1
|
Adhyapak N, Cardenas GE, Abboud MA, Krishnan V. Rest-Activity Rhythm Phenotypes in Adults with Epilepsy and Intellectual Disability. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.09.24313145. [PMID: 39314931 PMCID: PMC11419227 DOI: 10.1101/2024.09.09.24313145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objective Sleep and rest-activity rhythms (RARs) are perturbed in many forms of neuropsychiatric illness. In this study, we applied wrist actigraphy to describe the extent of RAR perturbations in adults with epilepsy and intellectual disability ("E+ID"), using a cross-sectional case-control design. We examined whether RAR phenotypes correlated with epilepsy severity, deficits in adaptive function and/or comorbid psychopathology. Methods Primary caregivers of E+ID adults provided informed consent during routine ambulatory clinic visits and were asked to complete standardized surveys of overall epilepsy severity (GASE, Global Assessment of Severity of Epilepsy), adaptive function (ABAS-3, Adaptive Behavior Assessment System-3) and psychopathology (ABCL, Adult Behavior Checklist). Caregivers were also asked to ensure that subjects wore an Actiwatch-2 device continuously on their nondominant wrist for at least ten days. From recorded actograms, we calculated RAR amplitude, acrophase, robustness, intradaily variability (IV), interdaily stability (IS) and estimates of sleep quantity and timing. We compared these RAR metrics against those from (i) a previously published cohort of adults with epilepsy without ID (E-ID), and (ii) a cohort of age- and sex-matched intellectually able subjects measured within the Study of Latinos (SOL) Ancillary actigraphy study (SOL). Within E+ID subjects, we applied k-means analysis to divide subjects into three actigraphically distinct clusters. Results 46 E+ID subjects (median age 26 [20-68], 47% female) provided a median recording duration of 11 days [range 6-27]. Surveys reflected low to extremely low levels of adaptive function (ABAS3 General Adaptive Composite score: median 50 [49-75]), and low/subclinical levels of psychopathology (ABCL total score: median 54.5 [25-67]). Compared with E-ID (n=57) and SOL (n=156) cohorts, E+ID subjects displayed significantly lower RAR amplitude, robustness and IS, with significantly higher IV and total daily sleep. K-means clustering of E+ID subjects recognized an intermediate cluster "B", with RAR values indistinguishable to E-ID. Cluster "A" subjects displayed pronounced hypoactivity and hypersomnia with high rates of rhythm fragmentation, while cluster "C" subjects featured hyper-robust and high amplitude RARs. All three clusters were similar in age, body mass index, antiseizure medication (ASM) polytherapy, ABAS3 and ABCL scores. We qualitatively describe RAR examples from all three clusters. Interpretation We show that adults with epilepsy and intellectual disability display a wide spectrum of RAR phenotypes that do not neatly correlate with measures of adaptive function or epilepsy severity. Prospective studies are necessary to determine whether continuous actigraphic monitoring can sensitively capture changes in chronobiological health that may arise with disease progression, iatrogenesis (e.g., ASM toxicity) or acute health deteriorations (e.g., seizure exacerbation, pneumonia). Similar long-term data is necessary to recognize whether behavioral interventions targeted to 'normalize' RARs may promote improvements in adaptive function and therapy engagement.
Collapse
Affiliation(s)
- Nandani Adhyapak
- Departments of Neurology, Neuroscience and Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
| | - Grace E Cardenas
- Departments of Neurology, Neuroscience and Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
| | - Mark A Abboud
- Departments of Neurology, Neuroscience and Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
| | - Vaishnav Krishnan
- Departments of Neurology, Neuroscience and Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
2
|
Wu S, Wang S, Wu M, Lin F, Ji X, Yan J. Duration of N1 sleep is a factor for excessive daytime sleepiness in epilepsy patients with interictal epileptiform discharges: A polysomnographic study. Heliyon 2024; 10:e36500. [PMID: 39247309 PMCID: PMC11379998 DOI: 10.1016/j.heliyon.2024.e36500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/24/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose This study aimed to identify the occurrence of excessive daytime sleepiness (EDS) in epilepsy patients with interictal epileptiform discharges and to explore the impact of interictal sleep architecture and sleep-related events on EDS. Methods This study included 101 epilepsy patients with interictal epileptiform discharges (IED) and 100 control patients who underwent simultaneous polysomnography and video ambulatory electroencephalography for >7 h throughout a single night. Multiple sleep latency tests were used to assess EDS. Comorbid EDS was present in 25 and 11 patients in the IED epilepsy and control groups, respectively. In addition, univariate and multivariate logistic regression analyses were performed to explore the factors influencing EDS. Results The epilepsy group had a higher prevalence of comorbid EDS and shorter R sleep duration. Univariate logistic regression analysis indicated that an increased risk of EDS may be associated with prolonged N1 sleep duration, higher arousal index, lower mean saturation (mSaO2), higher oxygen desaturation index (ODI), and duration of wake after sleep onset (WASO). Multivariate logistic regression analysis revealed that N1 sleep duration was significantly correlated with EDS. Conclusion In epilepsy patients with IED, the arousal index, mSaO2, ODI, and duration of WASO were weakly correlated with EDS, and the duration of N1 sleep demonstrated a significant positive correlation with EDS, which requires further research.
Collapse
Affiliation(s)
- Sangru Wu
- Department of Neurology, Fujian Provincial Governmental Hospital, Fuzhou, Fujian, China
| | - Sihang Wang
- Department of Neurology, Fujian Provincial Governmental Hospital, Fuzhou, Fujian, China
| | - Meina Wu
- Department of Neurology, Fujian Provincial Governmental Hospital, Fuzhou, Fujian, China
| | - Fang Lin
- Department of Neurology, Fujian Provincial Governmental Hospital, Fuzhou, Fujian, China
| | - Xiaolin Ji
- Department of Neurology, Fujian Provincial Governmental Hospital, Fuzhou, Fujian, China
| | - Jinzhu Yan
- Department of Neurology, Fujian Provincial Governmental Hospital, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Francis J, Plunkett G, Shetty M, Davey MJ, Nixon GM, Walter LM, Horne RSC. Autonomic cardiovascular control is unaffected in children referred for assessment of excessive daytime sleepiness. J Sleep Res 2024:e14318. [PMID: 39147593 DOI: 10.1111/jsr.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
There is conflicting evidence for impaired autonomic control of heart rate (HR) in adults with narcolepsy and idiopathic hypersomnolence (IH). Despite these chronic hypersomnia conditions primarily being diagnosed around the age of puberty, there are limited studies in children. The present study investigated cardiovascular control using heart rate variability (HRV) and the extent of nocturnal HR dipping during sleep in children and adolescents with narcolepsy and IH. Children having an overnight polysomnographic study followed by a multiple sleep latency test (MSLT) for investigation of excessive daytime sleepiness (EDS) between May 2010 to December 2023 were included: 28 children diagnosed with narcolepsy, 11 with IH, and 26 subjectively sleepy children who did not meet the diagnostic criteria for either narcolepsy or IH. Each clinically referred child was matched for age and sex with a control. Time domain and frequency domain HRV were calculated from ECG recorded at 512 Hz. There were no differences in either time domain or spectral analysis of HRV between clinical groups or between clinical groups and their control group. The expected sleep state differences in HRV were observed in all groups. There was also no difference in HR nocturnal dipping between groups. Despite evidence for abnormal autonomic function in adults with narcolepsy and IH, our study did not identify any abnormalities in HR, HR control, or nocturnal dipping of HR in children referred for assessment of EDS. This suggests that autonomic dysfunction may be a feature of these conditions that develops in later life.
