1
|
Remakanthakurup Sindhu K, Phan C, Anis S, Riba A, Garner C, Magers AL, Tran N, Maser AL, Simon KC, Mednick SC, Shrey DW, Lopour BA. Physiological ripples during sleep in scalp electroencephalogram of healthy infants. Sleep 2023; 46:zsad247. [PMID: 37816242 PMCID: PMC10710989 DOI: 10.1093/sleep/zsad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Affiliation(s)
| | - Christopher Phan
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Sara Anis
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Aliza Riba
- Division of Neurology, Children’s Hospital of Orange County, Orange, CA, USA
| | - Cristal Garner
- Division of Neurology, Children’s Hospital of Orange County, Orange, CA, USA
| | - Amber L Magers
- Division of Neurology, Children’s Hospital of Orange County, Orange, CA, USA
| | - Nhi Tran
- Division of Neurology, Children’s Hospital of Orange County, Orange, CA, USA
| | - Amy L Maser
- Division of Neurology, Children’s Hospital of Orange County, Orange, CA, USA
| | - Katharine C Simon
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Daniel W Shrey
- Division of Neurology, Children’s Hospital of Orange County, Orange, CA, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Beth A Lopour
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
2
|
Cserpan D, Guidi G, Alessandri B, Fedele T, Rüegger A, Pisani F, Sarnthein J, Ramantani G. Scalp high-frequency oscillations differentiate neonates with seizures from healthy neonates. Epilepsia Open 2023; 8:1491-1502. [PMID: 37702021 PMCID: PMC10690668 DOI: 10.1002/epi4.12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/02/2023] [Indexed: 09/14/2023] Open
Abstract
OBJECTIVE We aimed to investigate (1) whether an automated detector can capture scalp high-frequency oscillations (HFO) in neonates and (2) whether scalp HFO rates can differentiate neonates with seizures from healthy neonates. METHODS We considered 20 neonates with EEG-confirmed seizures and four healthy neonates. We applied a previously validated automated HFO detector to determine scalp HFO rates in quiet sleep. RESULTS Etiology in neonates with seizures included hypoxic-ischemic encephalopathy in 11 cases, structural vascular lesions in 6, and genetic causes in 3. The HFO rates were significantly higher in neonates with seizures (0.098 ± 0.091 HFO/min) than in healthy neonates (0.038 ± 0.025 HFO/min; P = 0.02) with a Hedge's g value of 0.68 indicating a medium effect size. The HFO rate of 0.1 HFO/min/ch yielded the highest Youden index in discriminating neonates with seizures from healthy neonates. In neonates with seizures, etiology, status epilepticus, EEG background activity, and seizure patterns did not significantly impact HFO rates. SIGNIFICANCE Neonatal scalp HFO can be detected automatically and differentiate neonates with seizures from healthy neonates. Our observations have significant implications for neuromonitoring in neonates. This is the first step in establishing neonatal HFO as a biomarker for neonatal seizures.
