizophrenia spectrum disorders. Aust N Z J Psychiatry 2024; 58:930-951. [PMID: 38812258 PMCID: PMC11529133 DOI: 10.1177/00048674241254216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
OBJECTIVE Studies using proton magnetic resonance spectroscopy reveal substantial inconsistencies in the levels of brain glutamate, glutamine and glutamate + glutamine across schizophrenia spectrum disorders. This systematic review employs qualitative and quantitative methods to analyse the patterns and relationships between glutamatergic metabolites, schizophrenia spectrum disorders and brain regions. METHODS A literature search was conducted using various databases with keywords including glutamate, glutamine, schizophrenia, psychosis and proton magnetic resonance spectroscopy. Inclusion criteria were limited to case-control studies that reported glutamatergic metabolite levels in adult patients with a schizophrenia spectrum disorder diagnosis - i.e. first-episode psychosis, schizophrenia, treatment-resistant schizophrenia and/or ultra-treatment-resistant schizophrenia - using proton magnetic resonance spectroscopy at 3 T or above. Pooled study data were synthesized and analysed. RESULTS A total of 92 studies met the inclusion criteria, including 2721 healthy controls and 2822 schizophrenia spectrum disorder participants. Glu levels were higher in the basal ganglia, frontal cortex and medial prefrontal of first-episode psychosis participants, contrasting overall lower levels in schizophrenia participants. For Gln, strong differences in metabolite levels were evident in the basal ganglia, dorsolateral prefrontal cortex and frontal cortex, with first-episode psychosis showing significantly higher levels in the basal ganglia. In glutamate + glutamine, higher metabolite levels were found across schizophrenia spectrum disorder groups, particularly in the basal ganglia and dorsolateral prefrontal cortex of treatment-resistant schizophrenia participants. Significant relationships were found between metabolite levels and medication status, clinical measures and methodological variables. CONCLUSION The review highlights abnormal glutamatergic metabolite levels throughout schizophrenia spectrum disorders and in specific brain regions. The review underscores the importance of standardized future research assessing glutamatergic metabolites using proton magnetic resonance spectroscopy due to considerable literature heterogeneity.
Collapse
Affiliation(s)
- Jamie J Lopes
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Sean P Carruthers
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Denny Meyer
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Brian Dean
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
- Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
- Department of Psychiatry, St Vincent’s Hospital, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Heeh M, Sandouka D, Idais T. Exploring the role of AMPA receptor auxiliary proteins in synaptic functions and diseases. FEBS J 2024. [PMID: 39394632 DOI: 10.1111/febs.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (AMPARs) mediate rapid excitatory synaptic transmission in the mammalian brain, primarily driven by the neurotransmitter glutamate. The modulation of AMPAR activity, particularly calcium-permeable AMPARs (CP-AMPARs), is crucially influenced by various auxiliary subunits. These subunits are integral membrane proteins that bind to the receptor's core and modify its functional properties, including ion channel kinetics and receptor trafficking. This review comprehensively catalogs all known AMPAR auxiliary proteins, providing vital insights into the biochemical mechanisms governing synaptic modulation and the specific impact of CP-AMPARs compared to their calcium-impermeable AMPA receptor (CI-AMPARs). Understanding the complex interplay between AMPARs and their auxiliary subunits in different brain regions is essential for elucidating their roles in cognitive functions such as learning and memory. Importantly, alterations in these auxiliary proteins' expression, function or interactions have been implicated in various neurological disorders. Aberrant signaling through CP-AMPARs, in particular, is associated with severe synaptic dysfunctions across neurodevelopmental, neurodegenerative and psychiatric conditions. Targeting the distinct properties of AMPAR-auxiliary subunit complexes, especially those involving CP-AMPARs, could disclose new therapeutic strategies, potentially allowing for more precise interventions in treating complex neuronal disorders.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
7
|
Bissonnette JN, Anderson TJ, Ross L, Francis AM, Napier K, Shead NW, Fisher DJ. Reduced MMN-indexed auditory change detection in a non-clinical high schizotypy sample. PERSONALITY NEUROSCIENCE 2024; 7:e10. [PMID: 39345915 PMCID: PMC11428059 DOI: 10.1017/pen.2024.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 10/01/2024]
Abstract
Schizotypal traits include abnormalities in cognition, behavior, and interpersonal relationships that are similar, yet less severe than psychotic symptomology. It is estimated that approximately 5% of the general population displays psychotic symptoms and experiences that can be considered schizotypal in nature, but there is little research examining the neurological correlates of these traits. The mismatch negativity (MMN) event-related potential is an objective measure of auditory change detection derived from electroencephalography. The current study contributes to the limited body of evidence examining the neurobiological underpinnings of schizotypy in a non-clinical sample using the MMN. Participants were recruited from the general population and divided into high and low-schizotypy groups for comparison. Individuals with high schizotypal traits displayed reduced MMN amplitudes in response to frequency and location deviants, and longer MMN latencies in response to location deviants. Specific sub-traits of schizotypy were uniquely related to frequency and location amplitudes, suggesting the previously reported inconsistencies in the literature may be due to diverse samples and differing deviant tone types. Finally, impulsivity and sensation-seeking likely contributed to the slower processing seen in location deviance detection. Ultimately, the current results provide evidence that the neurobiological abnormalities seen in clinical populations of schizotypal personality disorder and psychosis also extend to non-clinical populations.
Collapse
Affiliation(s)
- Jenna N Bissonnette
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - T-Jay Anderson
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lauren Ross
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Ashley M Francis
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kaitlyn Napier
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - N Will Shead
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Derek J Fisher
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
8
|
Feng Y, Sun L, Dang X, Liu D, Liao Z, Yao J, Zhang Y, Deng Z, Li J, Zhao M, Liu F. Aberrant glycosylation in schizophrenia: insights into pathophysiological mechanisms and therapeutic potentials. Front Pharmacol 2024; 15:1457811. [PMID: 39286629 PMCID: PMC11402814 DOI: 10.3389/fphar.2024.1457811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Schizophrenia (SCZ) is a severe neuropsychiatric disorder characterized by cognitive, affective, and social dysfunction, resulting in hallucinations, delusions, emotional blunting, and disordered thinking. In recent years, proteomics has been increasingly influential in SCZ research. Glycosylation, a key post-translational modification, can alter neuronal stability and normal signaling in the nervous system by affecting protein folding, stability, and cellular signaling. Recent research evidence suggests that abnormal glycosylation patterns exist in different brain regions in autopsy samples from SCZ patients, and that there are significant differences in various glycosylation modification types and glycosylation modifying enzymes. Therefore, this review explores the mechanisms of aberrant modifications of N-glycosylation, O-glycosylation, glycosyltransferases, and polysialic acid in the brains of SCZ patients, emphasizing their roles in neurotransmitter receptor function, synaptic plasticity, and neural adhesion. Additionally, the effects of antipsychotic drugs on glycosylation processes and the potential for glycosylation-targeted therapies are discussed. By integrating these findings, this review aims to provide a comprehensive perspective to further understand the role of aberrant glycosylation modifications in the pathophysiology of SCZ.
Collapse
Affiliation(s)
- Yanchen Feng
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu Sun
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Diyan Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ziyun Liao
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jianping Yao
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ziqi Deng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinyao Li
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Min Zhao
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Feixiang Liu
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
9
|
Wang Q, Yang C, Chen S, Li J. Miniaturized Electrochemical Sensing Platforms for Quantitative Monitoring of Glutamate Dynamics in the Central Nervous System. Angew Chem Int Ed Engl 2024; 63:e202406867. [PMID: 38829963 DOI: 10.1002/anie.202406867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Glutamate is one of the most important excitatory neurotransmitters within the mammalian central nervous system. The role of glutamate in regulating neural network signaling transmission through both synaptic and extra-synaptic paths highlights the importance of the real-time and continuous monitoring of its concentration and dynamics in living organisms. Progresses in multidisciplinary research have promoted the development of electrochemical glutamate sensors through the co-design of materials, interfaces, electronic devices, and integrated systems. This review summarizes recent works reporting various electrochemical sensor designs and their applicability as miniaturized neural probes to in vivo sensing within biological environments. We start with an overview of the role and physiological significance of glutamate, the metabolic routes, and its presence in various bodily fluids. Next, we discuss the design principles, commonly employed validation models/protocols, and successful demonstrations of multifunctional, compact, and bio-integrated devices in animal models. The final section provides an outlook on the development of the next generation glutamate sensors for neuroscience and neuroengineering, with the aim of offering practical guidance for future research.
Collapse
Affiliation(s)
- Qi Wang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chunyu Yang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Torres-Carmona E, Nakajima S, Iwata Y, Ueno F, Stefan C, Song J, Abdolizadeh A, Koizumi MT, Kambari Y, Amaev A, Agarwal SM, Mar W, de Luca V, Remington G, Gerretsen P, Graff-Guerrero A. Clozapine treatment and astrocyte activity in treatment resistant schizophrenia: A proton magnetic resonance spectroscopy study. Schizophr Res 2024; 270:152-161. [PMID: 38909486 DOI: 10.1016/j.schres.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Clozapine is the only antipsychotic approved for treating treatment-resistant schizophrenia (TRS), characterized by persistent positive symptoms despite adequate antipsychotic treatment. Unfortunately, clozapine demonstrates clinical efficacy in only ~30-60 % of patients with TRS (clozapine-responders; ClzR+), while the remaining ~40-70 % are left with no pharmacological recourse for improvement (clozapine-resistant; ClzR-). Mechanism(s) underlying clozapine's superior efficacy remain unclear. However, in vitro evidence suggests clozapine may mitigate glutamatergic dysregulations observed in TRS, by modulating astrocyte activity in ClzR+, but not ClzR-. A factor that if proven correct, may help the assessment of treatment response and development of more effective antipsychotics. To explore the presence of clozapine-astrocyte interaction and clinical improvement, we used 3 T proton-magnetic resonance spectroscopy to quantify levels of myo-Inositol, surrogate biomarker of astrocyte activity, in regions related to schizophrenia neurobiology: Dorsal-anterior-cingulate-cortex (dACC), left-dorsolateral-prefrontal-cortex (left-DLPFC), and left-striatum (left-striatum) of 157 participants (ClzR- = 30; ClzR+ = 37; responders = 38; controls = 52). Clozapine treatment was assessed using clozapine to norclozapine plasma levels, 11-12 h after last clozapine dose. Measures for symptom severity (i.e., Positive and Negative Symptoms Scale) and cognition (i.e., Mini-Mental State Examination) were also recorded. Higher levels of myo-Inositol were observed in TRS groups versus responders and controls (dACC (p < 0.001); left-striatum (p = 0.036); left-DLPFC (p = 0.023)). In ClzR+, but not ClzR-, clozapine to norclozapine ratios were positively associated with myo-Inositol levels (dACC (p = 0.004); left-DLPFC (p < 0.001)), and lower positive symptom severity (p < 0.001). Our results support growing in vitro evidence of clozapine-astrocyte interaction in clozapine-responders. Further research may determine the viability of clozapine-astrocyte interactions as an early marker of clozapine response.
Collapse
Affiliation(s)
- Edgardo Torres-Carmona
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Shinichiro Nakajima
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Neuropsychiatry, Keio University, Minato, Tokyo, Japan
| | - Yusuke Iwata
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Fumihiko Ueno
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Cristiana Stefan
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Jianmeng Song
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Ali Abdolizadeh
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | | | - Yasaman Kambari
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Aron Amaev
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Wanna Mar
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Vincenzo de Luca
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Gary Remington
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Philip Gerretsen
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.
| |
Collapse
|
11
|
Kim A, Zhang Z, Legros C, Lu Z, de Smith A, Moore JE, Mancuso N, Gazal S. Inferring causal cell types of human diseases and risk variants from candidate regulatory elements. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307556. [PMID: 38798383 PMCID: PMC11118635 DOI: 10.1101/2024.05.17.24307556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The heritability of human diseases is extremely enriched in candidate regulatory elements (cRE) from disease-relevant cell types. Critical next steps are to infer which and how many cell types are truly causal for a disease (after accounting for co-regulation across cell types), and to understand how individual variants impact disease risk through single or multiple causal cell types. Here, we propose CT-FM and CT-FM-SNP, two methods that leverage cell-type-specific cREs to fine-map causal cell types for a trait and for its candidate causal variants, respectively. We applied CT-FM to 63 GWAS summary statistics (average N = 417K) using nearly one thousand cRE annotations, primarily coming from ENCODE4. CT-FM inferred 81 causal cell types with corresponding SNP-annotations explaining a high fraction of trait SNP-heritability (~2/3 of the SNP-heritability explained by existing cREs), identified 16 traits with multiple causal cell types, highlighted cell-disease relationships consistent with known biology, and uncovered previously unexplored cellular mechanisms in psychiatric and immune-related diseases. Finally, we applied CT-FM-SNP to 39 UK Biobank traits and predicted high confidence causal cell types for 2,798 candidate causal non-coding SNPs. Our results suggest that most SNPs impact a phenotype through a single cell type, and that pleiotropic SNPs target different cell types depending on the phenotype context. Altogether, CT-FM and CT-FM-SNP shed light on how genetic variants act collectively and individually at the cellular level to impact disease risk.