Collapse
Affiliation(s)
- Jamilla Francis
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Georgina Plunkett
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Marisha Shetty
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Margot J Davey
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
- Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, Victoria, Australia
| | - Gillian M Nixon
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
- Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, Victoria, Australia
| | - Lisa M Walter
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Rosemary S C Horne
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Biscarini F, Barateau L, Pizza F, Plazzi G, Dauvilliers Y. Narcolepsy and rapid eye movement sleep. J Sleep Res 2024:e14277. [PMID: 38955433 DOI: 10.1111/jsr.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
Since the first description of narcolepsy at the end of the 19th Century, great progress has been made. The disease is nowadays distinguished as narcolepsy type 1 and type 2. In the 1960s, the discovery of rapid eye movement sleep at sleep onset led to improved understanding of core sleep-related disease symptoms of the disease (excessive daytime sleepiness with early occurrence of rapid eye movement sleep, sleep-related hallucinations, sleep paralysis, rapid eye movement parasomnia), as possible dysregulation of rapid eye movement sleep, and cataplexy resembling an intrusion of rapid eye movement atonia during wake. The relevance of non-sleep-related symptoms, such as obesity, precocious puberty, psychiatric and cardiovascular morbidities, has subsequently been recognized. The diagnostic tools have been improved, but sleep-onset rapid eye movement periods on polysomnography and Multiple Sleep Latency Test remain key criteria. The pathogenic mechanisms of narcolepsy type 1 have been partly elucidated after the discovery of strong HLA class II association and orexin/hypocretin deficiency, a neurotransmitter that is involved in altered rapid eye movement sleep regulation. Conversely, the causes of narcolepsy type 2, where cataplexy and orexin deficiency are absent, remain unknown. Symptomatic medications to treat patients with narcolepsy have been developed, and management has been codified with guidelines, until the recent promising orexin-receptor agonists. The present review retraces the steps of the research on narcolepsy that linked the features of the disease with rapid eye movement sleep abnormality, and those that do not appear associated with rapid eye movement sleep.
Collapse
Affiliation(s)
- Francesco Biscarini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
5
|
Evangelista E, Leu-Semenescu S, Pizza F, Plazzi G, Dauvilliers Y, Barateau L, Lambert I. Long sleep time and excessive need for sleep: State of the art and perspectives. Neurophysiol Clin 2024; 54:102949. [PMID: 38387329 DOI: 10.1016/j.neucli.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
The mechanisms underlying the individual need for sleep are unclear. Sleep duration is indeed influenced by multiple factors, such as genetic background, circadian and homeostatic processes, environmental factors, and sometimes transient disturbances such as infections. In some cases, the need for sleep dramatically and chronically increases, inducing a daily-life disability. This "excessive need for sleep" (ENS) was recently proposed and defined in a European Position Paper as a dimension of the hypersomnolence spectrum, "hypersomnia" being the objectified complaint of ENS. The most severe form of ENS has been described in Idiopathic Hypersomnia, a rare neurological disorder, but this disabling symptom can be also found in other hypersomnolence conditions. Because ENS has been defined recently, it remains a symptom poorly investigated and understood. However, protocols of long-term polysomnography recordings have been reported by expert centers in the last decades and open the way to a better understanding of ENS through a neurophysiological approach. In this narrative review, we will 1) present data related to the physiological and pathological variability of sleep duration and their mechanisms, 2) describe the published long-term polysomnography recording protocols, and 3) describe current neurophysiological tools to study sleep microstructure and discuss perspectives for a better understanding of ENS.
Collapse
Affiliation(s)
- Elisa Evangelista
- Sleep Disorder Unit, Carémeau Hospital, Centre Hospitalo-Universitaire de Nîmes, France; Institute for Neurosciences of Montpellier (INM), Univ Montpellier, INSERM, Montpellier, France
| | - Smaranda Leu-Semenescu
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Paris, France; Sleep Disorders Clinic, Pitié-Salpêtrière Hospital, APHP-Sorbonne University, Paris, France
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Yves Dauvilliers
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, INSERM, Montpellier, France; Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Lucie Barateau
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, INSERM, Montpellier, France; Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Isabelle Lambert
- APHM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France; Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
6
|
Pizza F, Vignatelli L, Vandi S, Zenesini C, Biscarini F, Franceschini C, Antelmi E, Ingravallo F, Mignot E, Bruni O, Nobili L, Veggiotti P, Ferri R, Plazzi G. Role of Daytime Continuous Polysomnography in the Diagnosis of Pediatric Narcolepsy Type 1. Neurology 2024; 102:e207815. [PMID: 38165365 PMCID: PMC10834121 DOI: 10.1212/wnl.0000000000207815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/18/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Narcolepsy type 1 (NT1) is still largely underdiagnosed or diagnosed too late in children. Difficulties in obtaining rapid and reliable diagnostic evaluations of the condition in clinical practice partially explain this problem. Predictors of NT1 include cataplexy and sleep-onset REM periods (SOREMPs), documented during nocturnal polysomnography (N-PSG) or through the multiple sleep latency test (MSLT), although low CSF hypocretin-1 (CSF hcrt-1) is the definitive biological disease marker. Obtaining reliable MSLT results is not always feasible in children; therefore, this study aimed to validate daytime continuous polysomnography (D-PSG) as an alternative diagnostic tool. METHODS Two hundred consecutive patients aged younger than 18 years (112 with NT1; 25 with other hypersomnias, including narcolepsy type 2 and idiopathic hypersomnia; and 63 with subjective excessive daytime sleepiness) were randomly split into 2 groups: group 1 (n = 133) for the identification of diagnostic markers and group 2 (n = 67) for the validation of the detected markers. The D-PSG data collected included the number of spontaneous naps, total sleep time, and the number of daytime SOREMPs (d-SOREMP). D-PSG data were tested against CSF hcrt-1 deficiency (NT1 diagnosis) as the gold standard using receiver operating characteristic (ROC) curve analysis in group 1. ROC diagnostic performances of single and combined D-PSG parameters were tested in group 1 and validated in group 2. RESULTS In group 1, the areas under the ROC curve (AUCs) were 0.91 (95% CI 0.86-0.96) for d-SOREMPs, 0.81 (95% CI 0.74-0.89) for the number of spontaneous naps, and 0.70 (95% CI 0.60-0.79) for total sleep time. A d-SOREMP count ≥1 (sensitivity of 95% and specificity of 72%), coupled with a diurnal total sleep time above 60 minutes (sensitivity of 89% and specificity of 91%), identified NT1 in group 1 with high reliability (area under the ROC curve of 0.93, 95% CI 0.88-0.97). These results were confirmed in the validation group with an AUC of 0.88 (95% CI 0.79-0.97). DISCUSSION D-PSG recording is an easily performed, cost-effective, and reliable tool for identifying NT1 in children. Further studies should confirm its validity with home D-PSG monitoring. These alternative procedures could be used to confirm NT1 diagnosis and curtail diagnostic delay.