Collapse
Affiliation(s)
- Dorottya Cserpan
- Department of NeuropediatricsUniversity Children's HospitalZurichSwitzerland
| | - Greta Guidi
- Department of NeuropediatricsUniversity Children's HospitalZurichSwitzerland
| | - Beatrice Alessandri
- Department of NeuropediatricsUniversity Children's HospitalZurichSwitzerland
| | - Tommaso Fedele
- Department of NeuropediatricsUniversity Children's HospitalZurichSwitzerland
| | - Andrea Rüegger
- Department of NeuropediatricsUniversity Children's HospitalZurichSwitzerland
| | - Francesco Pisani
- Department of Human Neurosciences, Child Neurology and Psychiatry UnitSapienza University of RomeRomeItaly
| | - Johannes Sarnthein
- Department of NeurosurgeryUniversity Hospital ZurichZurichSwitzerland
- University of ZurichZurichSwitzerland
| | - Georgia Ramantani
- Department of NeuropediatricsUniversity Children's HospitalZurichSwitzerland
- University of ZurichZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
| |
Collapse
|
3
|
Takagi S. Exploring Ripple Waves in the Human Brain. Clin EEG Neurosci 2023; 54:594-600. [PMID: 34287087 DOI: 10.1177/15500594211034371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ripples are brief (<150 ms) high-frequency oscillatory neural activities in the brain with a range of 140 to 200 Hz in rodents and 80 to 140 Hz in humans. Ripples are regarded as playing an essential role in several aspects of memory function, mainly in the hippocampus. This type of ripple generally occurs with sharp waves and is called a sharp-wave ripple (SPW-R). Extensive research of SPW-Rs in the rodent brain while actively awake has also linked the function of these SPW-Rs to navigation and decision making. Although many studies with rodents unveiled SPW-R function, research in humans on this subject is still sparse. Therefore, unveiling SPW-R function in the human hippocampus is warranted. A certain type of ripples may also be a biomarker of epilepsy. This type of ripple is called a pathological ripple (p-ripple). p-ripples have a wider range of frequency (80-500 Hz) than SPW-Rs, and the range of frequency is especially higher in brain regions that are intrinsically linked to epilepsy onset. Brain regions producing ripples are too small for scalp electrode recording, and intracranial recording is typically needed to detect ripples. In addition, SPW-Rs in the human hippocampus have been recorded from patients with epilepsy who may have p-ripples. Differentiating SPW-Rs and p-ripples is often not easy. We need to develop more sophisticated methods to record SPW-Rs to differentiate them from p-ripples. This paper reviews the general features and roles of ripple waves.
Collapse
Affiliation(s)
- Shunsuke Takagi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| |
Collapse
|
4
|
Kuhnke N, Wusthoff CJ, Swarnalingam E, Yanoussi M, Jacobs J. Epileptic high-frequency oscillations occur in neonates with a high risk for seizures. Front Neurol 2023; 13:1048629. [PMID: 36686542 PMCID: PMC9848430 DOI: 10.3389/fneur.2022.1048629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Scalp high-frequency oscillations (HFOs, 80-250 Hz) are increasingly recognized as EEG markers of epileptic brain activity. It is, however, unclear what level of brain maturity is necessary to generate these oscillations. Many studies have reported the occurrence of scalp HFOs in children with a correlation between treatment success of epileptic seizures and the reduction of HFOs. More recent studies describe the reliable detection of HFOs on scalp EEG during the neonatal period. Methods In the present study, continuous EEGs of 38 neonates at risk for seizures were analyzed visually for the scalp HFOs using 30 min of quiet sleep EEG. EEGs of 14 patients were of acceptable quality to analyze HFOs. Results The average rate of HFOs was 0.34 ± 0.46/min. About 3.2% of HFOs occurred associated with epileptic spikes. HFOs were significantly more frequent in EEGs with abnormal vs. normal background activities (p = 0.005). Discussion Neonatal brains are capable of generating HFOs. HFO could be a viable biomarker for neonates at risk of developing seizures. Our preliminary data suggest that HFOs mainly occur in those neonates who have altered background activity. Larger data sets are needed to conclude whether HFO occurrence is linked to seizure generation and whether this might predict the development of epilepsy.