Collapse
Affiliation(s)
- Artem Kim
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zixuan Zhang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Come Legros
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zeyun Lu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Adam de Smith
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jill E Moore
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nicholas Mancuso
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Truong TTT, Liu ZSJ, Panizzutti B, Kim JH, Dean OM, Berk M, Walder K. Network-based drug repurposing for schizophrenia. Neuropsychopharmacology 2024; 49:983-992. [PMID: 38321095 PMCID: PMC11039639 DOI: 10.1038/s41386-024-01805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Despite recent progress, the challenges in drug discovery for schizophrenia persist. However, computational drug repurposing has gained popularity as it leverages the wealth of expanding biomedical databases. Network analyses provide a comprehensive understanding of transcription factor (TF) regulatory effects through gene regulatory networks, which capture the interactions between TFs and target genes by integrating various lines of evidence. Using the PANDA algorithm, we examined the topological variances in TF-gene regulatory networks between individuals with schizophrenia and healthy controls. This algorithm incorporates binding motifs, protein interactions, and gene co-expression data. To identify these differences, we subtracted the edge weights of the healthy control network from those of the schizophrenia network. The resulting differential network was then analysed using the CLUEreg tool in the GRAND database. This tool employs differential network signatures to identify drugs that potentially target the gene signature associated with the disease. Our analysis utilised a large RNA-seq dataset comprising 532 post-mortem brain samples from the CommonMind project. We constructed co-expression gene regulatory networks for both schizophrenia cases and healthy control subjects, incorporating 15,831 genes and 413 overlapping TFs. Through drug repurposing, we identified 18 promising candidates for repurposing as potential treatments for schizophrenia. The analysis of TF-gene regulatory networks revealed that the TFs in schizophrenia predominantly regulate pathways associated with energy metabolism, immune response, cell adhesion, and thyroid hormone signalling. These pathways represent significant targets for therapeutic intervention. The identified drug repurposing candidates likely act through TF-targeted pathways. These promising candidates, particularly those with preclinical evidence such as rimonabant and kaempferol, warrant further investigation into their potential mechanisms of action and efficacy in alleviating the symptoms of schizophrenia.
Collapse
Affiliation(s)
- Trang T T Truong
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Zoe S J Liu
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Bruna Panizzutti
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Olivia M Dean
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3010, Australia
| | - Ken Walder
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia.
| |
Collapse
|
13
|
Kim M, Choi W, Choi S, Oh H, Kim J, Lee J, An SJ, Hwang JS, Lee YS, Song IC, Moon SY, Lho SK, Cho SS, Kwon JS. In Vivo Reactive Astrocyte Imaging in Patients With Schizophrenia Using Fluorine 18-Labeled THK5351. JAMA Netw Open 2024; 7:e2410684. [PMID: 38722627 PMCID: PMC11082693 DOI: 10.1001/jamanetworkopen.2024.10684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/03/2024] [Indexed: 05/12/2024] Open
Abstract
Importance In vivo imaging studies of reactive astrocytes are crucial for understanding the pathophysiology of schizophrenia because astrocytes play a critical role in glutamate imbalance and neuroinflammation. Objective To investigate in vivo reactive astrocytes in patients with schizophrenia associated with positive symptoms using monoamine oxidase B (MAO-B)-binding fluorine 18 ([18F])-labeled THK5351 positron emission tomography (PET). Design, Setting, and Participants In this case-control study, data were collected from October 1, 2021, to January 31, 2023, from the internet advertisement for the healthy control group and from the outpatient clinics of Seoul National University Hospital in Seoul, South Korea, for the schizophrenia group. Participants included patients with schizophrenia and age- and sex-matched healthy control individuals. Main Outcomes and Measures Standardized uptake value ratios (SUVrs) of [18F]THK5351 in the anterior cingulate cortex (ACC) and hippocampus as primary regions of interest (ROIs), with other limbic regions as secondary ROIs, and the correlation between altered SUVrs and Positive and Negative Syndrome Scale (PANSS) positive symptom scores. Results A total of 68 participants (mean [SD] age, 32.0 [7.0] years; 41 men [60.3%]) included 33 patients with schizophrenia (mean [SD] age, 32.3 [6.3] years; 22 men [66.7%]) and 35 healthy controls (mean [SD] age, 31.8 [7.6] years; 19 men [54.3%]) who underwent [18F]THK5351 PET scanning. Patients with schizophrenia showed significantly higher SUVrs in the bilateral ACC (left, F = 5.767 [false discovery rate (FDR)-corrected P = .04]; right, F = 5.977 [FDR-corrected P = .04]) and left hippocampus (F = 4.834 [FDR-corrected P = .04]) than healthy controls. Trend-level group differences between the groups in the SUVrs were found in the secondary ROIs (eg, right parahippocampal gyrus, F = 3.387 [P = .07]). There were positive correlations between the SUVrs in the bilateral ACC and the PANSS positive symptom scores (left, r = 0.423 [FDR-corrected P = .03]; right, r = 0.406 [FDR-corrected P = .03]) in patients with schizophrenia. Conclusions and Relevance This case-control study provides novel in vivo imaging evidence of reactive astrocyte involvement in the pathophysiology of schizophrenia. Reactive astrocytes in the ACC may be a future target for the treatment of symptoms of schizophrenia, especially positive symptoms.
Collapse
Affiliation(s)
- Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woori Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sunah Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Harin Oh
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Jongrak Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Jungha Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Su-Jin An
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Jun Seo Hwang
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In Chan Song
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Young Moon
- Department of Public Health Medical Services, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Silvia Kyungjin Lho
- Department of Psychiatry, Seoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Sang Soo Cho
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University–Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
14
|
Demler VF, Sterner EF, Wilson M, Zimmer C, Knolle F. The impact of spectral basis set composition on estimated levels of cingulate glutamate and its associations with different personality traits. BMC Psychiatry 2024; 24:320. [PMID: 38664663 PMCID: PMC11044602 DOI: 10.1186/s12888-024-05646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/28/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND 1H-MRS is increasingly used in basic and clinical research to explain brain function and alterations respectively. In psychosis research it is now one of the main tools to investigate imbalances in the glutamatergic system. Interestingly, however, the findings are extremely variable even within patients of similar disease states. One reason may be the variability in analysis strategies, despite suggestions for standardization. Therefore, our study aimed to investigate the extent to which the basis set configuration- which metabolites are included in the basis set used for analysis- would affect the spectral fit and estimated glutamate (Glu) concentrations in the anterior cingulate cortex (ACC), and whether any changes in levels of glutamate would be associated with psychotic-like experiences and autistic traits. METHODS To ensure comparability, we utilized five different exemplar basis sets, used in research, and two different analysis tools, r-based spant applying the ABfit method and Osprey using the LCModel. RESULTS Our findings revealed that the types of metabolites included in the basis set significantly affected the glutamate concentration. We observed that three basis sets led to more consistent results across different concentration types (i.e., absolute Glu in mol/kg, Glx (glutamate + glutamine), Glu/tCr), spectral fit and quality measurements. Interestingly, all three basis sets included phosphocreatine. Importantly, our findings also revealed that glutamate levels were differently associated with both schizotypal and autistic traits depending on basis set configuration and analysis tool, with the same three basis sets showing more consistent results. CONCLUSIONS Our study highlights that scientific results may be significantly altered depending on the choices of metabolites included in the basis set, and with that emphasizes the importance of carefully selecting the configuration of the basis set to ensure accurate and consistent results, when using MR spectroscopy. Overall, our study points out the need for standardized analysis pipelines and reporting.
Collapse
Affiliation(s)
- Verena F Demler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elisabeth F Sterner
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franziska Knolle
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
15
|
Li Y, Dai W, Wang T, Wu Y, Dou F, Xing D. Visual surround suppression at the neural and perceptual levels. Cogn Neurodyn 2024; 18:741-756. [PMID: 38699623 PMCID: PMC11061091 DOI: 10.1007/s11571-023-10027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 05/05/2024] Open
Abstract
Surround suppression was initially identified as a phenomenon at the neural level in which stimuli outside the neuron's receptive field alone cannot activate responses but can modulate neural responses to stimuli covered inside the receptive field. Subsequent studies showed that surround suppression is not only a critical property of neurons across species and brain areas but also has been found in visual perceptions. More importantly, surround suppression varies across individuals and shows significant differences between normal controls and patients with certain mental disorders. Here, we combined results from related literature and summarized the findings derived from physiological and psychophysical evidence. We first outline the basic properties of surround suppression in the visual system and perceptions. Then, we mainly summarize the differences in perceptual surround suppression among different human subjects. Our review suggests that there is no consensus regarding whether the strength of perceptual surround suppression could be used as an effective index to distinguish particular populations. Then, we summarized the similar mechanisms for surround suppression and cognitive impairments to further explore the potential clinical applications of surround suppression. A clearer understanding of the mechanisms of surround suppression in neural responses and perceptions is necessary for facilitating its clinical applications.
Collapse
Affiliation(s)
- Yang Li
- School of Criminology, People’s Public Security University of China, Beijing, 100038 China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
- College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
- College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
16
|
Jahan M, Amir A, Das A, Kihlström J, Nag S. Automated radiosynthesis of mGluR5 PET tracer [ 18F]FPEB from aryl-chloro precursor and validation for clinical application. J Labelled Comp Radiopharm 2024; 67:155-164. [PMID: 38369901 DOI: 10.1002/jlcr.4088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
The radioligand [18F]FPEB, used for PET imaging of the brain's metabotropic glutamate receptor subtype 5 (mGluR5), undergoes a thorough validation process to ensure its safety, efficacy, and quality for clinical use. The process starts by optimizing the synthesis of [18F]FPEB to achieve high radiochemical yield and purity. This study focuses on optimizing the radiolabeling process using an aryl-chloro precursor and validating the GMP production for clinical applications. Fully automated radiolabeling was achieved via one-step nucleophilic substitution reaction. [18F]FPEB was produced and isolated in high radioactivity and radiochemical purity. Throughout the validation process, thorough quality control measures are implemented. Radiopharmaceutical batch release criteria are established, including testing for physical appearance, filter integrity, pH, radiochemical purity, molar activity, radiochemical identity, chemical impurity, structural identity, stability, residual solvent, sterility, and endotoxin levels. In conclusion, the validation of [18F]FPEB involved a comprehensive process of synthesis optimization, quality control, which ensure the safety, efficacy, and quality of [18F]FPEB, enabling its reliable use in clinical PET. Here, we successfully radiolabeled and validated [18F]FPEB using aryl-chloro precursor according to GMP production for clinical application.
Collapse
Affiliation(s)
- Mahabuba Jahan
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Arsalan Amir
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Arindam Das
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Jacob Kihlström
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Sangram Nag
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
17
|
Arumuham A, Nour MM, Veronese M, Beck K, Onwordi EC, Lythgoe DJ, Jauhar S, Rabiner EA, Howes OD. Histamine-3 Receptor Availability and Glutamate Levels in the Brain: A PET-1H-MRS Study of Patients With Schizophrenia and Healthy Controls. Int J Neuropsychopharmacol 2024; 27:pyae011. [PMID: 38373256 PMCID: PMC10946236 DOI: 10.1093/ijnp/pyae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND The histamine-3 receptor (H3R) may have a role in cognitive processes through its action as a presynaptic heteroreceptor inhibiting the release of glutamate in the brain. To explore this, we examined anterior cingulate cortex (ACC) and striatum H3R availability in patients with schizophrenia and characterized their relationships with glutamate levels in corresponding brain regions. METHODS We employed a cross-sectional study, recruiting 12 patients with schizophrenia and 12 healthy volunteers. Participants underwent positron emission tomography using the H3R-specific radio ligand [11C]MK-8278, followed by proton magnetic resonance spectroscopy to measure glutamate levels, recorded as Glu and Glx. Based on existing literature, the ACC and striatum were selected as regions of interest. RESULTS We found significant inverse relationships between tracer uptake and Glu (r = -0.66, P = .02) and Glx (r = -0.62, P = .04) levels in the ACC of patients, which were absent in healthy volunteers (Glu: r = -0.19, P = .56, Glx: r = 0.10, P = .75). We also found a significant difference in striatal (F1,20 = 6.00, P = .02) and ACC (F1,19 = 4.75, P = .04) Glx levels between groups. CONCLUSIONS These results provide evidence of a regionally specific relationship between H3Rs and glutamate levels, which builds on existing preclinical literature. Our findings add to a growing literature indicating H3Rs may be a promising treatment target in schizophrenia, particularly for cognitive impairment, which has been associated with altered glutamate signaling.