Collapse
Affiliation(s)
- Fabio Pizza
- From the Department of Biomedical and Neuromotor Sciences (DIBINEM) (F.P., S.V., F.B.), University of Bologna; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.P., L.V., S.V., C.Z., G.P.); Department of Medicine and Surgery (C.F.), University of Parma; Neurology Unit (E.A.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Medical and Surgical Sciences (DIMEC) (F.I.), University of Bologna, Italy; Tanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA; Department of Developmental and Social Psychology (O.B.), Sapienza University, Rome; IRCCS Istituto Giannina Gaslini (L.N.), Genoa; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (L.N.), DINOGMI, University of Genoa; University of Milan (P.V.), Milan; Clinical Neurophysiology Research Unit (R.F.), Oasi Research Institute-IRCCS, Troina; and Department of Biomedical, Metabolic and Neural Sciences (G.P.), University of Modena and Reggio-Emilia, Italy
| | - Luca Vignatelli
- From the Department of Biomedical and Neuromotor Sciences (DIBINEM) (F.P., S.V., F.B.), University of Bologna; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.P., L.V., S.V., C.Z., G.P.); Department of Medicine and Surgery (C.F.), University of Parma; Neurology Unit (E.A.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Medical and Surgical Sciences (DIMEC) (F.I.), University of Bologna, Italy; Tanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA; Department of Developmental and Social Psychology (O.B.), Sapienza University, Rome; IRCCS Istituto Giannina Gaslini (L.N.), Genoa; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (L.N.), DINOGMI, University of Genoa; University of Milan (P.V.), Milan; Clinical Neurophysiology Research Unit (R.F.), Oasi Research Institute-IRCCS, Troina; and Department of Biomedical, Metabolic and Neural Sciences (G.P.), University of Modena and Reggio-Emilia, Italy
| | - Stefano Vandi
- From the Department of Biomedical and Neuromotor Sciences (DIBINEM) (F.P., S.V., F.B.), University of Bologna; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.P., L.V., S.V., C.Z., G.P.); Department of Medicine and Surgery (C.F.), University of Parma; Neurology Unit (E.A.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Medical and Surgical Sciences (DIMEC) (F.I.), University of Bologna, Italy; Tanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA; Department of Developmental and Social Psychology (O.B.), Sapienza University, Rome; IRCCS Istituto Giannina Gaslini (L.N.), Genoa; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (L.N.), DINOGMI, University of Genoa; University of Milan (P.V.), Milan; Clinical Neurophysiology Research Unit (R.F.), Oasi Research Institute-IRCCS, Troina; and Department of Biomedical, Metabolic and Neural Sciences (G.P.), University of Modena and Reggio-Emilia, Italy
| | - Corrado Zenesini
- From the Department of Biomedical and Neuromotor Sciences (DIBINEM) (F.P., S.V., F.B.), University of Bologna; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.P., L.V., S.V., C.Z., G.P.); Department of Medicine and Surgery (C.F.), University of Parma; Neurology Unit (E.A.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Medical and Surgical Sciences (DIMEC) (F.I.), University of Bologna, Italy; Tanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA; Department of Developmental and Social Psychology (O.B.), Sapienza University, Rome; IRCCS Istituto Giannina Gaslini (L.N.), Genoa; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (L.N.), DINOGMI, University of Genoa; University of Milan (P.V.), Milan; Clinical Neurophysiology Research Unit (R.F.), Oasi Research Institute-IRCCS, Troina; and Department of Biomedical, Metabolic and Neural Sciences (G.P.), University of Modena and Reggio-Emilia, Italy
| | - Francesco Biscarini
- From the Department of Biomedical and Neuromotor Sciences (DIBINEM) (F.P., S.V., F.B.), University of Bologna; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.P., L.V., S.V., C.Z., G.P.); Department of Medicine and Surgery (C.F.), University of Parma; Neurology Unit (E.A.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Medical and Surgical Sciences (DIMEC) (F.I.), University of Bologna, Italy; Tanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA; Department of Developmental and Social Psychology (O.B.), Sapienza University, Rome; IRCCS Istituto Giannina Gaslini (L.N.), Genoa; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (L.N.), DINOGMI, University of Genoa; University of Milan (P.V.), Milan; Clinical Neurophysiology Research Unit (R.F.), Oasi Research Institute-IRCCS, Troina; and Department of Biomedical, Metabolic and Neural Sciences (G.P.), University of Modena and Reggio-Emilia, Italy
| | - Christian Franceschini
- From the Department of Biomedical and Neuromotor Sciences (DIBINEM) (F.P., S.V., F.B.), University of Bologna; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.P., L.V., S.V., C.Z., G.P.); Department of Medicine and Surgery (C.F.), University of Parma; Neurology Unit (E.A.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Medical and Surgical Sciences (DIMEC) (F.I.), University of Bologna, Italy; Tanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA; Department of Developmental and Social Psychology (O.B.), Sapienza University, Rome; IRCCS Istituto Giannina Gaslini (L.N.), Genoa; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (L.N.), DINOGMI, University of Genoa; University of Milan (P.V.), Milan; Clinical Neurophysiology Research Unit (R.F.), Oasi Research Institute-IRCCS, Troina; and Department of Biomedical, Metabolic and Neural Sciences (G.P.), University of Modena and Reggio-Emilia, Italy
| | - Elena Antelmi
- From the Department of Biomedical and Neuromotor Sciences (DIBINEM) (F.P., S.V., F.B.), University of Bologna; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.P., L.V., S.V., C.Z., G.P.); Department of Medicine and Surgery (C.F.), University of Parma; Neurology Unit (E.A.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Medical and Surgical Sciences (DIMEC) (F.I.), University of Bologna, Italy; Tanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA; Department of Developmental and Social Psychology (O.B.), Sapienza University, Rome; IRCCS Istituto Giannina Gaslini (L.N.), Genoa; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (L.N.), DINOGMI, University of Genoa; University of Milan (P.V.), Milan; Clinical Neurophysiology Research Unit (R.F.), Oasi Research Institute-IRCCS, Troina; and Department of Biomedical, Metabolic and Neural Sciences (G.P.), University of Modena and Reggio-Emilia, Italy
| | - Francesca Ingravallo
- From the Department of Biomedical and Neuromotor Sciences (DIBINEM) (F.P., S.V., F.B.), University of Bologna; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.P., L.V., S.V., C.Z., G.P.); Department of Medicine and Surgery (C.F.), University of Parma; Neurology Unit (E.A.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Medical and Surgical Sciences (DIMEC) (F.I.), University of Bologna, Italy; Tanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA; Department of Developmental and Social Psychology (O.B.), Sapienza University, Rome; IRCCS Istituto Giannina Gaslini (L.N.), Genoa; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (L.N.), DINOGMI, University of Genoa; University of Milan (P.V.), Milan; Clinical Neurophysiology Research Unit (R.F.), Oasi Research Institute-IRCCS, Troina; and Department of Biomedical, Metabolic and Neural Sciences (G.P.), University of Modena and Reggio-Emilia, Italy
| | - Emmanuel Mignot
