1
|
Zhang YM, Wei RM, Feng YZ, Zhang KX, Ge YJ, Kong XY, Li XY, Chen GH. Sleep deprivation aggravates lipopolysaccharide-induced anxiety, depression and cognitive impairment: The role of pro-inflammatory cytokines and synaptic plasticity-associated proteins. J Neuroimmunol 2024; 386:578252. [PMID: 38086228 DOI: 10.1016/j.jneuroim.2023.578252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Growing evidence indicates that neuroinflammation plays a critical role in anxiety, depression, and cognitive impairment. Sleep loss disrupts the host's immune balance and increases neuroinflammation. This study explored whether chronic sleep deprivation aggravates lipopolysaccharide-induced anxiety, depression, and cognitive impairment and assessed the underlying mechanisms. Lipopolysaccharide (250 μg/kg) was administered to adult mice for 9 days, accompanied with daily intermittent sleep deprivation from 12:00 to 18:00 by using an activity wheel. Anxiety, depression, and cognitive function were evaluated using a task battery consisting of an open field, elevated plus maze, tail suspension, forced swimming, and Morris water maze tests. The levels of pro-inflammatory cytokines and synaptic plasticity-associated proteins were examined by enzyme-linked immunosorbent assay and western blot, respectively. The results showed that lipopolysaccharide increased anxiety- and depression-like behaviors, impaired cognitive function, uprelated interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and decreased brain-derived neurotrophic factor (BDNF), postsynaptic density-95 (PSD-95), and synaptophysin (SYN), which were aggravated by chronic sleep deprivation. These results suggest that chronic sleep deprivation exerted adverse effects on lipopolysaccharide-induced anxiety, depression, and cognitive impairment, which was associated with changes in pro-inflammatory cytokines and synaptic plasticity associated proteins.
Collapse
Affiliation(s)
- Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Ru-Meng Wei
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Yi-Zhou Feng
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Kai-Xuan Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Yi-Jun Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Xiao-Yi Kong
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China.
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China.
| |
Collapse
|
2
|
Dressle RJ, Riemann D. Hyperarousal in insomnia disorder: Current evidence and potential mechanisms. J Sleep Res 2023; 32:e13928. [PMID: 37183177 DOI: 10.1111/jsr.13928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Insomnia disorder is among the most frequent mental disorders, making research on its aetiology and pathophysiology particularly important. A unifying element of many aetiological and pathophysiological models is that they support or even centre on the role of some form of hyperarousal. In this theoretical review, we aim to summarise the current evidence on hyperarousal in insomnia. Hyperarousal is discussed as a state of relatively increased arousal in physiological, cortical and cognitive-emotional domains. Regarding physiological hyperarousal, there is no conclusive evidence for the involvement of autonomous variables such as heart rate and heart rate variability, whereas recent evidence points to a pathophysiological role of neuroendocrine variables. In addition, current literature supports a central involvement of cortical arousal, that is, high-frequency electroencephalographic activity. An increasingly important focus in the literature is on the role of other microstructural sleep parameters, especially the existence of microarousals during sleep. Beyond that, a broad range of evidence exists supporting the role of cognitive-emotional hyperarousal in the form of insomnia-related thought and worries, and their concomitant emotional symptoms. Besides being a state marker of insomnia, hyperarousal is considered crucial for the predisposition to insomnia and for the development of comorbid mental disorders. Thus, beyond presenting evidence from cross-sectional studies on markers of hyperarousal in insomnia, hypotheses about the mechanisms of hyperarousal are presented. Nevertheless, longitudinal studies are needed to further elucidate the mechanism of hyperarousal throughout the course of the disorder, and future studies should also focus on similarities and differences in hyperarousal across different diagnostic entities.