Collapse
Affiliation(s)
- Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Matthew M Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Mattia Veronese
- Department of Information Engineering, University of Padua, Padua, Italy
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Ellis Chika Onwordi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Sameer Jauhar
- Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | | | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- H Lundbeck A/s, St Albans, UK
| |
Collapse
|
18
|
Kogure M, Kanahara N, Miyazawa A, Shiko Y, Otsuka I, Matsuyama K, Takase M, Kimura M, Kimura H, Ota K, Idemoto K, Tamura M, Oda Y, Yoshida T, Okazaki S, Yamasaki F, Nakata Y, Watanabe Y, Niitsu T, Hishimoto A, Iyo M. Association of SLC6A3 variants with treatment-resistant schizophrenia: a genetic association study of dopamine-related genes in schizophrenia. Front Psychiatry 2024; 14:1334335. [PMID: 38476817 PMCID: PMC10929739 DOI: 10.3389/fpsyt.2023.1334335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 03/14/2024] Open
Abstract
Background Most genetic analyses that have attempted to identify a locus or loci that can distinguish patients with treatment-resistant schizophrenia (TRS) from those who respond to treatment (non-TRS) have failed. However, evidence from multiple studies suggests that patients with schizophrenia who respond well to antipsychotic medication have a higher dopamine (DA) state in brain synaptic clefts whereas patients with TRS do not show enhanced DA synthesis/release pathways. Patients and methods To examine the contribution (if any) of genetics to TRS, we conducted a genetic association analysis of DA-related genes in schizophrenia patients (TRS, n = 435; non-TRS, n = 539) and healthy controls (HC: n = 489). Results The distributions of the genotypes of rs3756450 and the 40-bp variable number tandem repeat on SLC6A3 differed between the TRS and non-TRS groups. Regarding rs3756450, the TRS group showed a significantly higher ratio of the A allele, whereas the non-TRS group predominantly had the G allele. The analysis of the combination of COMT and SLC6A3 yielded a significantly higher ratio of the putative low-DA type (i.e., high COMT activity + high SLC6A3 activity) in the TRS group compared to the two other groups. Patients with the low-DA type accounted for the minority of the non-TRS group and exhibited milder psychopathology. Conclusion The overall results suggest that (i) SLC6A3 could be involved in responsiveness to antipsychotic medication and (ii) genetic variants modulating brain DA levels may be related to the classification of TRS and non-TRS.
Collapse
Affiliation(s)
- Masanobu Kogure
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan
| | - Atsuhiro Miyazawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
| | - Yuki Shiko
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koichi Matsuyama
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Douwa-kai Chiba Hospital, Funabashi, Japan
| | | | - Makoto Kimura
- Chiba Psychiatric Medical Center, Chiba, Japan
- Department of Psychiatry, Kameda Medical Center, Kamogawa, Japan
| | - Hiroshi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Gakuji-kai Kimura Hospital, Chiba, Japan
- Department of Psychiatry, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Kiyomitsu Ota
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
- Choshi-kokoro Clinic, Choshi, Japan
| | - Keita Idemoto
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
| | - Masaki Tamura
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
- Department of Cognitive Behavioral Psychology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Fumiaki Yamasaki
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Tomihisa Niitsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
19
|
Krzyściak W, Bystrowska B, Karcz P, Chrzan R, Bryll A, Turek A, Mazur P, Śmierciak N, Szwajca M, Donicz P, Furman K, Pilato F, Kozicz T, Popiela T, Pilecki M. Association of Blood Metabolomics Biomarkers with Brain Metabolites and Patient-Reported Outcomes as a New Approach in Individualized Diagnosis of Schizophrenia. Int J Mol Sci 2024; 25:2294. [PMID: 38396971 PMCID: PMC10888632 DOI: 10.3390/ijms25042294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Given its polygenic nature, there is a need for a personalized approach to schizophrenia. The aim of the study was to select laboratory biomarkers from blood, brain imaging, and clinical assessment, with an emphasis on patients' self-report questionnaires. Metabolomics studies of serum samples from 51 patients and 45 healthy volunteers, based on the liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS), led to the identification of 3 biochemical indicators (cortisol, glutamate, lactate) of schizophrenia. These metabolites were sequentially correlated with laboratory tests results, imaging results, and clinical assessment outcomes, including patient self-report outcomes. The hierarchical cluster analysis on the principal components (HCPC) was performed to identify the most homogeneous clinical groups. Significant correlations were noted between blood lactates and 11 clinical and 10 neuroimaging parameters. The increase in lactate and cortisol were significantly associated with a decrease in immunological parameters, especially with the level of reactive lymphocytes. The strongest correlations with the level of blood lactate and cortisol were demonstrated by brain glutamate, N-acetylaspartate and the concentrations of glutamate and glutamine, creatine and phosphocreatine in the prefrontal cortex. Metabolomics studies and the search for associations with brain parameters and self-reported outcomes may provide new diagnostic evidence to specific schizophrenia phenotypes.
Collapse
Affiliation(s)
- Wirginia Krzyściak
- Department of Medical Diagnostics, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Beata Bystrowska
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Paulina Karcz
- Department of Electroradiology, Jagiellonian University Medical College, Faculty of Health Sciences, 31-126 Krakow, Poland;
| | - Robert Chrzan
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Amira Bryll
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Aleksander Turek
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Paulina Mazur
- Department of Medical Diagnostics, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Natalia Śmierciak
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Marta Szwajca
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Paulina Donicz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Katarzyna Furman
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Fabio Pilato
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Tamas Kozicz
- Department of Clinical Genomics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Tadeusz Popiela
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Maciej Pilecki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| |
Collapse
|
20
|
Singh U, Das B, Khanra S, Roy C. Resting state and activated brain glutamate-glutamine, brain lactate, cognition, and psychopathology among males with schizophrenia: A 3 Tesla proton magnetic resonance spectroscopic (1H-MRS) study. Indian J Psychiatry 2024; 66:82-89. [PMID: 38419937 PMCID: PMC10898519 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_621_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/09/2023] [Accepted: 12/25/2023] [Indexed: 03/02/2024] Open
Abstract
Background Research on glutamate (Glu) in schizophrenia has so far been inconclusive. Based on preclinical studies on Glu lactate interaction, researchers have now focused on brain lactate level as a sign of major pathology, including cognitive dysfunctions in the brain. Our study aimed to examine changes at resting and activated states in brain lactate and Glu-glutamine (Glx) at the anterior cingulate cortex (ACC) in schizophrenia. Methods A hospital-based prospective study was conducted with twenty-two male cases of schizophrenia and matched healthy controls (HCs). Positive and Negative Syndrome Scale (PANSS), Montreal Cognitive Assessment (MoCA), and Stroop tasks were administered among patients. Brain lactate and Glx at ACC were measured at resting state and during the Stroop test with proton magnetic resonance spectroscopy (1H-MRS) both at baseline and at remission and once among HC. Result Though MoCA scores improved significantly (P < 0.001) at remission from baseline among cases, repeated-measures analysis of variance (RM-ANOVA) did not find a significant time effect for Glx (P = 0.82) and lactate (P = 0.30) among cases from baseline to remission. Glx and lactate changed differently from baseline to remission. Conclusion Our study did not find significant differences in Glx and lactate between schizophrenia patients and HC. No significant time effect on Glx and lactate was observed from baseline to remission among schizophrenia cases. Different changes observed in Glx and lactate from baseline to remission require replication in future studies with larger sample size, longer follow-up period, and multivoxel MR assessment.
Collapse
Affiliation(s)
- Ujjwal Singh
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Basudeb Das
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Sourav Khanra
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Chandramouli Roy
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| |
Collapse
|
21
|
Abbasi S, Wolff A, Çatal Y, Northoff G. Increased noise relates to abnormal excitation-inhibition balance in schizophrenia: a combined empirical and computational study. Cereb Cortex 2023; 33:10477-10491. [PMID: 37562844 PMCID: PMC10560578 DOI: 10.1093/cercor/bhad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Electroencephalography studies link sensory processing issues in schizophrenia to increased noise level-noise here is background spontaneous activity-as measured by the signal-to-noise ratio. The mechanism, however, of such increased noise is unknown. We investigate if this relates to changes in cortical excitation-inhibition balance, which has been observed to be atypical in schizophrenia, by combining electroencephalography and computational modeling. Our electroencephalography task results, for which the local field potentials can be used as a proxy, show lower signal-to-noise ratio due to higher noise in schizophrenia. Both electroencephalography rest and task states exhibit higher levels of excitation in the functional excitation-inhibition (as a proxy of excitation-inhibition balance). This suggests a relationship between increased noise and atypical excitation in schizophrenia, which was addressed by using computational modeling. A Leaky Integrate-and-Fire model was used to simulate the effects of varying degrees of noise on excitation-inhibition balance, local field potential, NMDA current, and . Results show a noise-related increase in the local field potential, excitation in excitation-inhibition balance, pyramidal NMDA current, and spike rate. Mutual information and mediation analysis were used to explore a cross-level relationship, showing that the cortical local field potential plays a key role in transferring the effect of noise to the cellular population level of NMDA.
Collapse
Affiliation(s)
- Samira Abbasi
- University of Ottawa, Institute of Mental Health Research, Ottawa ON K1Z 7K4, Canada
- Department of Biomedical Engineering, Hamedan University of Technology, Hamedan 65169-13733, Iran
| | - Annemarie Wolff
- University of Ottawa, Institute of Mental Health Research, Ottawa ON K1Z 7K4, Canada
| | - Yasir Çatal
- University of Ottawa, Institute of Mental Health Research, Ottawa ON K1Z 7K4, Canada
| | - Georg Northoff
- University of Ottawa, Institute of Mental Health Research, Ottawa ON K1Z 7K4, Canada
| |
Collapse
|
22
|
Stanley JA, Daugherty AM, Gorey CR, Thomas P, Khatib D, Chowdury A, Rajan U, Haddad L, Amirsadri A, Diwadkar VA. Basal glutamate in the hippocampus and the dorsolateral prefrontal cortex in schizophrenia: Relationships to cognitive proficiency investigated with structural equation modelling. World J Biol Psychiatry 2023; 24:730-740. [PMID: 36999359 PMCID: PMC10591941 DOI: 10.1080/15622975.2023.2197653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023]
Abstract
OBJECTIVES Schizophrenia is characterised by deficits across multiple cognitive domains and altered glutamate related neuroplasticity. The purpose was to investigate whether glutamate deficits are related to cognition in schizophrenia, and whether glutamate-cognition relationships are different between schizophrenia and controls. METHODS Magnetic resonance spectroscopy (MRS) at 3 Tesla was acquired from the dorsolateral prefrontal cortex (dlPFC) and hippocampus in 44 schizophrenia participants and 39 controls during passive viewing visual task. Cognitive performance (working memory, episodic memory, and processing speed) was assessed on a separate session. Group differences in neurochemistry and mediation/moderation effects using structural equation modelling (SEM) were investigated. RESULTS Schizophrenia participants showed lower hippocampal glutamate (p = .0044) and myo-Inositol (p = .023) levels, and non-significant dlPFC levels. Schizophrenia participants also demonstrated poorer cognitive performance (p < .0032). SEM-analyses demonstrated no mediation or moderation effects, however, an opposing dlPFC glutamate-processing speed association between groups was observed. CONCLUSIONS Hippocampal glutamate deficits in schizophrenia participants are consistent with evidence of reduced neuropil density. Moreover, SEM analyses indicated that hippocampal glutamate deficits in schizophrenia participants as measured during a passive state were not driven by poorer cognitive ability. We suggest that functional MRS may provide a better framework for investigating glutamate-cognition relationships in schizophrenia.