- From the Department of Biomedical and Neuromotor Sciences (DIBINEM) (F.P., S.V., F.B.), University of Bologna; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.P., L.V., S.V., C.Z., G.P.); Department of Medicine and Surgery (C.F.), University of Parma; Neurology Unit (E.A.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Medical and Surgical Sciences (DIMEC) (F.I.), University of Bologna, Italy; Tanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA; Department of Developmental and Social Psychology (O.B.), Sapienza University, Rome; IRCCS Istituto Giannina Gaslini (L.N.), Genoa; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (L.N.), DINOGMI, University of Genoa; University of Milan (P.V.), Milan; Clinical Neurophysiology Research Unit (R.F.), Oasi Research Institute-IRCCS, Troina; and Department of Biomedical, Metabolic and Neural Sciences (G.P.), University of Modena and Reggio-Emilia, Italy
| | - Oliviero Bruni
- From the Department of Biomedical and Neuromotor Sciences (DIBINEM) (F.P., S.V., F.B.), University of Bologna; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.P., L.V., S.V., C.Z., G.P.); Department of Medicine and Surgery (C.F.), University of Parma; Neurology Unit (E.A.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Medical and Surgical Sciences (DIMEC) (F.I.), University of Bologna, Italy; Tanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA; Department of Developmental and Social Psychology (O.B.), Sapienza University, Rome; IRCCS Istituto Giannina Gaslini (L.N.), Genoa; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (L.N.), DINOGMI, University of Genoa; University of Milan (P.V.), Milan; Clinical Neurophysiology Research Unit (R.F.), Oasi Research Institute-IRCCS, Troina; and Department of Biomedical, Metabolic and Neural Sciences (G.P.), University of Modena and Reggio-Emilia, Italy
| | - Lino Nobili
- From the Department of Biomedical and Neuromotor Sciences (DIBINEM) (F.P., S.V., F.B.), University of Bologna; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.P., L.V., S.V., C.Z., G.P.); Department of Medicine and Surgery (C.F.), University of Parma; Neurology Unit (E.A.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Medical and Surgical Sciences (DIMEC) (F.I.), University of Bologna, Italy; Tanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA; Department of Developmental and Social Psychology (O.B.), Sapienza University, Rome; IRCCS Istituto Giannina Gaslini (L.N.), Genoa; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (L.N.), DINOGMI, University of Genoa; University of Milan (P.V.), Milan; Clinical Neurophysiology Research Unit (R.F.), Oasi Research Institute-IRCCS, Troina; and Department of Biomedical, Metabolic and Neural Sciences (G.P.), University of Modena and Reggio-Emilia, Italy
| | - Pierangelo Veggiotti
- From the Department of Biomedical and Neuromotor Sciences (DIBINEM) (F.P., S.V., F.B.), University of Bologna; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.P., L.V., S.V., C.Z., G.P.); Department of Medicine and Surgery (C.F.), University of Parma; Neurology Unit (E.A.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Medical and Surgical Sciences (DIMEC) (F.I.), University of Bologna, Italy; Tanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA; Department of Developmental and Social Psychology (O.B.), Sapienza University, Rome; IRCCS Istituto Giannina Gaslini (L.N.), Genoa; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (L.N.), DINOGMI, University of Genoa; University of Milan (P.V.), Milan; Clinical Neurophysiology Research Unit (R.F.), Oasi Research Institute-IRCCS, Troina; and Department of Biomedical, Metabolic and Neural Sciences (G.P.), University of Modena and Reggio-Emilia, Italy
| | - Raffaele Ferri
- From the Department of Biomedical and Neuromotor Sciences (DIBINEM) (F.P., S.V., F.B.), University of Bologna; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.P., L.V., S.V., C.Z., G.P.); Department of Medicine and Surgery (C.F.), University of Parma; Neurology Unit (E.A.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Medical and Surgical Sciences (DIMEC) (F.I.), University of Bologna, Italy; Tanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA; Department of Developmental and Social Psychology (O.B.), Sapienza University, Rome; IRCCS Istituto Giannina Gaslini (L.N.), Genoa; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (L.N.), DINOGMI, University of Genoa; University of Milan (P.V.), Milan; Clinical Neurophysiology Research Unit (R.F.), Oasi Research Institute-IRCCS, Troina; and Department of Biomedical, Metabolic and Neural Sciences (G.P.), University of Modena and Reggio-Emilia, Italy
| | - Giuseppe Plazzi
- From the Department of Biomedical and Neuromotor Sciences (DIBINEM) (F.P., S.V., F.B.), University of Bologna; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.P., L.V., S.V., C.Z., G.P.); Department of Medicine and Surgery (C.F.), University of Parma; Neurology Unit (E.A.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Medical and Surgical Sciences (DIMEC) (F.I.), University of Bologna, Italy; Tanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA; Department of Developmental and Social Psychology (O.B.), Sapienza University, Rome; IRCCS Istituto Giannina Gaslini (L.N.), Genoa; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (L.N.), DINOGMI, University of Genoa; University of Milan (P.V.), Milan; Clinical Neurophysiology Research Unit (R.F.), Oasi Research Institute-IRCCS, Troina; and Department of Biomedical, Metabolic and Neural Sciences (G.P.), University of Modena and Reggio-Emilia, Italy
| |
Collapse
|
7
|
Rosenberg R, Braceras R, Macfadden W, Candler S, Black J, Ruoff C. Implications of Oxybate Dosing Regimen for Sleep, Sleep Architecture, and Disrupted Nighttime Sleep in Patients with Narcolepsy: A Commentary. Neurol Ther 2023; 12:1805-1820. [PMID: 37755650 PMCID: PMC10630177 DOI: 10.1007/s40120-023-00543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Narcolepsy is associated with disrupted nighttime sleep (DNS). Sodium oxybate (SXB; Xyrem®), administered twice nightly, is indicated for the treatment of cataplexy and excessive daytime sleepiness in patients 7 years or older with narcolepsy. Recently, low-sodium oxybate (LXB, Xywav®; for people 7 years of age and older), which contains 92% less sodium than SXB and is dosed twice nightly, and sodium oxybate for extended release (SXB-ER; Lumryz™; for adults), which contains equal sodium to SXB and is dosed once nightly, have also been approved to treat cataplexy or excessive daytime sleepiness in narcolepsy. This paper reviews the evidence regarding the overall impact of oxybate administration, and impact of different oxybate dosing regimens (once nightly, SXB-ER; twice nightly, SXB), on DNS in narcolepsy utilizing polysomnographic data from five clinical trials (three assessing SXB in adults [referred to here as SXB trials 1, 2, and 3], one assessing SXB in children [referred to as the pediatric SXB trial], and one assessing SXB-ER in adults [REST-ON]). Both once-nightly and twice-nightly oxybate regimens similarly improved symptoms of DNS. Regardless of dosing regimen, people with narcolepsy treated with oxybate experience roughly 42-53 arousals and 9-38 awakenings each night, with one of these awakenings on twice-nightly oxybate being due to the second dosing requirement in studies of SXB. Additionally, for SXB, but not SXB-ER, polysomnographic data has been analyzed by half of the night, demonstrating a greater positive impact on sleep architecture in the second half of the night, which might be related to its nonlinear pharmacokinetic profile. We conclude that while once-nightly and twice-nightly oxybate dosing regimens differ in their pharmacokinetic profiles, both improve DNS in patients with narcolepsy to a similar degree.