Collapse
Affiliation(s)
- Nicola Kuhnke
- Department of Pediatric Neurology and Muscular Disease, University Medical Center, Freiburg, Germany
| | | | - Eroshini Swarnalingam
- Department of Pediatrics, University of Calgary, Alberta Children's Hospital, Calgary, AB, Canada
| | - Mina Yanoussi
- Department of Pediatric Neurology and Muscular Disease, University Medical Center, Freiburg, Germany
| | - Julia Jacobs
- Department of Pediatrics, University of Calgary, Alberta Children's Hospital, Calgary, AB, Canada,*Correspondence: Julia Jacobs ✉
| |
Collapse
|
5
|
Accurate differentiation between physiological and pathological ripples recorded by scalp-EEG. Clin Neurophysiol 2022; 143:172-181. [DOI: 10.1016/j.clinph.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
|
6
|
High-frequency oscillations in scalp EEG: A systematic review of methodological choices and clinical findings. Clin Neurophysiol 2022; 137:46-58. [PMID: 35272185 DOI: 10.1016/j.clinph.2021.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
|
7
|
Oka M, Kobayashi K, Shibata T, Tsuchiya H, Hanaoka Y, Akiyama M, Morooka T, Matsuhashi M, Akiyama T. A study on the relationship between non-epileptic fast (40 - 200 Hz) oscillations in scalp EEG and development in children. Brain Dev 2021; 43:904-911. [PMID: 34052035 DOI: 10.1016/j.braindev.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/17/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Physiological gamma and ripple activities may be linked to neurocognitive functions. This study investigated the relationship between development and non-epileptic, probably physiological, fast (40-200 Hz) oscillations (FOs) including gamma (40 - 80 Hz) and ripple (80 - 200 Hz) oscillations in scalp EEG in children with neurodevelopmental disorders. METHODS Participants were 124 children with autism spectrum disorder (ASD) and/or attention deficit/hyperactivity disorder (ADHD). Gamma and ripple oscillations were explored from 60-second-long sleep EEG data in each subject using a semi-automatic detection tool supplemented with visual confirmation and time-frequency analysis. RESULTS Gamma and ripple oscillations were detected in 25 (20.2%) and 22 (17.7%) children, respectively. The observation of one or more occurrence(s) of ripple oscillations, but not gamma oscillations, was significantly related to lower age at EEG recording (odds ratio, OR: 0.727 [95% confidence interval, CI: 0.568-0.929]), higher intelligence/developmental quotient (OR: 1.041, 95% CI: 1.002-1.082), and lack of a diagnosis with ADHD (OR: 0.191, 95% CI: 0.039 - 0.937) according to a binominal logistic regression analysis that included diagnosis with ASD, sex, history of perinatal complications, history of febrile seizures, and use of a sedative agent for the EEG recording as the other non-significant parameters. Diagnostic group was not related to frequency or power of spectral peaks of FOs. CONCLUSION The production of non-epileptic scalp ripples was confirmed to be associated with brain development and function/dysfunction in childhood. Further investigation is necessary to interpret all of the information on higher brain functions that may be embedded in scalp FOs.
Collapse
Affiliation(s)
- Makio Oka
- Department of Psychosocial Medicine, National Center for Child Health and Development, Tokyo, Japan; Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Katsuhiro Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan.
| | - Takashi Shibata
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Hiroki Tsuchiya
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Yoshiyuki Hanaoka
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Mari Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Teruko Morooka
- Division of Medical Support, Okayama University Hospital, Okayama, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoyuki Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| |
Collapse
|
8
|
McCrimmon CM, Riba A, Garner C, Maser AL, Phillips DJ, Steenari M, Shrey DW, Lopour BA. Automated detection of ripple oscillations in long-term scalp EEG from patients with infantile spasms. J Neural Eng 2021; 18. [PMID: 33217752 DOI: 10.1088/1741-2552/abcc7e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/20/2020] [Indexed: 11/11/2022]
Abstract
Objective.Scalp high-frequency oscillations (HFOs) are a promising biomarker of epileptogenicity in infantile spasms (IS) and many other epilepsy syndromes, but prior studies have relied on visual analysis of short segments of data due to the prevalence of artifacts in EEG. Here we set out to robustly characterize the rate and spatial distribution of HFOs in large datasets from IS subjects using fully automated HFO detection techniques.Approach.We prospectively collected long-term scalp EEG data from 12 subjects with IS and 18 healthy controls. For patients with IS, recording began prior to diagnosis and continued through initiation of treatment with adrenocorticotropic hormone (ACTH). The median analyzable EEG duration was 18.2 h for controls and 84.5 h for IS subjects (∼1300 h total). Ripples (80-250 Hz) were detected in all EEG data using an automated algorithm.Main results.HFO rates were substantially higher in patients with IS compared to controls. In IS patients, HFO rates were higher during sleep compared to wakefulness (median 5.5 min-1and 2.9 min-1, respectively;p = 0.002); controls did not exhibit a difference in HFO rate between sleep and wakefulness (median 0.98 min-1and 0.82 min-1, respectively). Spatially, IS patients exhibited significantly higher rates of HFOs in the posterior parasaggital region and significantly lower HFO rates in frontal channels, and this difference was more pronounced during sleep. In IS subjects, ACTH therapy significantly decreased the rate of HFOs.Significance.Here we provide a detailed characterization of the spatial distribution and rates of HFOs associated with IS, which may have relevance for diagnosis and assessment of treatment response. We also demonstrate that our fully automated algorithm can be used to detect HFOs in long-term scalp EEG with sufficient accuracy to clearly discriminate healthy subjects from those with IS.