Collapse
Affiliation(s)
- Jeffrey A. Stanley
- Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ana M. Daugherty
- Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Psychology and Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | | | - Patricia Thomas
- Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dalal Khatib
- Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Asadur Chowdury
- Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Usha Rajan
- Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Luay Haddad
- Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alireza Amirsadri
- Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Vaibhav A. Diwadkar
- Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
23
|
Griffiths K, Smart SE, Barker GJ, Deakin B, Lawrie SM, Lewis S, Lythgoe DJ, Pardiñas AF, Singh K, Semple S, Walters JTR, Williams SR, Egerton A, MacCabe JH. Treatment resistance NMDA receptor pathway polygenic score is associated with brain glutamate in schizophrenia. Schizophr Res 2023; 260:152-159. [PMID: 37657282 PMCID: PMC10873209 DOI: 10.1016/j.schres.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Dysfunction of glutamate neurotransmission has been implicated in the pathophysiology of schizophrenia and may be particularly relevant in severe, treatment-resistant symptoms. The underlying mechanism may involve hypofunction of the NMDA receptor. We investigated whether schizophrenia-related pathway polygenic scores, composed of genetic variants within NMDA receptor encoding genes, are associated with cortical glutamate in schizophrenia. Anterior cingulate cortex (ACC) glutamate was measured in 70 participants across 4 research sites using Proton Magnetic Resonance Spectroscopy (1H-MRS). Two NMDA receptor gene sets were sourced from the Molecular Signatories Database and NMDA receptor pathway polygenic scores were constructed using PRSet. The NMDA receptor pathway polygenic scores were weighted by single nucleotide polymorphism (SNP) associations with treatment-resistant schizophrenia, and associations with ACC glutamate were tested. We then tested whether NMDA receptor pathway polygenic scores with SNPs weighted by associations with non-treatment-resistant schizophrenia were associated with ACC glutamate. A higher NMDA receptor complex pathway polygenic score was significantly associated with lower ACC glutamate (β = -0.25, 95 % CI = -0.49, -0.02, competitive p = 0.03). When SNPs were weighted by associations with non-treatment-resistant schizophrenia, there was no association between the NMDA receptor complex pathway polygenic score and ACC glutamate (β = 0.05, 95 % CI = -0.18, 0.27, competitive p = 0.79). These results provide initial evidence of an association between common genetic variation implicated in NMDA receptor function and ACC glutamate levels in schizophrenia. This association was specific to when the NMDA receptor complex pathway polygenic score was weighted by SNP associations with treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK; NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Sophie E Smart
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Gareth J Barker
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, University of Manchester, M13 9PT, UK
| | | | - Shon Lewis
- Division of Psychology and Mental Health, University of Manchester, M13 9PT, UK; Greater Manchester Mental Health NHS Foundation Trust, Manchester M25 3BL, UK
| | - David J Lythgoe
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Krishna Singh
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff CF24 4HQ, UK
| | - Scott Semple
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Stephen R Williams
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK; NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
24
|
Pang TSW, Chun JSW, Wong TY, Chu ST, Ma CF, Honer WG, Chan SKW. A systematic review of neuroimaging studies of clozapine-resistant schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:65. [PMID: 37752161 PMCID: PMC10522657 DOI: 10.1038/s41537-023-00392-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
This systematic review aimed to review neuroimaging studies comparing clozapine-resistant schizophrenia patients with clozapine-responding patients, and with first-line antipsychotic responding (FLR) patients. A total of 19 studies including 6 longitudinal studies were identified. Imaging techniques comprised computerized tomography (CT, n = 3), structural magnetic resonance imaging (MRI, n = 7), magnetic resonance spectroscopy (MRS, n = 5), functional MRI (n = 1), single-photon emission computerized tomography (SPECT, n = 3) and diffusion tensor imaging (DTI, n = 1). The most consistent finding was hypo-frontality in the clozapine-resistant group compared with the clozapine-responding group with possible differences in frontal-striatal-basal ganglia circuitry as well as the GABA level between the two treatment-resistant groups. Additional statistically significant findings were reported when comparing clozapine-resistant patients with the FLR group, including lower cortical thickness and brain volume of multiple brain regions as well as lower Glx/Cr level in the dorsolateral prefrontal cortex. Both treatment-resistant groups were found to have extensive differences in neurobiological features in comparison with the FLR group. Overall results suggested treatment-resistant schizophrenia is likely to be a neurobiological distinct type of the illness. Clozapine-resistant and clozapine-responding schizophrenia are likely to have both shared and distinct neurobiological features. However, conclusions from existing studies are limited, and future multi-center collaborative studies are required with a consensus clinical definition of patient samples, multimodal imaging tools, and longitudinal study designs.
Collapse
Affiliation(s)
- Tiffanie Sze Wing Pang
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Johnny Siu Wah Chun
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ting Yat Wong
- Department of Psychology, The Education University of Hong Kong, Hong Kong SAR, China
| | - Sin Ting Chu
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chak Fai Ma
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - William G Honer
- Department of Psychiatry, The University of British Columbia, Vancouver, Canada
| | - Sherry Kit Wa Chan
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, HKSAR, Hong Kong SAR, China.
| |
Collapse
|
25
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RAE, Stark CEL. Meta-analysis and open-source database for in vivo brain Magnetic Resonance spectroscopy in health and disease. Anal Biochem 2023; 676:115227. [PMID: 37423487 PMCID: PMC10561665 DOI: 10.1016/j.ab.2023.115227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Alyssa L Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Jocelyn H Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
26
|
Demler VF, Sterner EF, Wilson M, Zimmer C, Knolle F. Association between increased anterior cingulate glutamate and psychotic-like experiences, but not autistic traits in healthy volunteers. Sci Rep 2023; 13:12792. [PMID: 37550354 PMCID: PMC10406950 DOI: 10.1038/s41598-023-39881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
Despite many differences, autism spectrum disorder and schizophrenia spectrum disorder share environmental risk factors, genetic predispositions as well as neuronal abnormalities, and show similar cognitive deficits in working memory, perspective taking, or response inhibition. These shared abnormalities are already present in subclinical traits of these disorders. The literature proposes that changes in the inhibitory GABAergic and the excitatory glutamatergic system could explain underlying neuronal commonalities and differences. Using magnetic resonance spectroscopy (1H-MRS), we investigated the associations between glutamate concentrations in the anterior cingulate cortex (ACC), the left/right putamen, and left/right dorsolateral prefrontal cortex and psychotic-like experiences (Schizotypal Personality Questionnaire) and autistic traits (Autism Spectrum Quotient) in 53 healthy individuals (26 women). To investigate the contributions of glutamate concentrations in different cortical regions to symptom expression and their interactions, we used linear regression analyses. We found that only glutamate concentration in the ACC predicted psychotic-like experiences, but not autistic traits. Supporting this finding, a binomial logistic regression predicting median-split high and low risk groups for psychotic-like experiences revealed ACC glutamate levels as a significant predictor for group membership. Taken together, this study provides evidence that glutamate levels in the ACC are specifically linked to the expression of psychotic-like experiences, and may be a potential candidate in identifying early risk individuals prone to developing psychotic-like experiences.
Collapse
Affiliation(s)
- Verena F Demler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Elisabeth F Sterner
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Franziska Knolle
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany.
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
27
|
Cai XL, Pu CC, Zhou SZ, Wang Y, Huang J, Lui SSY, Møller A, Cheung EFC, Madsen KH, Xue R, Yu X, Chan RCK. Anterior cingulate glutamate levels associate with functional activation and connectivity during sensory integration in schizophrenia: a multimodal 1H-MRS and fMRI study. Psychol Med 2023; 53:4904-4914. [PMID: 35791929 DOI: 10.1017/s0033291722001817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Glutamatergic dysfunction has been implicated in sensory integration deficits in schizophrenia, yet how glutamatergic function contributes to behavioural impairments and neural activities of sensory integration remains unknown. METHODS Fifty schizophrenia patients and 43 healthy controls completed behavioural assessments for sensory integration and underwent magnetic resonance spectroscopy (MRS) for measuring the anterior cingulate cortex (ACC) glutamate levels. The correlation between glutamate levels and behavioural sensory integration deficits was examined in each group. A subsample of 20 pairs of patients and controls further completed an audiovisual sensory integration functional magnetic resonance imaging (fMRI) task. Blood Oxygenation Level Dependent (BOLD) activation and task-dependent functional connectivity (FC) were assessed based on fMRI data. Full factorial analyses were performed to examine the Group-by-Glutamate Level interaction effects on fMRI measurements (group differences in correlation between glutamate levels and fMRI measurements) and the correlation between glutamate levels and fMRI measurements within each group. RESULTS We found that schizophrenia patients exhibited impaired sensory integration which was positively correlated with ACC glutamate levels. Multimodal analyses showed significantly Group-by-Glutamate Level interaction effects on BOLD activation as well as task-dependent FC in a 'cortico-subcortical-cortical' network (including medial frontal gyrus, precuneus, ACC, middle cingulate gyrus, thalamus and caudate) with positive correlations in patients and negative in controls. CONCLUSIONS Our findings indicate that ACC glutamate influences neural activities in a large-scale network during sensory integration, but the effects have opposite directionality between schizophrenia patients and healthy people. This implicates the crucial role of glutamatergic system in sensory integration processing in schizophrenia.
Collapse
Affiliation(s)
- Xin-Lu Cai
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
| | - Cheng-Cheng Pu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shu-Zhe Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Arne Møller
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- Centre of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
| | - Kristoffer H Madsen
- Sino-Danish Centre for Education and Research, Beijing, China
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Amager and Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rong Xue
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Department of Diagnostic Radiology, the University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
28
|
Fenn-Moltu S, Deakin B, Drake R, Howes OD, Lawrie SM, Lewis S, Nikkheslat N, Walters JTR, MacCabe JH, Mondelli V, Egerton A. The association between peripheral inflammation, brain glutamate and antipsychotic response in Schizophrenia: Data from the STRATA collaboration. Brain Behav Immun 2023; 111:343-351. [PMID: 37182555 PMCID: PMC7615624 DOI: 10.1016/j.bbi.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023] Open
Abstract
Glutamate and increased inflammation have been separately implicated in the pathophysiology of schizophrenia and the extent of clinical response to antipsychotic treatment. Despite the mechanistic links between pro-inflammatory and glutamatergic pathways, the relationships between peripheral inflammatory markers and brain glutamate in schizophrenia have not yet been investigated. In this study, we tested the hypothesis that peripheral levels of pro-inflammatory cytokines would be positively associated with brain glutamate levels in schizophrenia. Secondary analyses determined whether this relationship differed according to antipsychotic treatment response. The sample consisted of 79 patients with schizophrenia, of whom 40 were rated as antipsychotic responders and 39 as antipsychotic non-responders. Brain glutamate levels were assessed in the anterior cingulate cortex (ACC) and caudate using proton magnetic resonance spectroscopy (1H-MRS) and blood samples were collected for cytokine assay on the same study visit (IL-6, IL-8, IL-10, TNF- α and IFN-γ). Across the whole patient sample, there was a positive relationship between interferon-gamma (IFN-γ) and caudate glutamate levels (r = 0.31, p = 0.02). In the antipsychotic non-responsive group only, there was a positive relationship between interleukin-8 (IL-8) and caudate glutamate (r = 0.46, p = 0.01). These findings provide evidence to link specific peripheral inflammatory markers and caudate glutamate in schizophrenia and may suggest that this relationship is most marked in patients who show a poor response to antipsychotic treatment.
Collapse
Affiliation(s)
- Sunniva Fenn-Moltu
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard Drake
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, UK; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | | | - Shôn Lewis
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Naghmeh Nikkheslat
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, UK
| | - Valeria Mondelli
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, UK; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, UK
| |
Collapse
|
29
|
Graham JWC, Jeon P, Théberge J, Palaniyappan L. Non-linear variations in glutamate dynamics during a cognitive task engagement in schizophrenia. Psychiatry Res Neuroimaging 2023; 332:111640. [PMID: 37121089 DOI: 10.1016/j.pscychresns.2023.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023]
Abstract
To investigate the role of glutamate in psychosis, we employ functional magnetic resonance spectroscopy at an ultra-high magnetic field (7T) and employ fuzzy-approximate entropy (F-ApEn) and Hurst Exponent (HE) to capture time-varying nature of glutamate signaling during a cognitive task. We recruited thirty first-episode psychosis patients (FEP) with age- and gender-matched healthy controls (HC) and administered the Color-Word Stroop paradigm, providing 128 raw MRS time-points per subject over a period of 16 min. We then performed metabolite quantification of glutamate in the dorsal anterior cingulate cortex, a region reliably activated during the Stroop task. Symptoms/cognitive functioning was measured using Positive and Negative Syndrome Scale-8 score, Social and Occupational Functioning (SOFAS) score, digit symbol) coding score, and Stroop accuracy. These scores were related to the Entropy/HE data from the overall glutamate time-series. Patients with FEP had significantly higher HE compared to HC, with individuals displaying significantly higher HE having lower functional performance (SOFAS) in both HC and FEP groups. Among healthy individuals, higher HE also indicated significantly lower cognitive function through Stroop accuracy and DSST scores. F-ApEn had an inverse Pearson correlation with HE, and tracked diagnosis, cognition and function as expected, but with lower effect sizes not reaching statistical significance. We demonstrate notable diagnostic differences in the temporal course of glutamate signaling during a cognitive task in psychosis.