Collapse
Affiliation(s)
| | | | | | | | - Jed Black
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
- Jazz Pharmaceuticals, Palo Alto, CA, USA
| | - Chad Ruoff
- Division of Pulmonary Medicine, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
8
|
Gagnon K, Rey AE, Guignard-Perret A, Guyon A, Reynaud E, Herbillon V, Lina JM, Carrier J, Franco P, Mazza S. Sleep Stage Transitions and Sleep-Dependent Memory Consolidation in Children with Narcolepsy-Cataplexy. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1702. [PMID: 37892365 PMCID: PMC10605014 DOI: 10.3390/children10101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Electroencephalographic sleep stage transitions and altered first REM sleep period transitions have been identified as biomarkers of type 1 narcolepsy in adults, but not in children. Studies on memory complaints in narcolepsy have not yet investigated sleep-dependent memory consolidation. We aimed to explore stage transitions; more specifically altered REM sleep transition and its relationship with sleep-dependent memory consolidation in children with narcolepsy. Twenty-one children with narcolepsy-cataplexy and twenty-three healthy control children completed overnight polysomnography and sleep-dependent memory consolidation tests. Overnight transition rates (number of transitions per hour), global relative transition frequencies (number of transitions between a stage and all other stages/total number of transitions × 100), overnight transitions to REM sleep (transition from a given stage to REM/total REM transitions × 100), and altered first REM sleep period transitions (transitions from wake or N1 to the first REM period) were computed. Narcoleptic children had a significantly higher overnight transition rate with a higher global relative transition frequencies to wake. A lower sleep-dependent memory consolidation score found in children with narcolepsy was associated with a higher overnight transition frequency. As observed in narcoleptic adults, 90.48% of narcoleptic children exhibited an altered first REM sleep transition. As in adults, the altered sleep stage transition is also present in children with narcolepsy-cataplexy, and a higher transition rate could have an impact on sleep-dependent memory consolidation. These potential biomarkers could help diagnose type 1 narcolepsy in children more quickly; however, further studies with larger cohorts, including of those with type 2 narcolepsy and hypersomnia, are needed.
Collapse
Affiliation(s)
- Katia Gagnon
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, FORGETTING, F-69500 Bron, France; (K.G.); (A.E.R.); (E.R.)
| | - Amandine E. Rey
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, FORGETTING, F-69500 Bron, France; (K.G.); (A.E.R.); (E.R.)
| | - Anne Guignard-Perret
- National Reference Center for Narcolepsy in the Service of Epilepsy, Sleep and Neuropediatric Functional Explorations of the Woman Mother Child Hospital of Bron, 59, bd Pinel, F-69677 Bron, France; (A.G.-P.); (A.G.); (V.H.); (P.F.)
| | - Aurore Guyon
- National Reference Center for Narcolepsy in the Service of Epilepsy, Sleep and Neuropediatric Functional Explorations of the Woman Mother Child Hospital of Bron, 59, bd Pinel, F-69677 Bron, France; (A.G.-P.); (A.G.); (V.H.); (P.F.)
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, WAKING, F-69500 Bron, France
| | - Eve Reynaud
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, FORGETTING, F-69500 Bron, France; (K.G.); (A.E.R.); (E.R.)
| | - Vania Herbillon
- National Reference Center for Narcolepsy in the Service of Epilepsy, Sleep and Neuropediatric Functional Explorations of the Woman Mother Child Hospital of Bron, 59, bd Pinel, F-69677 Bron, France; (A.G.-P.); (A.G.); (V.H.); (P.F.)
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, EDUWELL, F-69500 Bron, France
| | - Jean-Marc Lina
- Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada;
| | - Julie Carrier
- Department of Psychology, Université de Montréal, Montréal, QC H3C 3J7, Canada;
| | - Patricia Franco
- National Reference Center for Narcolepsy in the Service of Epilepsy, Sleep and Neuropediatric Functional Explorations of the Woman Mother Child Hospital of Bron, 59, bd Pinel, F-69677 Bron, France; (A.G.-P.); (A.G.); (V.H.); (P.F.)
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, WAKING, F-69500 Bron, France
| | - Stéphanie Mazza
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, FORGETTING, F-69500 Bron, France; (K.G.); (A.E.R.); (E.R.)
| |
Collapse
|
9
|
Di Marco T, Scammell TE, Meinel M, Seboek Kinter D, Datta AN, Zammit G, Dauvilliers Y. Number, Duration, and Distribution of Wake Bouts in Patients with Insomnia Disorder: Effect of Daridorexant and Zolpidem. CNS Drugs 2023; 37:639-653. [PMID: 37477771 PMCID: PMC10374812 DOI: 10.1007/s40263-023-01020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Daridorexant, a dual orexin receptor antagonist approved in early 2022, reduces wake after sleep onset without reducing the number of awakenings in patients with insomnia. The objective of this post hoc analysis was to explore the effect of daridorexant on the number, duration, and distribution of night-time wake bouts, and their correlation with daytime functioning. METHODS Adults with insomnia disorder were randomized 1:1:1:1:1:1 to placebo, zolpidem 10 mg, or daridorexant 5, 10, 25, or 50 mg in a phase II dose-finding study, and 1:1:1 to placebo or daridorexant 25 or 50 mg in a pivotal phase III study. We analyzed polysomnography data for daridorexant 25 and 50 mg, zolpidem 10 mg, and placebo groups. Polysomnography was conducted at baseline, then on Days 1/2, 15/16, and 28/29 in the phase II study, and Months 1 and 3 in the phase III study. The number, duration, and distribution of wake bouts (≥ 0.5 min) were assessed. RESULTS Data from 1111 patients (phase II study: daridorexant 50 mg [n = 61], zolpidem 10 mg [n = 60], placebo [n = 60]; phase III study: daridorexant 25 mg [n = 310], daridorexant 50 mg [n = 310], placebo [n = 310]) were analyzed. Long wake bouts were defined as > 6 min. Compared with placebo, daridorexant 50 mg reduced overall wake time (p < 0.05; all time points, both studies), the odds of experiencing long wake bouts (p < 0.001; Months 1 and 3, phase III study), and the cumulative duration of long wake bouts (p < 0.01; all time points, both studies). Reductions in long wake bouts were sustained through the second half of the night and correlated with improvements in daytime functioning. An increase in the cumulative duration of short wake bouts was observed with daridorexant 50 mg (p < 0.01 vs placebo, Months 1 and 3, phase III study); this was uncorrelated with daytime functioning. CONCLUSION Daridorexant reduced the number and duration of longer wake bouts throughout the night compared with placebo, corresponding with improved daytime functioning. CLINICAL TRIALS Clinicaltrials.gov NCT02839200 (registered July 20, 2016), NCT03545191 (registered June 4, 2018).
Collapse
Affiliation(s)
- Tobias Di Marco
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123, Allschwil, Switzerland.
- Department of Clinical Research, University of Basel, Schanzenstrasse 55, 4031, Basel, Switzerland.