Collapse
Affiliation(s)
- Colin M McCrimmon
- Medical Scientist Training Program, University of California, Irvine, CA 92617, United States of America.,Department Neurology, University of California, Los Angeles, CA 90095, United States of America
| | - Aliza Riba
- Division Neurology, Children's Hospital of Orange County, Orange, CA 92868, United States of America
| | - Cristal Garner
- Division Neurology, Children's Hospital of Orange County, Orange, CA 92868, United States of America
| | - Amy L Maser
- Department Psychology, Children's Hospital of Orange County, Orange, CA 92868, United States of America
| | - Donald J Phillips
- Division Neurology, Children's Hospital of Orange County, Orange, CA 92868, United States of America.,Department Pediatrics, University of California, Irvine, Irvine, CA 92617, United States of America
| | - Maija Steenari
- Division Neurology, Children's Hospital of Orange County, Orange, CA 92868, United States of America.,Department Pediatrics, University of California, Irvine, Irvine, CA 92617, United States of America
| | - Daniel W Shrey
- Division Neurology, Children's Hospital of Orange County, Orange, CA 92868, United States of America.,Department Pediatrics, University of California, Irvine, Irvine, CA 92617, United States of America
| | - Beth A Lopour
- Department Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, United States of America
| |
Collapse
|
9
|
Fan Y, Dong L, Liu X, Wang H, Liu Y. Recent advances in the noninvasive detection of high-frequency oscillations in the human brain. Rev Neurosci 2020; 32:305-321. [PMID: 33661582 DOI: 10.1515/revneuro-2020-0073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/23/2020] [Indexed: 01/10/2023]
Abstract
In recent decades, a significant body of evidence based on invasive clinical research has showed that high-frequency oscillations (HFOs) are a promising biomarker for localization of the seizure onset zone (SOZ), and therefore, have the potential to improve postsurgical outcomes in patients with epilepsy. Emerging clinical literature has demonstrated that HFOs can be recorded noninvasively using methods such as scalp electroencephalography (EEG) and magnetoencephalography (MEG). Not only are HFOs considered to be a useful biomarker of the SOZ, they also have the potential to gauge disease severity, monitor treatment, and evaluate prognostic outcomes. In this article, we review recent clinical research on noninvasively detected HFOs in the human brain, with a focus on epilepsy. Noninvasively detected scalp HFOs have been investigated in various types of epilepsy. HFOs have also been studied noninvasively in other pathologic brain disorders, such as migraine and autism. Herein, we discuss the challenges reported in noninvasive HFO studies, including the scarcity of MEG and high-density EEG equipment in clinical settings, low signal-to-noise ratio, lack of clinically approved automated detection methods, and the difficulty in differentiating between physiologic and pathologic HFOs. Additional studies on noninvasive recording methods for HFOs are needed, especially prospective multicenter studies. Further research is fundamental, and extensive work is needed before HFOs can routinely be assessed in clinical settings; however, the future appears promising.
