1
|
Dos Santos AB, Skaanning LK, Thaneshwaran S, Mikkelsen E, Romero-Leguizamón CR, Skamris T, Kristensen MP, Langkilde AE, Kohlmeier KA. Sleep-controlling neurons are sensitive and vulnerable to multiple forms of α-synuclein: implications for the early appearance of sleeping disorders in α-synucleinopathies. Cell Mol Life Sci 2022; 79:450. [PMID: 35882665 PMCID: PMC11072003 DOI: 10.1007/s00018-022-04467-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
Parkinson's disease, Multiple System Atrophy, and Lewy Body Dementia are incurable diseases called α-synucleinopathies as they are mechanistically linked to the protein, α-synuclein (α-syn). α-syn exists in different structural forms which have been linked to clinical disease distinctions. However, sleeping disorders (SDs) are common in the prodromal phase of all three α-synucleinopathies, which suggests that sleep-controlling neurons are affected by multiple forms of α-syn. To determine whether a structure-independent neuronal impact of α-syn exists, we compared and contrasted the cellular effect of three different α-syn forms on neurotransmitter-defined cells of two sleep-controlling nuclei located in the brainstem: the laterodorsal tegmental nucleus and the pedunculopontine tegmental nucleus. We utilized size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy and transmission electron microscopy to precisely characterize timepoints in the α-syn aggregation process with three different dominating forms of this protein (monomeric, oligomeric and fibril) and we conducted an in-depth investigation of the underlying neuronal mechanism behind cellular effects of the different forms of the protein using electrophysiology, multiple-cell calcium imaging, single-cell calcium imaging and live-location tracking with fluorescently-tagged α-syn. Interestingly, α-syn altered membrane currents, enhanced firing, increased intracellular calcium and facilitated cell death in a structure-independent manner in sleep-controlling nuclei, and postsynaptic actions involved a G-protein-mediated mechanism. These data are novel as the sleep-controlling nuclei are the first brain regions reported to be affected by α-syn in this structure-independent manner. These regions may represent highly important targets for future neuroprotective therapy to modify or delay disease progression in α-synucleinopathies.
Collapse
Affiliation(s)
- Altair B Dos Santos
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Line K Skaanning
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Siganya Thaneshwaran
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Eyd Mikkelsen
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Cesar R Romero-Leguizamón
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Thomas Skamris
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | - Annette E Langkilde
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark.
| |
Collapse
|
2
|
You S, Won KS, Kim KT, Lee HW, Cho YW. Cardiac Autonomic Dysfunction Is Associated with Severity of REM Sleep without Atonia in Isolated REM Sleep Behavior Disorder. J Clin Med 2021; 10:5414. [PMID: 34830696 PMCID: PMC8621819 DOI: 10.3390/jcm10225414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
123I-metaiodobenzylguanidine (MIBG) cardiac scintigraphy was performed to assess cardiac autonomic dysfunction and demonstrate its correlation with clinical and polysomnographic characteristics in patients with isolated rapid eye movement (REM) sleep behavior disorder. All subjects including 39 patients with isolated REM sleep behavior disorder and 17 healthy controls underwent MIBG cardiac scintigraphy for cardiac autonomic dysfunction assessment. The isolated REM sleep behavior disorder was confirmed by in-lab overnight polysomnography. A receiver operating curve was constructed to determine the cut-off value of the early and delayed heart-to-mediastinum ratio in patients with isolated REM sleep behavior disorder. Based on each cut-off value, a comparison analysis of REM sleep without atonia was performed by dividing isolated REM sleep behavior disorder patients into two groups. MIBG uptake below the cut-off value was associated with higher REM sleep without atonia. The lower heart-to-mediastinum ratio had significantly higher REM sleep without atonia (%), both with cut-off values of early (11.0 ± 5.6 vs. 29.3 ± 23.2%, p = 0.018) and delayed heart-to-mediastinum ratio (9.1 ± 4.3 vs. 30.0 ± 22.9%, p = 0.011). These findings indicate that reduced MIBG uptake is associated with higher REM sleep without atonia in isolated REM sleep behavior disorder.
Collapse
Affiliation(s)
- Sooyeoun You
- Department of Neurology, Keimyung University School of Medicine, Daegu 42601, Korea; (S.Y.); (K.T.K.)
| | - Kyoung Sook Won
- Department of Nuclear Medicine, Keimyung University School of Medicine, Daegu 42601, Korea;
| | - Keun Tae Kim
- Department of Neurology, Keimyung University School of Medicine, Daegu 42601, Korea; (S.Y.); (K.T.K.)
| | - Hyang Woon Lee
- Departments of Neurology, Medical Science, Computational Medicine, System Health Science & Engineering, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul 07985, Korea
| | - Yong Won Cho
- Department of Neurology, Keimyung University School of Medicine, Daegu 42601, Korea; (S.Y.); (K.T.K.)
| |
Collapse
|