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michael Meinel
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Dalma Seboek Kinter
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Alexandre N Datta
- Department of Clinical Research, University of Basel, Schanzenstrasse 55, 4031, Basel, Switzerland
- Pediatric Neurology and Developmental Medicine Department, University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Gary Zammit
- Clinilabs Drug Development Corporation, New York, NY, USA
| | - Yves Dauvilliers
- National Reference Centre for Orphan Diseases, Narcolepsy-Rare hypersomnias, Sleep Unit, Department of Neurology, CHU Montpellier, Institute for Neurosciences of Montpellier INM, Univ Montpellier, INSERM, Montpellier, France
| |
Collapse
|
10
|
Kam K, Vetter K, Tejiram RA, Pettibone WD, Shim K, Audrain M, Yu L, Daehn IS, Ehrlich ME, Varga AW. Effect of Aging and a Dual Orexin Receptor Antagonist on Sleep Architecture and Non-REM Oscillations Including an REM Behavior Disorder Phenotype in the PS19 Mouse Model of Tauopathy. J Neurosci 2023; 43:4738-4749. [PMID: 37230765 PMCID: PMC10286944 DOI: 10.1523/jneurosci.1828-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
The impact of tau pathology on sleep microarchitecture features, including slow oscillations, spindles, and their coupling, has been understudied, despite the proposed importance of these electrophysiological features toward learning and memory. Dual orexin receptor antagonists (DORAs) are known to promote sleep, but whether and how they affect sleep microarchitecture in the setting of tauopathy is unknown. In the PS19 mouse model of tauopathy MAPT (microtubule-associated protein tau) P301S (both male and female), young PS19 mice 2-3 months old show a sleep electrophysiology signature with markedly reduced spindle duration and power and elevated slow oscillation (SO) density compared with littermate controls, although there is no significant tau hyperphosphorylation, tangle formation, or neurodegeneration at this age. With aging, there is evidence for sleep disruption in PS19 mice, characterized by reduced REM duration, increased non-REM and REM fragmentation, and more frequent brief arousals at the macrolevel and reduced spindle density, SO density, and spindle-SO coupling at the microlevel. In ∼33% of aged PS19 mice, we unexpectedly observed abnormal goal-directed behaviors in REM, including mastication, paw grasp, and forelimb/hindlimb extension, seemingly consistent with REM behavior disorder (RBD). Oral administration of DORA-12 in aged PS19 mice increased non-REM and REM duration, albeit with shorter bout lengths, and increased spindle density, spindle duration, and SO density without change to spindle-SO coupling, power in either the SO or spindle bands, or the arousal index. We observed a significant effect of DORA-12 on objective measures of RBD, thereby encouraging future exploration of DORA effects on sleep-mediated cognition and RBD treatment.SIGNIFICANCE STATEMENT The specific effect of tauopathy on sleep macroarchitecture and microarchitecture throughout aging remains unknown. Our key findings include the following: (1) the identification of a sleep EEG signature constituting an early biomarker of impending tauopathy; (2) sleep physiology deteriorates with aging that are also markers of off-line cognitive processing; (3) the novel observation that dream enactment behaviors reminiscent of RBD occur, likely the first such observation in a tauopathy model; and (4) a dual orexin receptor antagonist is capable of restoring several of the sleep macroarchitecture and microarchitecture abnormalities.
Collapse
Affiliation(s)
- Korey Kam
- Catherine and Henry J. Gaisman Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Kenny Vetter
- Catherine and Henry J. Gaisman Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Rachel A Tejiram
- Catherine and Henry J. Gaisman Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ward D Pettibone
- Catherine and Henry J. Gaisman Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Kaitlyn Shim
- Catherine and Henry J. Gaisman Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Liping Yu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ilse S Daehn
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Andrew W Varga
- Catherine and Henry J. Gaisman Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
11
|
Blattner M, Maski K. Narcolepsy and Idiopathic Hypersomnia. Sleep Med Clin 2023; 18:183-199. [PMID: 37120161 DOI: 10.1016/j.jsmc.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Narcolepsy types 1 and 2 and idiopathic hypersomnia are primary Central Nervous System (CNS) disorders of hypersomnolence characterized by profound daytime sleepiness and/or excessive sleep need. Onset of symptoms begins typically in childhood or adolescence, and children can have unique presentations compared with adults. Narcolepsy type 1 is likely caused by immune-mediated loss of orexin (hypocretin) neurons in the hypothalamus; however, the causes of narcolepsy type 2 and idiopathic hypersomnia are unknown. Existing treatments improve daytime sleepiness and cataplexy but there is no cure for these disorders.
Collapse
Affiliation(s)
- Margaret Blattner
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Kiran Maski
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, BCH3443, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Dworetz A, Trotti LM, Sharma S. Novel Objective Measures of Hypersomnolence. CURRENT SLEEP MEDICINE REPORTS 2023; 9:45-55. [PMID: 37193087 PMCID: PMC10168608 DOI: 10.1007/s40675-022-00245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Purpose of review To provide a brief overview of current objective measures of hypersomnolence, discuss proposed measure modifications, and review emerging measures. Recent findings There is potential to optimize current tools using novel metrics. High-density and quantitative EEG-based measures may provide discriminative informative. Cognitive testing may quantify cognitive dysfunction common to hypersomnia disorders, particularly in attention, and objectively measure pathologic sleep inertia. Structural and functional neuroimaging studies in narcolepsy type 1 have shown considerable variability but so far implicate both hypothalamic and extra-hypothalamic regions; fewer studies of other CDH have been performed. There is recent renewed interest in pupillometry as a measure of alertness in the evaluation of hypersomnolence. Summary No single test captures the full spectrum of disorders and use of multiple measures will likely improve diagnostic precision. Research is needed to identify novel measures and disease-specific biomarkers, and to define combinations of measures optimal for CDH diagnosis.
Collapse
Affiliation(s)
- Alex Dworetz
- Sleep Disorders Center, Atlanta Veterans Affairs Medical Center, Atlanta, GA
| | - Lynn Marie Trotti
- Sleep Center, Emory Healthcare, Atlanta, GA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
| | - Surina Sharma
- Sleep Center, Emory Healthcare, Atlanta, GA
- Deparment of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
13
|
Cesari M, Egger K, Stefani A, Bergmann M, Ibrahim A, Brandauer E, Högl B, Heidbreder A. Differentiation of central disorders of hypersomnolence with manual and artificial-intelligence-derived polysomnographic measures. Sleep 2023; 46:6862127. [PMID: 36455881 DOI: 10.1093/sleep/zsac288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Differentiation of central disorders of hypersomnolence (DOH) is challenging but important for patient care. This study aimed to investigate whether biomarkers derived from sleep structure evaluated both by manual scoring as well as with artificial intelligence (AI) algorithms allow distinction of patients with different DOH. We included video-polysomnography data of 40 narcolepsy type 1 (NT1), 26 narcolepsy type 2 (NT2), 23 patients with idiopathic hypersomnia (IH) and 54 participants with subjective excessive daytime sleepiness (sEDS). Sleep experts manually scored sleep stages. A previously validated AI algorithm was employed to obtain automatic hypnograms and hypnodensity graphs (where each epoch is represented as a mixture of sleep stage probabilities). One-thousand-three features describing sleep architecture and instability were extracted from manual/automatic hypnogram and hypnodensity graphs. After feature selection, random forest classifiers were trained and tested in a 5-fold-cross-validation scheme to distinguish groups pairwise (NT1-vs-NT2, NT1-vs-IH, …) and single groups from the pooled remaining ones (NT1-vs-rest, NT2-vs-rest,…). The accuracy/F1-score values obtained in the test sets were: 0.74 ± 0.04/0.79 ± 0.05 (NT1-vs-NT2), 0.89 ± 0.09/0.91 ± 0.08 (NT1-vs-IH), 0.93 ± 0.06/0.91 ± 0.07 (NT1-vs-sEDS), 0.88 ± 0.04/0.80 ± 0.07 (NT1-vs-rest), 0.65 ± 0.10/0.70 ± 0.09 (NT2-vs-IH), 0.72 ± 0.12/0.60 ± 0.10 (NT2-vs-sEDS), 0.54 ± 0.19/0.38 ± 0.13 (NT2-vs-rest), 0.57 ± 0.11/0.35 ± 0.18 (IH-vs-sEDS), 0.71 ± 0.08/0.35 ± 0.10 (IH-vs-rest) and 0.76 ± 0.08/0.71 ± 0.13 (sEDS-vs-rest). The results confirm previous findings on sleep instability in patients with NT1 and show that combining manual and automatic AI-based sleep analysis could be useful for better distinction of NT2 from IH, but no precise sleep biomarker of NT2 or IH could be identified. Validation in a larger and multi-centric cohort is needed to confirm these findings.