Collapse
Affiliation(s)
- Raphael J Dressle
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Tyagi S, Resnick NM, Clarkson BD, Zhang G, Krafty RT, Perera S, Subramanya AR, Buysse DJ. Impact of sleep on chronobiology of micturition among healthy older adults. Am J Physiol Renal Physiol 2023; 325:F407-F417. [PMID: 37560770 PMCID: PMC10639023 DOI: 10.1152/ajprenal.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023] Open
Abstract
Nocturia (waking to void) is prevalent among older adults. Disruption of the well-described circadian rhythm in urine production with higher nighttime urine output is its most common cause. In young adults, their circadian rhythm is modulated by the 24-h secretory pattern of hormones that regulate salt and water excretion, including antidiuretic hormone (ADH), renin, angiotensin, aldosterone, and atrial natriuretic peptide (ANP). The pattern of hormone secretion is less clear in older adults. We investigated the effect of sleep on the 24-h secretion of these hormones in healthy older adults. Thirteen participants aged ≥65 yr old underwent two 24-h protocols at a clinical research center 6 wk apart. The first used a habitual wake-sleep protocol, and the second used a constant routine protocol that removed the influence of sleep, posture, and diet. To assess hormonal rhythms, plasma was collected at 8:00 am, 12:00 pm, 4:00 pm, and every 30 min from 7:00 pm to 7:00 am. A mixed-effects regression model was used to compare subject-specific and mean trajectories of hormone secretion under the two conditions. ADH, aldosterone, and ANP showed a diurnal rhythm that peaked during sleep in the wake-sleep protocol. These nighttime elevations were significantly attenuated within subjects during the constant routine. We conclude that sleep has a masking effect on circadian rhythm amplitude of ADH, aldosterone, and ANP: the amplitude of each is increased in the presence of sleep and reduced in the absence of sleep. Disrupted sleep could potentially alter nighttime urine output in healthy older adults via this mechanism.NEW & NOTEWORTHY Nocturia (waking to void) is the most common cause of sleep interruption among older adults, and increased nighttime urine production is its primary etiology. We showed that in healthy older adults sleep affects the 24-h secretory rhythm of hormones that regulate salt-water balance, which potentially alters nighttime urine output. Further studies are needed to elucidate the impact of chronic insomnia on the secretory rhythms of these hormones.
Collapse
Affiliation(s)
- Shachi Tyagi
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Neil M Resnick
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Becky D Clarkson
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Gehui Zhang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Robert T Krafty
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Subashan Perera
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Daniel J Buysse
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
4
|
Bigalke JA, Cleveland EL, Barkstrom E, Gonzalez JE, Carter JR. Core body temperature changes before sleep are associated with nocturnal heart rate variability. J Appl Physiol (1985) 2023; 135:136-145. [PMID: 37262106 PMCID: PMC10292981 DOI: 10.1152/japplphysiol.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
Core body temperature (CBT) reductions occur before and during the sleep period, with the extent of presleep reductions corresponding to sleep onset and quality. Presleep reductions in CBT coincide with increased cardiac parasympathetic activity measured via heart rate variability (HRV), and while this appears to persist into the sleep period, individual differences in presleep CBT decline and nocturnal HRV remain unexplored. The purpose of the current study was to assess the relationship between individual differences in presleep CBT reductions and nocturnal heart rate (HR) and HRV in a population of 15 objectively poor sleeping adults [10 males, 5 females; age, 33 ± 4 yr; body mass index (BMI) 27 ± 1 kg/m2] with the hypothesis that blunted CBT rate of decline would be associated with elevated HR and reduced nocturnal HRV. Following an adaptation night, all participants underwent an overnight, in-laboratory sleep study with simultaneous recording of polysomnographic sleep including electrocardiography (ECG) and CBT recording. Correlations between CBT rate of change before sleep and nocturnal HRV were assessed. Blunted rate of CBT decline was significantly associated with increased heart rate (HR) in stage 2 (N2; R = 0.754, P = 0.001), stage 3 (N3; R = 0.748, P = 0.001), and rapid-eye movement (REM; R = 0.735, P = 0.002). Similarly, blunted rate of CBT decline before sleep was associated with reduced HRV across sleep stages. These findings indicate a relationship between individual differences in presleep thermoregulatory processes and nocturnal cardiac autonomic function in poor sleeping adults.NEW & NOTEWORTHY Core body temperature (CBT) reductions before sleep onset coincide with increases in heart rate variability (HRV) that persist throughout the sleep period. However, the relationship between individual differences in the efficiency of presleep core temperature regulation and nocturnal heart rate variability remains equivocal. The present study reports an association between the magnitude of presleep core body temperature changes and nocturnal parasympathetic activity, highlighting overlap between thermoregulatory processes before sleep and nocturnal cardiac autonomic function.
Collapse
Affiliation(s)
- Jeremy A Bigalke
- Department of Health and Human Development, Montana State University, Bozeman, Montana, United States
- Department of Psychology, Montana State University, Bozeman, Montana, United States
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, United States
| | - Emily L Cleveland
- Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States
| | - Elyse Barkstrom
- Department of Health and Human Development, Montana State University, Bozeman, Montana, United States
| | - Joshua E Gonzalez
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, Oregon, United States
| | - Jason R Carter
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, United States
- Robbins College of Health and Human Sciences, Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| |
Collapse
|