Collapse
Affiliation(s)
- James W C Graham
- Lawson Health Research Institute, London, ON, Canada; Graduate Program in Neuroscience, Western University, London, ON, Canada
| | - Peter Jeon
- Lawson Health Research Institute, London, ON, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Jean Théberge
- Lawson Health Research Institute, London, ON, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Lena Palaniyappan
- Lawson Health Research Institute, London, ON, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Robarts Research Institute, London, ON, Canada; Douglas Mental Health University Institute, McGill University, Department of Psychiatry, Montreal, QC, Canada.
| |
Collapse
|
30
|
Dimitriades ME, Markovic A, Gefferie SR, Buckley A, Driver DI, Rapoport JL, Nosadini M, Rostasy K, Sartori S, Suppiej A, Kurth S, Franscini M, Walitza S, Huber R, Tarokh L, Bölsterli BK, Gerstenberg M. Sleep spindles across youth affected by schizophrenia or anti- N-methyl-D-aspartate-receptor encephalitis. Front Psychiatry 2023; 14:1055459. [PMID: 37377467 PMCID: PMC10292628 DOI: 10.3389/fpsyt.2023.1055459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Background Sleep disturbances are intertwined with the progression and pathophysiology of psychotic symptoms in schizophrenia. Reductions in sleep spindles, a major electrophysiological oscillation during non-rapid eye movement sleep, have been identified in patients with schizophrenia as a potential biomarker representing the impaired integrity of the thalamocortical network. Altered glutamatergic neurotransmission within this network via a hypofunction of the N-methyl-D-aspartate receptor (NMDAR) is one of the hypotheses at the heart of schizophrenia. This pathomechanism and the symptomatology are shared by anti-NMDAR encephalitis (NMDARE), where antibodies specific to the NMDAR induce a reduction of functional NMDAR. However, sleep spindle parameters have yet to be investigated in NMDARE and a comparison of these rare patients with young individuals with schizophrenia and healthy controls (HC) is lacking. This study aims to assess and compare sleep spindles across young patients affected by Childhood-Onset Schizophrenia (COS), Early-Onset Schizophrenia, (EOS), or NMDARE and HC. Further, the potential relationship between sleep spindle parameters in COS and EOS and the duration of the disease is examined. Methods Sleep EEG data of patients with COS (N = 17), EOS (N = 11), NMDARE (N = 8) aged 7-21 years old, and age- and sex-matched HC (N = 36) were assessed in 17 (COS, EOS) or 5 (NMDARE) electrodes. Sleep spindle parameters (sleep spindle density, maximum amplitude, and sigma power) were analyzed. Results Central sleep spindle density, maximum amplitude, and sigma power were reduced when comparing all patients with psychosis to all HC. Between patient group comparisons showed no differences in central spindle density but lower central maximum amplitude and sigma power in patients with COS compared to patients with EOS or NMDARE. Assessing the topography of spindle density, it was significantly reduced over 15/17 electrodes in COS, 3/17 in EOS, and 0/5 in NMDARE compared to HC. In the pooled sample of COS and EOS, a longer duration of illness was associated with lower central sigma power. Conclusions Patients with COS demonstrated more pronounced impairments of sleep spindles compared to patients with EOS and NMDARE. In this sample, there is no strong evidence that changes in NMDAR activity are related to spindle deficits.
Collapse
Affiliation(s)
- Maria E. Dimitriades
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andjela Markovic
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Silvano R. Gefferie
- Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Ashura Buckley
- Pediatrics and Neurodevelopmental Neuroscience, National Institute of Mental Health, Bethesda, MD, United States
| | - David I. Driver
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Judith L. Rapoport
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Margherita Nosadini
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
- Neuroimmunology Group, Paediatric Research Institute Città della Speranza, Padova, Italy
| | - Kevin Rostasy
- Department of Pediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University, Datteln, Germany
| | - Stefano Sartori
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
- Neuroimmunology Group, Paediatric Research Institute Città della Speranza, Padova, Italy
| | - Agnese Suppiej
- Department of Medical Sciences, Pediatric Section, University of Ferrara, Ferrara, Italy
| | - Salome Kurth
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Maurizia Franscini
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Leila Tarokh
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Bigna K. Bölsterli
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Pediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Pediatric Neurology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Miriam Gerstenberg
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Nelson EA, Kraguljac NV, Maximo JO, Armstrong W, Lahti AC. Hippocampal Hyperconnectivity to the Visual Cortex Predicts Treatment Response. Schizophr Bull 2023; 49:605-613. [PMID: 36752830 PMCID: PMC10154738 DOI: 10.1093/schbul/sbac213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Converging lines of evidence point to hippocampal dysfunction in psychosis spectrum disorders, including altered functional connectivity. Evidence also suggests that antipsychotic medications can modulate hippocampal dysfunction. The goal of this project was to identify patterns of hippocampal connectivity predictive of response to antipsychotic treatment in 2 cohorts of patients with a psychosis spectrum disorder, one medication-naïve and the other one unmedicated. HYPOTHESIS We hypothesized that we would identify reliable patterns of hippocampal connectivity in the 2 cohorts that were predictive of treatment response and that medications would modulate abnormal hippocampal connectivity after 6 weeks of treatment. STUDY DESIGN We used a prospective design to collect resting-state fMRI scans prior to antipsychotic treatment and after 6 weeks of treatment with risperidone, a commonly used antipsychotic medication, in both cohorts. We enrolled 44 medication-naïve first-episode psychosis patients (FEP) and 39 unmedicated patients with schizophrenia (SZ). STUDY RESULTS In both patient cohorts, we observed a similar pattern where greater hippocampal connectivity to regions of the occipital cortex was predictive of treatment response. Lower hippocampal connectivity of the frontal pole, orbitofrontal cortex, subcallosal area, and medial prefrontal cortex was predictive of treatment response in unmedicated SZ, but not in the medication-naïve cohort. Furthermore, greater reduction in hippocampal connectivity to the visual cortex with treatment was associated with better clinical response. CONCLUSIONS Our results suggest that greater connectivity between the hippocampus and occipital cortex is not only predictive of better treatment response, but that antipsychotic medications have a modulatory effect by reducing hyperconnectivity.
Collapse
Affiliation(s)
- Eric A Nelson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
32
|
Wang M, Barker PB, Cascella NG, Coughlin JM, Nestadt G, Nucifora FC, Sedlak TW, Kelly A, Younes L, Geman D, Palaniyappan L, Sawa A, Yang K. Longitudinal changes in brain metabolites in healthy controls and patients with first episode psychosis: a 7-Tesla MRS study. Mol Psychiatry 2023; 28:2018-2029. [PMID: 36732587 PMCID: PMC10394114 DOI: 10.1038/s41380-023-01969-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Seven Tesla magnetic resonance spectroscopy (7T MRS) offers a precise measurement of metabolic levels in the human brain via a non-invasive approach. Studying longitudinal changes in brain metabolites could help evaluate the characteristics of disease over time. This approach may also shed light on how the age of study participants and duration of illness may influence these metabolites. This study used 7T MRS to investigate longitudinal patterns of brain metabolites in young adulthood in both healthy controls and patients. A four-year longitudinal cohort with 38 patients with first episode psychosis (onset within 2 years) and 48 healthy controls was used to examine 10 brain metabolites in 5 brain regions associated with the pathophysiology of psychosis in a comprehensive manner. Both patients and controls were found to have significant longitudinal reductions in glutamate in the anterior cingulate cortex (ACC). Only patients were found to have a significant decrease over time in γ-aminobutyric acid, N-acetyl aspartate, myo-inositol, total choline, and total creatine in the ACC. Together we highlight the ACC with dynamic changes in several metabolites in early-stage psychosis, in contrast to the other 4 brain regions that also are known to play roles in psychosis. Meanwhile, glutathione was uniquely found to have a near zero annual percentage change in both patients and controls in all 5 brain regions during a four-year follow-up in young adulthood. Given that a reduction of the glutathione in the ACC has been reported as a feature of treatment-refractory psychosis, this observation further supports the potential of glutathione as a biomarker for this subset of patients with psychosis.
Collapse
Affiliation(s)
- Min Wang
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Peter B Barker
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Nicola G Cascella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick C Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexandra Kelly
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laurent Younes
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Donald Geman
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Lena Palaniyappan
- Robarts Research Institution, University of Western Ontario, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Merritt K, McCutcheon RA, Aleman A, Ashley S, Beck K, Block W, Bloemen OJN, Borgan F, Boules C, Bustillo JR, Capizzano AA, Coughlin JM, David A, de la Fuente-Sandoval C, Demjaha A, Dempster K, Do KQ, Du F, Falkai P, Galińska-Skok B, Gallinat J, Gasparovic C, Ginestet CE, Goto N, Graff-Guerrero A, Ho BC, Howes O, Jauhar S, Jeon P, Kato T, Kaufmann CA, Kegeles LS, Keshavan MS, Kim SY, King B, Kunugi H, Lauriello J, León-Ortiz P, Liemburg E, Mcilwain ME, Modinos G, Mouchlianitis E, Nakamura J, Nenadic I, Öngür D, Ota M, Palaniyappan L, Pantelis C, Patel T, Plitman E, Posporelis S, Purdon SE, Reichenbach JR, Renshaw PF, Reyes-Madrigal F, Russell BR, Sawa A, Schaefer M, Shungu DC, Smesny S, Stanley JA, Stone J, Szulc A, Taylor R, Thakkar KN, Théberge J, Tibbo PG, van Amelsvoort T, Walecki J, Williamson PC, Wood SJ, Xin L, Yamasue H, McGuire P, Egerton A. Variability and magnitude of brain glutamate levels in schizophrenia: a meta and mega-analysis. Mol Psychiatry 2023; 28:2039-2048. [PMID: 36806762 PMCID: PMC10575771 DOI: 10.1038/s41380-023-01991-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/19/2023]
Abstract
Glutamatergic dysfunction is implicated in schizophrenia pathoaetiology, but this may vary in extent between patients. It is unclear whether inter-individual variability in glutamate is greater in schizophrenia than the general population. We conducted meta-analyses to assess (1) variability of glutamate measures in patients relative to controls (log coefficient of variation ratio: CVR); (2) standardised mean differences (SMD) using Hedges g; (3) modal distribution of individual-level glutamate data (Hartigan's unimodality dip test). MEDLINE and EMBASE databases were searched from inception to September 2022 for proton magnetic resonance spectroscopy (1H-MRS) studies reporting glutamate, glutamine or Glx in schizophrenia. 123 studies reporting on 8256 patients and 7532 controls were included. Compared with controls, patients demonstrated greater variability in glutamatergic metabolites in the medial frontal cortex (MFC, glutamate: CVR = 0.15, p < 0.001; glutamine: CVR = 0.15, p = 0.003; Glx: CVR = 0.11, p = 0.002), dorsolateral prefrontal cortex (glutamine: CVR = 0.14, p = 0.05; Glx: CVR = 0.25, p < 0.001) and thalamus (glutamate: CVR = 0.16, p = 0.008; Glx: CVR = 0.19, p = 0.008). Studies in younger, more symptomatic patients were associated with greater variability in the basal ganglia (BG glutamate with age: z = -0.03, p = 0.003, symptoms: z = 0.007, p = 0.02) and temporal lobe (glutamate with age: z = -0.03, p = 0.02), while studies with older, more symptomatic patients associated with greater variability in MFC (glutamate with age: z = 0.01, p = 0.02, glutamine with symptoms: z = 0.01, p = 0.02). For individual patient data, most studies showed a unimodal distribution of glutamatergic metabolites. Meta-analysis of mean differences found lower MFC glutamate (g = -0.15, p = 0.03), higher thalamic glutamine (g = 0.53, p < 0.001) and higher BG Glx in patients relative to controls (g = 0.28, p < 0.001). Proportion of males was negatively associated with MFC glutamate (z = -0.02, p < 0.001) and frontal white matter Glx (z = -0.03, p = 0.02) in patients relative to controls. Patient PANSS total score was positively associated with glutamate SMD in BG (z = 0.01, p = 0.01) and temporal lobe (z = 0.05, p = 0.008). Further research into the mechanisms underlying greater glutamatergic metabolite variability in schizophrenia and their clinical consequences may inform the identification of patient subgroups for future treatment strategies.