Collapse
Affiliation(s)
- Matteo Cesari
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kristin Egger
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Melanie Bergmann
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Abubaker Ibrahim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth Brandauer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Heidbreder
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Bruni O. Approach to a sleepy child: Diagnosis and treatment of excessive daytime sleepiness in children and adolescents. Eur J Paediatr Neurol 2023; 42:97-109. [PMID: 36608412 DOI: 10.1016/j.ejpn.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
The aim of this review is to give updated information to pediatric neurologists on the correct diagnostic approach and treatment of excessive daytime sleepiness (EDS) in children and adolescents. Due to the change in the society habits, EDS is becoming an emerging problem for the health system. At the present there are few articles specifically devoted to the evaluation of EDS. EDS is often reported in several manuscripts as a side effect of other sleep disorders (obstructive sleep apnea, circadian disorders, etc.) or of the use of drugs or of the substance abuse or as a consequence of bad sleep habits and poor sleep hygiene. EDS, especially in children, may manifest with paradoxical symptoms like hyperactivity, inattention, and impulsiveness. However, common sign of EDS in children are the propensity to sleep longer than usual, the difficulty waking up in the morning, and falling asleep frequently during the day in monotonous situation. The diagnosis should include subjective (sleep diaries, questionnaires) and objective (polysomnography, multiple sleep latency test, etc.) instruments to avoid misdiagnosis. Narcolepsy is the most studied central disorder of hypersomnolence, and it is a predominantly pediatric disease with a peak age of onset in prepuberty but the diagnosis is often delayed especially in mild forms. The early and correct treatment of narcolepsy and of other form of EDS is extremely important since late and inappropriate treatments can affect the psychosocial development of the children and adolescents.
Collapse
Affiliation(s)
- Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, Via dei Marsi, 78-00185, Rome, Italy.
| |
Collapse
|
15
|
Dauvilliers Y, Bogan RK, Arnulf I, Scammell TE, St Louis EK, Thorpy MJ. Clinical considerations for the diagnosis of idiopathic hypersomnia. Sleep Med Rev 2022; 66:101709. [PMID: 36401976 DOI: 10.1016/j.smrv.2022.101709] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/19/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Idiopathic hypersomnia is a sleep disorder of neurologic origin characterized by excessive daytime sleepiness, with sleep inertia, long, unrefreshing naps, and prolonged nighttime sleep being key symptoms in many patients. Idiopathic hypersomnia is described in the International Classification of Sleep Disorders, 3rd Edition as a central disorder of hypersomnolence with distinct clinical features and diagnostic criteria; however, confirming the diagnosis of idiopathic hypersomnia is often challenging. Diagnosis of idiopathic hypersomnia is based on objective sleep testing and the presence of associated clinical features but may be difficult for clinicians to recognize and correctly diagnose because of its low prevalence, clinical heterogeneity, and symptoms, which are similar to those of other sleep disorders. The testing required for diagnosis of idiopathic hypersomnia also presents logistical barriers, and reliability of objective sleep measures is suboptimal. The pathophysiology of idiopathic hypersomnia remains unknown. In this review, clinical considerations related to the pathogenesis, diagnosis, and management of idiopathic hypersomnia will be discussed, including perspectives from the European Union and United States.
Collapse
Affiliation(s)
- Yves Dauvilliers
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, Montpellier, France; University of Montpellier, INSERM Institute Neuroscience Montpellier (INM), Montpellier, France.
| | - Richard K Bogan
- University of South Carolina School of Medicine, Columbia, SC, USA
| | - Isabelle Arnulf
- Sleep Disorder Unit, Pitié-Salpêtrière Hospital and Sorbonne University, Paris, France
| | | | - Erik K St Louis
- Mayo Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
16
|
Barateau L, Lopez R, Chenini S, Rassu AL, Mouhli L, Dhalluin C, Jaussent I, Dauvilliers Y. Linking clinical complaints and objective measures of disrupted nighttime sleep in narcolepsy type 1. Sleep 2022; 45:6547241. [PMID: 35275598 DOI: 10.1093/sleep/zsac054] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/07/2022] [Indexed: 12/31/2022] Open
Abstract
STUDY OBJECTIVES Despite its high frequency in narcolepsy type 1(NT1), disrupted nocturnal sleep (DNS) remains understudied, and its determinants have been poorly assessed. We aimed to determine the clinical, polysomnographic (PSG), and biological variables associated with DNS in a large sample of patients with NT1, and to evaluate the effect of medication on DNS and its severity. METHODS Two hundred and forty-eight consecutive adult patients with NT1 (145 untreated, 103 treated) were included at the National Reference Center for Narcolepsy-France; 51 drug-free patients were reevaluated during treatment. DNS, assessed with the Narcolepsy Severity Scale (NSS), was categorized in four levels (absent, mild, moderate, severe). Clinical characteristics, validated questionnaires, PSG parameters (sleep fragmentation markers: sleep (SB) and wake bouts (WB), transitions), objective sleepiness, and orexin-A levels were assessed. RESULTS In drug-free patients, DNS severity was associated with higher scores on NSS, higher sleepiness, anxiety/depressive symptoms, autonomic dysfunction, worse quality of life (QoL). Patients with moderate/severe DNS (59%) had increased sleep onset REM periods, lower sleep efficiency, longer wake after sleep onset, more N1, SB, WB, sleep instability, transitions. In treated patients, DNS was associated with the same clinical data, and antidepressant use; but only with longer REM sleep latency on PSG. During treatment, sleepiness, NSS scores, depressive symptoms decreased, as well as total sleep time, WB, SB, transitions. DNS improved in 55% of patients, without predictors except more baseline anxiety. CONCLUSION DNS complaint is frequent in NT1, associated with disease severity based on NSS, several PSG parameters, and objective sleepiness in untreated and treated conditions. DNS improves with treatment. We advocate the systematic assessment of this symptom and its inclusion in NT1 management strategy.