Collapse
Affiliation(s)
- Yuying Fan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liping Dong
- Library of China Medical University, Shenyang, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Cox R, Rüber T, Staresina BP, Fell J. Heterogeneous profiles of coupled sleep oscillations in human hippocampus. Neuroimage 2019; 202:116178. [PMID: 31505272 PMCID: PMC6853182 DOI: 10.1016/j.neuroimage.2019.116178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 11/24/2022] Open
Abstract
Cross-frequency coupling of sleep oscillations is thought to mediate memory consolidation. While the hippocampus is deemed central to this process, detailed knowledge of which oscillatory rhythms interact in the sleeping human hippocampus is lacking. Combining intracranial hippocampal and non-invasive electroencephalography from twelve neurosurgical patients, we characterized spectral power and coupling during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Hippocampal coupling was extensive, with the majority of channels expressing spectral interactions. NREM consistently showed delta–ripple coupling, but ripples were also modulated by slow oscillations (SOs) and sleep spindles. SO–delta and SO–theta coupling, as well as interactions between delta/theta and spindle/beta frequencies also occurred. During REM, limited interactions between delta/theta and beta frequencies emerged. Moreover, oscillatory organization differed substantially between i) hippocampus and scalp, ii) sites along the anterior-posterior hippocampal axis, and iii) individuals. Overall, these results extend and refine our understanding of hippocampal sleep oscillations. Sleep oscillations in human hippocampus exhibit cross-frequency coupling during non-rapid eye movement sleep Coupling occurs between various frequency pairs, including slow oscillation, delta, theta, spindle, beta, and ripple bands Oscillatory organization varies between hippocampus and scalp, sites along the hippocampal axis, and individuals
Collapse
Affiliation(s)
- Roy Cox
- Department of Epileptology, University of Bonn, Bonn, Germany.
| | - Theodor Rüber
- Department of Epileptology, University of Bonn, Bonn, Germany; Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany; Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Juergen Fell
- Department of Epileptology, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Frauscher B, Gotman J. Sleep, oscillations, interictal discharges, and seizures in human focal epilepsy. Neurobiol Dis 2019; 127:545-553. [DOI: 10.1016/j.nbd.2019.04.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
|
12
|
Thomschewski A, Hincapié AS, Frauscher B. Localization of the Epileptogenic Zone Using High Frequency Oscillations. Front Neurol 2019; 10:94. [PMID: 30804887 PMCID: PMC6378911 DOI: 10.3389/fneur.2019.00094] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/23/2019] [Indexed: 01/22/2023] Open
Abstract
For patients with drug-resistant focal epilepsy, surgery is the therapy of choice in order to achieve seizure freedom. Epilepsy surgery foremost requires the identification of the epileptogenic zone (EZ), defined as the brain area indispensable for seizure generation. The current gold standard for identification of the EZ is the seizure-onset zone (SOZ). The fact, however that surgical outcomes are unfavorable in 40-50% of well-selected patients, suggests that the SOZ is a suboptimal biomarker of the EZ, and that new biomarkers resulting in better postsurgical outcomes are needed. Research of recent years suggested that high-frequency oscillations (HFOs) are a promising biomarker of the EZ, with a potential to improve surgical success in patients with drug-resistant epilepsy without the need to record seizures. Nonetheless, in order to establish HFOs as a clinical biomarker, the following issues need to be addressed. First, evidence on HFOs as a clinically relevant biomarker stems predominantly from retrospective assessments with visual marking, leading to problems of reproducibility and reliability. Prospective assessments of the use of HFOs for surgery planning using automatic detection of HFOs are needed in order to determine their clinical value. Second, disentangling physiologic from pathologic HFOs is still an unsolved issue. Considering the appearance and the topographic location of presumed physiologic HFOs could be immanent for the interpretation of HFO findings in a clinical context. Third, recording HFOs non-invasively via scalp electroencephalography (EEG) and magnetoencephalography (MEG) is highly desirable, as it would provide us with the possibility to translate the use of HFOs to the scalp in a large number of patients. This article reviews the literature regarding these three issues. The first part of the article focuses on the clinical value of invasively recorded HFOs in localizing the EZ, the detection of HFOs, as well as their separation from physiologic HFOs. The second part of the article focuses on the current state of the literature regarding non-invasively recorded HFOs with emphasis on findings and technical considerations regarding their localization.
Collapse
Affiliation(s)
- Aljoscha Thomschewski
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
- Department of Psychology, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Ana-Sofía Hincapié
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|