Collapse
Affiliation(s)
- Kate Merritt
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK.
| | | | - André Aleman
- Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, China
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sarah Ashley
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK
| | - Katherine Beck
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Wolfgang Block
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Oswald J N Bloemen
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Christiana Boules
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Research, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Aristides A Capizzano
- Department of Radiology, Division of Neuroradiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anthony David
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Arsime Demjaha
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kara Dempster
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Kim Q Do
- Center for Psychiatric Neuroscience (CNP), Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Peter Falkai
- Department of Psychiatry, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Beata Galińska-Skok
- Department of Psychiatry, Medical University of Bialystok, Bialystok, Poland
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Cedric E Ginestet
- Department of Biostatistics and Health Informatics (S2.06), Institute of Psychiatry, Psychology and Neuroscience King's College London, London, UK
| | - Naoki Goto
- Department of Psychiatry, Kokura Gamo Hospital, Kitakyushu, Fukuoka, 8020978, Japan
| | - Ariel Graff-Guerrero
- Multimodal Neuroimaging Schizophrenia Group, Research Imaging Centre, Geriatric Mental Health Program at Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Beng-Choon Ho
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sameer Jauhar
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Peter Jeon
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Charles A Kaufmann
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute (NYSPI), New York, NY, USA
| | - Lawrence S Kegeles
- Columbia University, Department of Psychiatry, New York State Psychiatric Institute (NYSPI), New York, NY, USA
| | | | | | - Bridget King
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hiroshi Kunugi
- National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-0031, Japan
| | - J Lauriello
- Jefferson Health-Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Edith Liemburg
- Rob Giel Research Center, Department of Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
| | - Meghan E Mcilwain
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Gemma Modinos
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Elias Mouchlianitis
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jun Nakamura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Miho Ota
- National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-0031, Japan
| | - Lena Palaniyappan
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Tulsi Patel
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK
| | - Eric Plitman
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Sotirios Posporelis
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, BR3 3BX, UK
| | - Scot E Purdon
- Neuropsychology Department, Alberta Hospital Edmonton, Edmonton, AB, Canada
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology (IDIR), Jena University Hospital, Jena, Germany
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Bruce R Russell
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Mental Health, Biomedical Engineering, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Martin Schaefer
- Department of Psychiatry, Psychotherapy, Psychosomatics and Addiction Medicine, Kliniken Essen-Mitte, Essen, Germany
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medical College, New York City, NY, USA
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jeffrey A Stanley
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - James Stone
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Reggie Taylor
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, MI, USA
| | - Jean Théberge
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | | | - Peter C Williamson
- Lawson Health Research Institute, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
| | - Stephen J Wood
- Orygen, Melbourne, VIC, Australia
- Institute for Mental Health, University of Birmingham, Edgbaston, UK
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Philip McGuire
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alice Egerton
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
34
|
Fontana IC, Kumar A, Nordberg A. The role of astrocytic α7 nicotinic acetylcholine receptors in Alzheimer disease. Nat Rev Neurol 2023; 19:278-288. [PMID: 36977843 DOI: 10.1038/s41582-023-00792-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/30/2023]
Abstract
The ongoing search for therapeutic interventions in Alzheimer disease (AD) has highlighted the complexity of this condition and the need for additional biomarkers, beyond amyloid-β (Aβ) and tau, to improve clinical assessment. Astrocytes are brain cells that control metabolic and redox homeostasis, among other functions, and are emerging as an important focus of AD research owing to their swift response to brain pathology in the initial stages of the disease. Reactive astrogliosis - the morphological, molecular and functional transformation of astrocytes during disease - has been implicated in AD progression, and the definition of new astrocytic biomarkers could help to deepen our understanding of reactive astrogliosis along the AD continuum. As we highlight in this Review, one promising biomarker candidate is the astrocytic α7 nicotinic acetylcholine receptor (α7nAChR), upregulation of which correlates with Aβ pathology in the brain of individuals with AD. We revisit the past two decades of research into astrocytic α7nAChRs to shed light on their roles in the context of AD pathology and biomarkers. We discuss the involvement of astrocytic α7nAChRs in the instigation and potentiation of early Aβ pathology and explore their potential as a target for future reactive astrocyte-based therapeutics and imaging biomarkers in AD.
Collapse
Affiliation(s)
- Igor C Fontana
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
35
|
Roberts D, Rösler L, Wijnen JP, Thakkar KN. Associations between N-Acetylaspartate and white matter integrity in individuals with schizophrenia and unaffected relatives. Psychiatry Res Neuroimaging 2023; 330:111612. [PMID: 36805928 PMCID: PMC10023491 DOI: 10.1016/j.pscychresns.2023.111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Compromised white matter has been reported in schizophrenia; however, few studies have investigated neurochemical abnormalities underlying microstructural differences. N-acetylaspartate (NAA) is used to synthesize myelin and is often reduced in persons with schizophrenia (PSZ) and their unaffected first-degree relatives (REL). Low levels of NAA could affect white matter by preventing the synthesis or repair of myelin. We used magnetic resonance spectroscopy and diffusion tensor imaging to investigate the relationship between NAA and white matter integrity in PSZ. REL were included to examine whether putative relationships are associated with symptom expression or illness liability. 52 controls, 23 REL and 25 PSZ underwent 7T proton magnetic resonance spectroscopy and/or 3T diffusion tensor imaging. NAA in the visual cortex and basal ganglia were measured and compared across groups. Diffusivity measures were compared across groups using tract-based spatial statistics and related to NAA concentrations. Visual cortex NAA was significantly reduced in PSZ compared to controls. White matter integrity did not differ between groups. Reduced cortical and subcortical NAA were associated with diffusivity measures of poor white matter microstructure. These data suggest that levels of neural NAA may be related to white matter integrity similarly across individuals with schizophrenia, those at genetic risk, and controls.
Collapse
Affiliation(s)
- Dominic Roberts
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Lara Rösler
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jannie P Wijnen
- Department of Radiology, High Field MR Research, Centre for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, United States; Department of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, Michigan, United States.
| |
Collapse
|
36
|
Tangmose K, Rostrup E, Bojesen KB, Sigvard A, Jessen K, Johansen LB, Glenthøj BY, Nielsen MØ. Reward disturbances in antipsychotic-naïve patients with first-episode psychosis and their association to glutamate levels. Psychol Med 2023; 53:1629-1638. [PMID: 37010221 DOI: 10.1017/s0033291721003305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Aberrant anticipation of motivational salient events and processing of outcome evaluation in striatal and prefrontal regions have been suggested to underlie psychosis. Altered glutamate levels have likewise been linked to schizophrenia. Glutamatergic abnormalities may affect the processing of motivational salience and outcome evaluation. It remains unresolved, whether glutamatergic dysfunction is associated with the coding of motivational salience and outcome evaluation in antipsychotic-naïve patients with first-episode psychosis. METHODS Fifty-one antipsychotic-naïve patients with first-episode psychosis (22 ± 5.2 years, female/male: 31/20) and 52 healthy controls (HC) matched on age, sex, and parental education underwent functional magnetic resonance imaging and magnetic resonance spectroscopy (3T) in one session. Brain responses to motivational salience and negative outcome evaluation (NOE) were examined using a monetary incentive delay task. Glutamate levels were estimated in the left thalamus and anterior cingulate cortex using LCModel. RESULTS Patients displayed a positive signal change to NOE in the caudate (p = 0.001) and dorsolateral prefrontal cortex (DLPFC; p = 0.003) compared to HC. No group difference was observed in motivational salience or in levels of glutamate. There was a different association between NOE signal in the caudate and DLPFC and thalamic glutamate levels in patients and HC due to a negative correlation in patients (caudate: p = 0.004, DLPFC: p = 0.005) that was not seen in HC. CONCLUSIONS Our findings confirm prior findings of abnormal outcome evaluation as a part of the pathophysiology of schizophrenia. The results also suggest a possible link between thalamic glutamate and NOE signaling in patients with first-episode psychosis.
Collapse
Affiliation(s)
- Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Anne Sigvard
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Jessen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Louise Baruël Johansen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Zhang HC, Du Y, Chen L, Yuan ZQ, Cheng Y. MicroRNA schizophrenia: Etiology, biomarkers and therapeutic targets. Neurosci Biobehav Rev 2023; 146:105064. [PMID: 36707012 DOI: 10.1016/j.neubiorev.2023.105064] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
The three sets of symptoms associated with schizophrenia-positive, negative, and cognitive-are burdensome and have serious effects on public health, which affects up to 1% of the population. It is now commonly believed that in addition to the traditional dopaminergic mesolimbic pathway, the etiology of schizophrenia also includes neuronal networks, such as glutamate, GABA, serotonin, BDNF, oxidative stress, inflammation and the immune system. Small noncoding RNA molecules called microRNAs (miRNAs) have come to light as possible participants in the pathophysiology of schizophrenia in recent years by having an impact on these systems. These small RNAs regulate the stability and translation of hundreds of target transcripts, which has an impact on the entire gene network. There may be improved approaches to treat and diagnose schizophrenia if it is understood how these changes in miRNAs alter the critical related signaling pathways that drive the development and progression of the illness.
Collapse
Affiliation(s)
- Heng-Chang Zhang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Zeng-Qiang Yuan
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
38
|
Wang Y, Liu Z, Lu J, Wang W, Wang L, Yang Y, Wang H, Ye L, Zhang J, Tian J. Biological evaluation and in silico studies of novel compounds as potent TAAR1 agonists that could be used in schizophrenia treatment. Front Pharmacol 2023; 14:1161964. [PMID: 37153799 PMCID: PMC10160475 DOI: 10.3389/fphar.2023.1161964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction: Schizophrenia is a serious mental illness that requires effective treatment with minimal adverse effects. As preclinical and clinical research progresses, trace amine-associated receptor 1 (TAAR1) is becoming a potential new target for the treatment of schizophrenia. Methods: We used molecular docking and molecular dynamics (MD) simulations to discover TAAR1 agonists. The agonistic or inhibitory effects of compounds on TAAR1, 5-HT1A, 5-HT2A, and dopamine D2-like receptors were determined. We used an MK801-induced schizophrenia-like behavior model to assess the potential antipsychotic effects of compounds. We also performed a catalepsy assay to detect the adverse effects. To evaluate the druggability of the compounds, we conducted evaluations of permeability and transporter substrates, liver microsomal stability in vitro, human ether-à-go-go-related gene (hERG), pharmacokinetics, and tissue distribution. Results: We discovered two TAAR1 agonists: compounds 50A and 50B. The latter had high TAAR1 agonistic activity but no agonistic effect on dopamine D2-like receptors and demonstrated superior inhibition of MK801-induced schizophrenia-like behavior in mice. Interestingly, 50B had favorable druggability and the ability to penetrate the blood-brain barrier (BBB) without causing extrapyramidal symptoms (EPS), such as catalepsy in mice. Conclusion: These results demonstrate the potential beneficial role of TAAR1 agonists in the treatment of schizophrenia. The discovery of a structurally novel TAAR1 agonist (50B) may provide valuable assistance in the development of new treatments for schizophrenia.
Collapse
Affiliation(s)
- Yunjie Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zhaofeng Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jing Lu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Lin Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yifei Yang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Liang Ye
- School of Public Health and Management, Binzhou Medical University, Yantai, China
- *Correspondence: Liang Ye, ; Jianzhao Zhang, ; Jingwei Tian,
| | - Jianzhao Zhang
- College of Life Sciences, Yantai University, Yantai, China
- *Correspondence: Liang Ye, ; Jianzhao Zhang, ; Jingwei Tian,
| | - Jingwei Tian
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
- *Correspondence: Liang Ye, ; Jianzhao Zhang, ; Jingwei Tian,
| |
Collapse
|
39
|
Kruse AO, Bustillo JR. Glutamatergic dysfunction in Schizophrenia. Transl Psychiatry 2022; 12:500. [PMID: 36463316 PMCID: PMC9719533 DOI: 10.1038/s41398-022-02253-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
The NMDA-R hypofunction model of schizophrenia started with the clinical observation of the precipitation of psychotic symptoms in patients with schizophrenia exposed to PCP or ketamine. Healthy volunteers exposed to acute low doses of ketamine experienced mild psychosis but also negative and cognitive type symptoms reminiscent of the full clinical picture of schizophrenia. In rodents, acute systemic ketamine resulted in a paradoxical increase in extracellular frontal glutamate as well as of dopamine. Similar increase in prefrontal glutamate was documented with acute ketamine in healthy volunteers with 1H-MRS. Furthermore, sub-chronic low dose PCP lead to reductions in frontal dendritic tree density in rodents. In post-mortem ultrastructural studies in schizophrenia, a broad reduction in dendritic complexity and somal volume of pyramidal cells has been repeatedly described. This most likely accounts for the broad, subtle progressive cortical thinning described with MRI in- vivo. Additionally, prefrontal reductions in the obligatory GluN1 subunit of the NMDA-R has been repeatedly found in post-mortem tissue. The vast 1H-MRS literature in schizophrenia has documented trait-like small increases in glutamate concentrations in striatum very early in the illness, before antipsychotic treatment (the same structure where increased pre-synaptic release of dopamine has been reported with PET). The more recent genetic literature has reliably detected very small risk effects for common variants involving several glutamate-related genes. The pharmacological literature has followed two main tracks, directly informed by the NMDA-R hypo model: agonism at the glycine site (as mostly add-on studies targeting negative and cognitive symptoms); and pre-synaptic modulation of glutamatergic release (as single agents for acute psychosis). Unfortunately, both approaches have failed so far. There is little doubt that brain glutamatergic abnormalities are present in schizophrenia and that some of these are related to the etiology of the illness. The genetic literature directly supports a non- specific etiological role for glutamatergic dysfunction. Whether NMDA-R hypofunction as a specific mechanism accounts for any important component of the illness is still not evident. However, a glutamatergic model still has heuristic value to guide future research in schizophrenia. New tools to jointly examine brain glutamatergic, GABA-ergic and dopaminergic systems in-vivo, early in the illness, may lay the ground for a next generation of clinical trials that go beyond dopamine D2 blockade.