Collapse
Affiliation(s)
- Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Régis Lopez
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Sofiene Chenini
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Anna-Laura Rassu
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Lytissia Mouhli
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France
| | - Cloé Dhalluin
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France
| | - Isabelle Jaussent
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
17
|
Munkhjargal O, Oka Y, Tanno S, Shimizu H, Fujino Y, Kira T, Ooe A, Eguchi M, Higaki T. Discrepancy between subjective and objective sleepiness in adolescents. Sleep Med 2022; 96:1-7. [DOI: 10.1016/j.sleep.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
|
18
|
Billiard M, Sonka K. Idiopathic Hypersomnia: Historical Account, Critical Review of Current Tests and Criteria, Diagnostic Evaluation in the Absence of Biological Markers and Robust Electrophysiological Diagnostic Criteria. Nat Sci Sleep 2022; 14:311-322. [PMID: 35450222 PMCID: PMC9017389 DOI: 10.2147/nss.s266090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/27/2022] [Indexed: 11/28/2022] Open
Abstract
Idiopathic hypersomnia was first described in 1976 under two forms: polysymptomatic, characterized by excessive daytime sleepiness, long and unrefreshing naps, nocturnal sleep of abnormally long duration and signs of sleep drunkenness upon awakening; monosymptomatic, manifested by excessive daytime sleepiness only. Yet, after 45 years, this sleep disorder is still poorly delineated and diagnostic criteria produced by successive International Classifications of Sleep Disorders are far from satisfactory. The first part of this review is a historical account of the successive names and descriptions of idiopathic hypersomnia: monosymptomatic and polysymptomatic idiopathic hypersomnia in 1976; central nervous system idiopathic hypersomnia in 1979; idiopathic hypersomnia in 1990; idiopathic hypersomnia with and without long sleep time in 2005; idiopathic hypersomnia again in 2014; and, within the last few years, the proposal of separating idiopathic hypersomnia into a well-defined subtype, idiopathic hypersomnia with long sleep duration, and a more heterogeneous subtype combining idiopathic hypersomnia without long sleep duration and narcolepsy type 2. The second part is a critical review of both current ICSD-3 diagnostic criteria and clinical features, scales and questionnaires, electrophysiological and circadian control tests, research techniques, currently used to diagnose idiopathic hypersomnia. The third part proposes a diagnostic evaluation of idiopathic hypersomnia, in the absence of biologic markers and of robust electrophysiological diagnostic criteria.
Collapse
Affiliation(s)
- Michel Billiard
- Department of Neurology, Gui de Chauliac Hospital, Montpellier, France
| | - Karel Sonka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
19
|
Maski K, Mignot E, Plazzi G, Dauvilliers Y. Disrupted nighttime sleep and sleep instability in narcolepsy. J Clin Sleep Med 2022; 18:289-304. [PMID: 34463249 PMCID: PMC8807887 DOI: 10.5664/jcsm.9638] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
STUDY OBJECTIVES This review aimed to summarize current knowledge about disrupted nighttime sleep (DNS) and sleep instability in narcolepsy, including self-reported and objective assessments, potential causes of sleep instability, health consequences and functional burden, and management. METHODS One hundred two peer-reviewed publications from a PubMed search were included. RESULTS DNS is a key symptom of narcolepsy but has received less attention than excessive daytime sleepiness and cataplexy. There has been a lack of clarity regarding the definition of DNS, as many sleep-related symptoms and conditions disrupt sleep quality in narcolepsy (eg, hallucinations, sleep paralysis, rapid eye movement sleep behavior disorder, nightmares, restless legs syndrome/periodic leg movements, nocturnal eating, sleep apnea, depression, anxiety). In addition, the intrinsic sleep instability of narcolepsy results in frequent spontaneous wakings and sleep stage transitions, contributing to DNS. Sleep instability likely emerges in the setting of orexin insufficiency/deficiency, but its exact pathophysiology remains unknown. DNS impairs quality of life among people with narcolepsy, and more research is needed to determine its contributions to cardiovascular risk. Multimodal treatment is appropriate for DNS management, including behavioral therapies, counseling on sleep hygiene, and/or medication. There is strong evidence showing improvement in self-reported sleep quality and objective sleep stability measures with sodium oxybate, but rigorous clinical trials with other pharmacotherapies are needed. Treatment may be complicated by comorbidities, concomitant medications, and mood disorders. CONCLUSIONS DNS is a common symptom of narcolepsy deserving consideration in clinical care and future research. CITATION Maski K, Mignot E, Plazzi G, Dauvilliers Y. Disrupted nighttime sleep and sleep instability in narcolepsy. J Clin Sleep Med. 2022;18(1):289-304.
Collapse
Affiliation(s)
- Kiran Maski
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts,Address correspondence to: Kiran Maski, MD, MPH, Department of Neurology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02130; Phone: +01 857-218-5536; Fax: +01 617-730-0282;
| | - Emmanuel Mignot
- Stanford Center for Sleep Sciences and Medicine, Redwood City, California
| | - Giuseppe Plazzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy,IRCCS, Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Yves Dauvilliers
- National Reference Network for Narcolepsy, Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, Montpellier, France,University of Montpellier, INSERM Institute for Neurosciences Montpellier, Montpellier, France
| |
Collapse
|
20
|
Um YH, Oh J, Kim SM, Kim TW, Seo HJ, Jeong JH, Hong SC. Differential characteristics of repeated polysomnography and multiple sleep latency test parameters in narcolepsy type 1 and type 2 patients: a longitudinal retrospective study. Sleep Breath 2021; 26:1939-1946. [PMID: 34820763 DOI: 10.1007/s11325-021-02525-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Narcolepsy is a chronic disorder and its phenotype is dichotomized into narcolepsy type 1 (NT1) and narcolepsy type 2 (NT2). The clinical course and pathophysiological mechanisms of these two clinical entities and their differences are not adequately defined. This study aimed to explore the differential longitudinal patterns of polysomnography (PSG) and multiple sleep latency test (MSLT) in NT1 and NT2. METHODS In this retrospective study demographic characteristics, PSG, and MSLT parameters at baseline and follow-up were compared between NT1 and NT2 patients. Patients with both follow-up MSLT and PSG were selected for sub-group analysis. Baseline and follow-up MSLT and PSG parameters were compared. RESULTS Of 55 patients with narcolepsy, mean follow-up periods were 7.4 ± 3.5 years for NT1 and 5.5 ± 2.9 for NT2. Demographic data showed increased body mass index and prevalence of sleep paralysis in NT1. Baseline PSG characteristics between NT1 and NT2 showed decreased sleep latency (p = 0.016) and REM latency (p = 0.046) in NT1 group when compared with NT2. Nocturnal SOREMP on PSG was more prevalent in NT1 (p = 0.017), and half of NT2 patients with nocturnal SOREMP on PSG changed their diagnoses to NT1. On follow-up PSG, NT1 displayed reductions in sleep stage N2 (p = 0.006) and N3 (p = 0.048), while wake after sleep onset (WASO) (p = 0.023) and apnea-hypopnea index (AHI) (p = 0.007) were significantly increased. CONCLUSION Differential MSLT and PSG characteristics of NT1 and NT2 in at baseline and follow-up indicate that NT1 and NT2 are distinct disease phenotypes, and that they present with a contrasting course of disease.
Collapse
Affiliation(s)
- Yoo Hyun Um
- Department of Psychiatry, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93, Jungbu-daero, Paldal-guGyeonggi-do, Suwon-si, 16247, Republic of Korea
| | - Jihye Oh
- Department of Psychiatry, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Min Kim
- Department of Psychiatry, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93, Jungbu-daero, Paldal-guGyeonggi-do, Suwon-si, 16247, Republic of Korea
| | - Tae-Won Kim
- Department of Psychiatry, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93, Jungbu-daero, Paldal-guGyeonggi-do, Suwon-si, 16247, Republic of Korea
| | - Ho-Jun Seo
- Department of Psychiatry, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93, Jungbu-daero, Paldal-guGyeonggi-do, Suwon-si, 16247, Republic of Korea
| | - Jong-Hyun Jeong
- Department of Psychiatry, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93, Jungbu-daero, Paldal-guGyeonggi-do, Suwon-si, 16247, Republic of Korea
| | - Seung-Chul Hong
- Department of Psychiatry, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93, Jungbu-daero, Paldal-guGyeonggi-do, Suwon-si, 16247, Republic of Korea.
| |
Collapse
|