Collapse
Affiliation(s)
- Andreas O Kruse
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
40
|
Alnafisah RS, Reigle J, Eladawi MA, O'Donovan SM, Funk AJ, Meller J, Mccullumsmith RE, Shukla R. Assessing the effects of antipsychotic medications on schizophrenia functional analysis: a postmortem proteome study. Neuropsychopharmacology 2022; 47:2033-2041. [PMID: 35354897 PMCID: PMC9556610 DOI: 10.1038/s41386-022-01310-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
Abstract
Antipsychotic drugs (APDs) are effective in treating positive symptoms of schizophrenia (SCZ). However, they have a substantial impact on postmortem studies. As most cohorts lack samples from drug-naive patients, many studies, rather than understanding SCZ pathophysiology, are analyzing the drug effects. We hypothesized that comparing SCZ-altered and APD-influenced signatures derived from the same cohort can provide better insight into SCZ pathophysiology. For this, we performed LCMS-based proteomics on dorsolateral prefrontal cortex (DLPFC) samples from control and SCZ subjects and used statistical approaches to identify SCZ-altered and APD-influenced proteomes, validated experimentally using independent cohorts and published datasets. Functional analysis of both proteomes was contrasted at the biological-pathway, cell-type, subcellular-synaptic, and drug-target levels. In silico validation revealed that the SCZ-altered proteome was conserved across several studies from the DLPFC and other brain areas. At the pathway level, SCZ influenced changes in homeostasis, signal-transduction, cytoskeleton, and dendrites, whereas APD influenced changes in synaptic-signaling, neurotransmitter-regulation, and immune-system processes. At the cell-type level, the SCZ-altered and APD-influenced proteomes were associated with two distinct striatum-projecting layer-5 pyramidal neurons regulating dopaminergic-secretion. At the subcellular synaptic level, compensatory pre- and postsynaptic events were observed. At the drug-target level, dopaminergic processes influenced the SCZ-altered upregulated-proteome, whereas nondopaminergic and a diverse array of non-neuromodulatory mechanisms influenced the downregulated-proteome. Previous findings were not independent of the APD effect and thus require re-evaluation. We identified a hyperdopaminergic cortex and drugs targeting the cognitive SCZ-symptoms and discussed their influence on SCZ pathology in the context of the cortico-striatal pathway.
Collapse
Affiliation(s)
- Rawan S Alnafisah
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - James Reigle
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | | | - Sinead M O'Donovan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Adam J Funk
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jaroslaw Meller
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Robert E Mccullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| | - Rammohan Shukla
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
41
|
Sonnenschein SF, Mayeli A, Yushmanov VE, Blazer A, Calabro FJ, Perica M, Foran W, Luna B, Hetherington HP, Ferrarelli F, Sarpal DK. A longitudinal investigation of GABA, glutamate, and glutamine across the insula during antipsychotic treatment of first-episode schizophrenia. Schizophr Res 2022; 248:98-106. [PMID: 36029656 PMCID: PMC10018530 DOI: 10.1016/j.schres.2022.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/29/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022]
Abstract
Individuals with first-episode schizophrenia (FES) typically present with acute psychotic symptoms. Though antipsychotic drugs are the mainstay for treatment, the neurobiology underlying successful treatment remains largely elusive. Recent evidence from functional connectivity studies highlights the insula as a key structure in the neural mechanism of response. However, molecular contributions to response across insular regions remain largely unknown. We used 7-Tesla magnetic resonance spectroscopic imaging (MRSI) to measure glutamate (Glu), Glutamine (Gln), and GABA from anterior and posterior regions of the insula across antipsychotic treatment. A total of 36 participants were examined, including 15 individuals with FES and moderate to severe psychosis who were scanned at two time points, while starting and after 6 weeks of antipsychotic treatment. Symptoms were carefully monitored across the study period to characterize treatment response. GABA, Glu, and Gln levels were calculated relative to creatine in anterior and posterior insular regions, bilaterally. In relation to psychotic symptom reduction, we observed a significant increase in Glu across all insular regions with (p < 0.001), but no corresponding changes in Gln or GABA. In group analyses, the FES cohort showed lower levels of Glu (p < 0.001) and GABA (p = 0.02) at baseline. Finally, in exploratory analyses, treatment remitters demonstrated a normalization of lower insular Glu levels across treatment, unlike non-remitters. Overall, these findings contribute to our understating of molecular changes associated with antipsychotic response and demonstrate abnormalities specific to the insula in FES.
Collapse
Affiliation(s)
| | - Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Annie Blazer
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Perica
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
42
|
Joe P, Clemente JC, Piras E, Wallach DS, Robinson-Papp J, Boka E, Remsen B, Bonner M, Kimhy D, Goetz D, Hoffman K, Lee J, Ruby E, Fendrich S, Gonen O, Malaspina D. An integrative study of the microbiome gut-brain-axis and hippocampal inflammation in psychosis: Persistent effects from mode of birth. Schizophr Res 2022; 247:101-115. [PMID: 34625336 PMCID: PMC8980116 DOI: 10.1016/j.schres.2021.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The mechanism producing psychosis appears to include hippocampal inflammation, which could be associated with the microbiome-gut-brain-axis (MGBS). To test this hypothesis we are conducting a multidisciplinary study, herein described. The procedures are illustrated with testing of a single subject and group level information on the impact of C-section birth are presented. METHOD Study subjects undergo research diagnostic interviews and symptom assessments to be categorized into one of 3 study groups: psychosis, nonpsychotic affective disorder or healthy control. Hippocampal volume and metabolite concentrations are assessed using 3-dimensional, multi-voxel H1 Magnetic Resonance Imaging (MRSI) encompassing all gray matter in the entire hippocampal volume. Rich self-report information is obtained with the PROMIS interview, which was developed by the NIH Commons for research in chronic conditions. Early trauma is assessed and cognition is quantitated using the MATRICS. The method also includes the most comprehensive autonomic nervous system (ANS) battery used to date in psychiatric research. Stool and oral samples are obtained for microbiome assessments and cytokines and other substances are measured in blood samples. RESULTS Group level preliminary data shows that C-section birth is associated with higher concentrations of GLX, a glutamate related hippocampal neurotransmitter in psychotic cases, worse symptoms in affective disorder cases and smaller hippocampal volume in controls. CONCLUSION Mode of birth appears to have persistent influences through adulthood. The methodology described for this study will define pathways through which the MGBA may influence the risk for psychiatric disorders.
Collapse
Affiliation(s)
- Peter Joe
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA.
| | - Jose C Clemente
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Enrica Piras
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - David S Wallach
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | | | - Emeka Boka
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Brooke Remsen
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA; Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Mharisi Bonner
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - David Kimhy
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Deborah Goetz
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Kevin Hoffman
- Perelman School of Medicine, University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Jakleen Lee
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Eugene Ruby
- University of California, Los Angeles, Department of Psychology, Los Angeles, CA, USA
| | - Sarah Fendrich
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA; Perelman School of Medicine, University of Pennsylvania, Center for Health Care Incentives & Behavioral Economics, Philadelphia, PA, USA
| | - Oded Gonen
- NYU Langone Medical Center, Department of Radiology, New York, NY, USA
| | - Dolores Malaspina
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| |
Collapse
|
43
|
Griffiths K, Egerton A, Millgate E, Anton A, Barker GJ, Deakin B, Drake R, Eliasson E, Gregory CJ, Howes OD, Kravariti E, Lawrie SM, Lewis S, Lythgoe DJ, Murphy A, McGuire P, Semple S, Stockton-Powdrell C, Walters JTR, Williams SR, MacCabe JH. Impaired verbal memory function is related to anterior cingulate glutamate levels in schizophrenia: findings from the STRATA study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:60. [PMID: 35853881 PMCID: PMC9279335 DOI: 10.1038/s41537-022-00265-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
Abstract
Impaired cognition is associated with lower quality of life and poor outcomes in schizophrenia. Brain glutamate may contribute to both clinical outcomes and cognition, but these relationships are not well-understood. We studied a multicentre cohort of 85 participants with non-affective psychosis using proton magnetic resonance spectroscopy. Glutamate neurometabolites were measured in the anterior cingulate cortex (ACC). Cognition was assessed using the Brief Assessment for Cognition in Schizophrenia (BACS). Patients were categorised as antipsychotic responders or non-responders based on treatment history and current symptom severity. Inverted U-shaped associations between glutamate or Glx (glutamate + glutamine) with BACS subscale and total scores were examined with regression analyses. We then tested for an interaction effect of the antipsychotic response group on the relationship between glutamate and cognition. ACC glutamate and Glx had a positive linear association with verbal memory after adjusting for age, sex and chlorpromazine equivalent dose (glutamate, β = 3.73, 95% CI = 1.26-6.20, P = 0.004; Glx, β = 3.38, 95% CI = 0.84-5.91, P = 0.01). This association did not differ between good and poor antipsychotic response groups. ACC glutamate was also positively associated with total BACS score (β = 3.12, 95% CI = 0.01-6.23, P = 0.046), but this was not significant after controlling for antipsychotic dose. Lower glutamatergic metabolites in the ACC were associated with worse verbal memory, and this relationship was independent of antipsychotic response. Further research on relationships between glutamate and cognition in antipsychotic responsive and non-responsive illness could aid the stratification of patient groups for targeted treatment interventions.
Collapse
Affiliation(s)
- Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Edward Millgate
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Adriana Anton
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, Medical School, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, S10 2JF, UK
| | - Gareth J Barker
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Bill Deakin
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, M25 3BL, UK
| | - Richard Drake
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, M25 3BL, UK
| | - Emma Eliasson
- Division of Psychiatry, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Catherine J Gregory
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
| | - Eugenia Kravariti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Shôn Lewis
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, M25 3BL, UK
| | - David J Lythgoe
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Anna Murphy
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Scott Semple
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Charlotte Stockton-Powdrell
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Stephen R Williams
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
44
|
Göverti D, Yüksel RN, Kaya H, Büyüklüoğlu N, Yücel Ç, Göka E. Serum concentrations of aminoacylase 1 in schizophrenia as a potential biomarker: a case-sibling-control study. Nord J Psychiatry 2022; 76:380-385. [PMID: 35791057 DOI: 10.1080/08039488.2021.1981435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Aminoacylase 1 (ACY1) catalyzes the hydrolysis reaction during protein degradation. N-acetylamino acids are accumulated in the urine in Aminoacylase 1 deficiency (ACY1D). This study attempts to evaluate the potential of ACY1 as a biomarker for schizophrenia and predict genetic vulnerability in the high-risk population. MATERIAL AND METHODS Seventy patients with schizophrenia, twenty-five of which have newly diagnosed, forty-nine unaffected siblings of patients, and fifty-six healthy controls were included in the study. The ELISA method was used to measure serum ACY1. The Positive and Negative Syndrome Scale (PANSS) and The Clinical Global Impression - Severity scale (CGI-S) were used to analyze the severity of the symptoms. Data were analysed statistically by non-parametric tests. RESULTS The finding of the study indicated that the serum levels of ACY1 in patients and siblings were lower compared to healthy controls (p < 0.001 and p = 0.023). There was no statistically significant difference between patients and siblings (p = 0.067). The duration of disease, PANSS total scores, and CGI-S scores did not have a significant association with the ACY1 levels in the patient group (p > 0.005). ACY1 levels among the drug-using patient group and the newly diagnosed patient group showed no notable difference (respectively, p = 0.120 and p = 0.843). CONCLUSION This study is the first to evaluate the serum ACY1 levels in patients with schizophrenia. The result of the study provides us insight regarding the first hints that ACY1 might be a potential biomarker. Being aware of the molecule will pave the way for further explorations in the field.
Collapse
Affiliation(s)
- Diğdem Göverti
- Department of Psychiatry, Erenkoy Mental Health and Neurologic Disorders Training and Research Hospital, University of Health Sciences, İstanbul, Turkey
| | - Rabia Nazik Yüksel
- Department of Psychiatry, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Hasan Kaya
- Department of Psychiatry, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Nihan Büyüklüoğlu
- Department of Psychiatry, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Çiğdem Yücel
- Department of Biochemistry, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Erol Göka
- Department of Psychiatry, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
45
|
Sodium nitroprusside enhances the antipsychotic-like effect of olanzapine but not clozapine in the conditioned avoidance response test in rats. Eur Neuropsychopharmacol 2022; 60:48-54. [PMID: 35635996 DOI: 10.1016/j.euroneuro.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 01/02/2023]
Abstract
The nitric oxide (NO)-donor, sodium nitroprusside (SNP) has been proposed as an adjunct treatment to enhance the effect of antipsychotic drugs (APDs). As NO constitutes an important downstream signaling molecule of N-methyl-D-aspartate receptors, SNP may alleviate symptoms of schizophrenia by modulating glutamatergic signaling. We previously showed that SNP enhances the antipsychotic-like effect of a sub-effective dose of risperidone in the conditioned avoidance response (CAR) test, indicating that adjunct SNP may be used to lower the dose of risperidone and in this way reduce the risk of side effects. By using the CAR test, we here investigated if SNP also enhances the antipsychotic-like effect of olanzapine or clozapine. Importantly, SNP (1.5 mg/kg) significantly enhanced the antipsychotic-like effect of olanzapine (1.25 and 2.5mg/kg) to a clinically relevant level, supporting the potential clinical use of SNP as an adjunct treatment to improve the effect of APDs. However, SNP (1.5 mg/kg) did not increase the antipsychotic-like effect of clozapine (5 and 6 mg/kg). Moreover, we found that the rats developed tolerance towards clozapine after repeated administrations. Thus, our study motivates further investigation using different preclinical models to assess the effect of adjunct treatment of SNP to APDs, also targeting the negative symptoms and cognitive deficits seen in schizophrenia.
Collapse
|
46
|
Leptourgos P, Bansal S, Dutterer J, Culbreth A, Powers A, Suthaharan P, Kenney J, Erickson M, Waltz J, Wijtenburg SA, Gaston F, Rowland LM, Gold J, Corlett P. Relating Glutamate, Conditioned, and Clinical Hallucinations via 1H-MR Spectroscopy. Schizophr Bull 2022; 48:912-920. [PMID: 35199836 PMCID: PMC9212089 DOI: 10.1093/schbul/sbac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Hallucinations may be driven by an excessive influence of prior expectations on current experience. Initial work has supported that contention and implicated the anterior insula in the weighting of prior beliefs. STUDY DESIGN Here we induce hallucinated tones by associating tones with the presentation of a visual cue. We find that people with schizophrenia who hear voices are more prone to the effect and using computational modeling we show they overweight their prior beliefs. In the same participants, we also measured glutamate levels in anterior insula, anterior cingulate, dorsolateral prefrontal, and auditory cortices, using magnetic resonance spectroscopy. STUDY RESULTS We found a negative relationship between prior-overweighting and glutamate levels in the insula that was not present for any of the other voxels or parameters. CONCLUSIONS Through computational psychiatry, we bridge a pathophysiological theory of psychosis (glutamate hypofunction) with a cognitive model of hallucinations (prior-overweighting) with implications for the development of new treatments for hallucinations.
Collapse
Affiliation(s)
- Pantelis Leptourgos
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Haven, CT,USA
| | - Sonia Bansal
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, MD,USA
| | - Jenna Dutterer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, MD,USA
| | - Adam Culbreth
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, MD,USA
| | - Albert Powers
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Haven, CT,USA
| | - Praveen Suthaharan
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Haven, CT,USA
| | - Joshua Kenney
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Haven, CT,USA
| | - Molly Erickson
- Department of Psychiatry, University of Chicago, Chicago, IL,USA
| | - James Waltz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, MD,USA
| | - S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, MD,USA
| | - Frank Gaston
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, MD,USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, MD,USA
| | - James Gold
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, MD,USA
| | - Philip Corlett
- To whom correspondence should be addressed; 34 Park Street, New Haven, CT 06511, USA; tel: 203-974-7866, fax: 203 974 7866, e-mail:
| |
Collapse
|
47
|
Smesny S, Gussew A, Schack S, Langbein K, Wagner G, Reichenbach JR. Neurometabolic patterns of an "at risk for mental disorders" syndrome involve abnormalities in the thalamus and anterior midcingulate cortex. Schizophr Res 2022; 243:285-295. [PMID: 32444202 DOI: 10.1016/j.schres.2020.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/03/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The ultra-high risk (UHR) paradigm allows the investigation of individuals at increased risk of developing psychotic or other mental disorders with the aim of making prevention and early intervention as specific as possible in terms of the individual outcome. METHODS Single-session 1H-/31P-Chemical Shift Imaging of thalamus, prefrontal (DLPFC) and anterior midcingulate (aMCC) cortices was applied to 69 UHR patients for psychosis and 61 matched healthy controls. N-acetylaspartate (NAA), glutamate/glutamine complex (Glx), energy (PCr, ATP) and phospholipid metabolites were assessed, analysed by ANOVA (or ANCOVA [with covariates]) and correlated with symptomatology (SCL-90R). RESULTS The thalamus showed decreased NAA, inversely correlated with self-rated aggressiveness, as well as increased PCr, and altered phospholipid breakdown. While the aMCC showed a pattern of NAA decrease and PCr increase, the DLPFC showed PCr increase only in the close-to-psychosis patient subgroup. There were no specific findings in transition patients. CONCLUSION The results do not support the notion of a specific pre-psychotic neurometabolic pattern, but likely reflect correlates of an "at risk for mental disorders syndrome". This includes disturbed neuronal (mitochondrial) metabolism in the thalamus and aMCC, with emphasis on left-sided structures, and altered PL remodeling across structures.
Collapse
Affiliation(s)
- Stefan Smesny
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany.
| | - Alexander Gussew
- Department of Radiology, Halle University Hospital, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Stephan Schack
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Kerstin Langbein
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Gerd Wagner
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Philosophenweg 3, D-07740 Jena, Germany
| |
Collapse
|
48
|
Spark DL, Fornito A, Langmead CJ, Stewart GD. Beyond antipsychotics: a twenty-first century update for preclinical development of schizophrenia therapeutics. Transl Psychiatry 2022; 12:147. [PMID: 35393394 PMCID: PMC8991275 DOI: 10.1038/s41398-022-01904-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 11/15/2022] Open
Abstract
Despite 50+ years of drug discovery, current antipsychotics have limited efficacy against negative and cognitive symptoms of schizophrenia, and are ineffective-with the exception of clozapine-against any symptom domain for patients who are treatment resistant. Novel therapeutics with diverse non-dopamine D2 receptor targets have been explored extensively in clinical trials, yet often fail due to a lack of efficacy despite showing promise in preclinical development. This lack of translation between preclinical and clinical efficacy suggests a systematic failure in current methods that determine efficacy in preclinical rodent models. In this review, we critically evaluate rodent models and behavioural tests used to determine preclinical efficacy, and look to clinical research to provide a roadmap for developing improved translational measures. We highlight the dependence of preclinical models and tests on dopamine-centric theories of dysfunction and how this has contributed towards a self-reinforcing loop away from clinically meaningful predictions of efficacy. We review recent clinical findings of distinct dopamine-mediated dysfunction of corticostriatal circuits in patients with treatment-resistant vs. non-treatment-resistant schizophrenia and suggest criteria for establishing rodent models to reflect such differences, with a focus on objective, translational measures. Finally, we review current schizophrenia drug discovery and propose a framework where preclinical models are validated against objective, clinically informed measures and preclinical tests of efficacy map onto those used clinically.
Collapse
Affiliation(s)
- Daisy L Spark
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash Biomedical Imaging, and School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
49
|
Bissonnette JN, Francis AM, MacNeil S, Crocker CE, Tibbo PG, Fisher DJ. Glutamate and N-Acetylaspartate Alterations Observed in Early Phase Psychosis: A Systematic Review of Proton Magnetic Resonance Spectroscopy Studies. Psychiatry Res Neuroimaging 2022; 321:111459. [PMID: 35183897 DOI: 10.1016/j.pscychresns.2022.111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Abstract
Glutamate and N-acetylaspartate have been investigated in the neuropathology of chronic schizophrenia, with fewer studies focusing on early phase psychosis. Additionally, there has been little review and synthesis of the literature focused on multiple brain regions. This systematic review aims to provide a clear report of the current state of research on glutamate and n-acetylaspartate concentrations in early phase psychosis (defined as the first five years following psychosis onset) in multiple brain regions. Existing literature was searched systematically to compile reports of glutamate/glutamate+glutamine (Glx) and n-acetylaspartate absolute levels and ratios in both male and female individuals with early phase psychosis. Reports on glutamate/Glx concentrations in the medial prefrontal region and thalamus were varied, but the majority of reports suggested no alterations in EPP. No studies reported glutamate alterations in the hippocampus or cerebellum. There was no evidence for n-acetylaspartate alterations in the caudate, basal ganglia, and medial prefrontal cortex, and minimal evidence for NAA reductions in the thalamus, anterior cingulate cortex, and hippocampus. Future research should focus on the regions that are less commonly reported, and should aim to explore possible confounds, such as medication status and substance use.
Collapse
Affiliation(s)
- J N Bissonnette
- Department of Psychiatry, Dalhousie University, Halifax, NS.
| | - A M Francis
- Department of Psychology, Saint Mary's University, Halifax, NS.
| | - S MacNeil
- Department of Psychology, Mount Saint Vincent University, Halifax, NS.
| | - C E Crocker
- Department of Psychiatry, Dalhousie University, Halifax, NS; Nova Scotia Early Psychosis Program, Halifax, NS; Department of Diagnostic Imaging, Dalhousie University, Halifax, NS.
| | - P G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS; Nova Scotia Early Psychosis Program, Halifax, NS.
| | - D J Fisher
- Department of Psychiatry, Dalhousie University, Halifax, NS; Department of Psychology, Saint Mary's University, Halifax, NS; Department of Psychology, Mount Saint Vincent University, Halifax, NS.
| |
Collapse
|
50
|
Broeders TAA, Bhogal AA, Morsinkhof LM, Schoonheim MM, Röder CH, Edens M, Klomp DWJ, Wijnen JP, Vinkers CH. Glutamate levels across deep brain structures in patients with a psychotic disorder and its relation to cognitive functioning. J Psychopharmacol 2022; 36:489-497. [PMID: 35243931 PMCID: PMC9066676 DOI: 10.1177/02698811221077199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Patients with psychotic disorders often show prominent cognitive impairment. Glutamate seems to play a prominent role, but its role in deep gray matter (DGM) regions is unclear. AIMS To evaluate glutamate levels within deep gray matter structures in patients with a psychotic disorder in relation to cognitive functioning, using advanced spectroscopic acquisition, reconstruction, and post-processing techniques. METHODS A 7-Tesla magnetic resonance imaging scanner combined with a lipid suppression coil and subject-specific water suppression pulses was used to acquire high-resolution magnetic resonance spectroscopic imaging data. Tissue fraction correction and registration to a standard brain were performed for group comparison in specifically delineated DGM regions. The brief assessment of cognition in schizophrenia was used to evaluate cognitive status. RESULTS Average glutamate levels across DGM structures (i.e. caudate, pallidum, putamen, and thalamus) in mostly medicated patients with a psychotic disorder (n = 16, age = 33, 4 females) were lower compared to healthy controls (n = 23, age = 24, 7 females; p = 0.005, d = 1.06). Stratified analyses showed lower glutamate levels in the caudate (p = 0.046, d = 0.76) and putamen p = 0.013, d = 0.94). These findings were largely explained by age differences between groups. DGM glutamate levels were positively correlated with psychomotor speed (r(30) = 0.49, p = 0.028), but not with other cognitive domains. CONCLUSIONS We find reduced glutamate levels across DGM structures including the caudate and putamen in patients with a psychotic disorder that are linked to psychomotor speed. Despite limitations concerning age differences, these results underscore the potential role of detailed in vivo glutamate assessments to understand cognitive deficits in psychotic disorders.
Collapse
Affiliation(s)
- Tommy AA Broeders
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Tommy AA Broeders, Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Alex A Bhogal
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lisan M Morsinkhof
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christian H Röder
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mirte Edens
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis WJ Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jannie P Wijnen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christiaan H Vinkers
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam/GGZ inGeest, Amsterdam, The Netherlands
| |
Collapse
|