1
|
Biouss G, Antounians L, Aguet J, Kopcalic K, Fakhari N, Baranger J, Mertens L, Villemain O, Zani A. The brain of fetuses with congenital diaphragmatic hernia shows signs of hypoxic injury with loss of progenitor cells, neurons, and oligodendrocytes. Sci Rep 2024; 14:13680. [PMID: 38871804 DOI: 10.1038/s41598-024-64412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a birth defect characterized by incomplete closure of the diaphragm, herniation of abdominal organs into the chest, and compression of the lungs and the heart. Besides complications related to pulmonary hypoplasia, 1 in 4 survivors develop neurodevelopmental impairment, whose etiology remains unclear. Using a fetal rat model of CDH, we demonstrated that the compression exerted by herniated organs on the mediastinal structures results in decreased brain perfusion on ultrafast ultrasound, cerebral hypoxia with compensatory angiogenesis, mature neuron and oligodendrocyte loss, and activated microglia. In CDH fetuses, apoptosis was prominent in the subventricular and subgranular zones, areas that are key for neurogenesis. We validated these findings in the autopsy samples of four human fetuses with CDH compared to age- and sex-matched controls. This study reveals the molecular mechanisms and cellular changes that occur in the brain of fetuses with CDH and creates opportunities for therapeutic targets.
Collapse
Affiliation(s)
- George Biouss
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Julien Aguet
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Department of Medical Imaging, University of Toronto, 263 McCaul Street, Toronto, ON, M5T 1W7, Canada
| | - Katarina Kopcalic
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Nikan Fakhari
- Translation Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Jerome Baranger
- Translation Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Luc Mertens
- Translation Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Olivier Villemain
- Translation Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Surgery, University of Toronto, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
2
|
Wu BA, Chand KK, Bell A, Miller SL, Colditz PB, Malhotra A, Wixey JA. Effects of fetal growth restriction on the perinatal neurovascular unit and possible treatment targets. Pediatr Res 2024; 95:59-69. [PMID: 37674023 PMCID: PMC10798895 DOI: 10.1038/s41390-023-02805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
The neurovascular unit (NVU) within the brain is a multicellular unit that synergistically acts to maintain blood-brain barrier function and meet cerebral metabolic demand. Recent studies have indicated disruption to the NVU is associated with neuropathology in the perinatal brain. Infants with fetal growth restriction (FGR) are known to be at increased risk of neurodevelopmental conditions including motor, learning, and behavioural deficits. There are currently no neuroprotective treatments for these conditions. In this review, we analyse large animal studies examining the effects of FGR on the perinatal NVU. These studies show altered vascularity in the FGR brain as well as blood-brain barrier dysfunction due to underlying cellular changes, mediated by neuroinflammation. Neuroinflammation is a key mechanism associated with pathological effects in the FGR brain. Hence, targeting inflammation may be key to preserving the multicellular NVU and providing neuroprotection in FGR. A number of maternal and postnatal therapies with anti-inflammatory components have been investigated in FGR animal models examining targets for amelioration of NVU disruption. Each therapy showed promise by uniquely ameliorating the adverse effects of FGR on multiple aspects of the NVU. The successful implementation of a clinically viable neuroprotective treatment has the potential to improve outcomes for neonates affected by FGR. IMPACT: Disruption to the neurovascular unit is associated with neuropathology in fetal growth restriction. Inflammation is a key mechanism associated with neurovascular unit disruption in the growth-restricted brain. Anti-inflammatory treatments ameliorate adverse effects on the neurovascular unit and may provide neuroprotection.
Collapse
Affiliation(s)
- Bing Anthony Wu
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Alexander Bell
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Suzanne L Miller
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Paul B Colditz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Perinatal Research Centre, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Blundell M, Doktor F, Figueira RL, Khalaj K, Biouss G, Antounians L, Zani A. Anti-inflammatory effects of antenatal administration of stem cell derived extracellular vesicles in the brain of rat fetuses with congenital diaphragmatic hernia. Pediatr Surg Int 2023; 39:291. [PMID: 37955723 DOI: 10.1007/s00383-023-05578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Congenital diaphragmatic hernia (CDH) survivors may experience neurodevelopmental impairment, whose etiology remains elusive. Preclinical evidence indicates that amniotic fluid stem cell extracellular vesicle (AFSC-EV) administration promotes lung development but their effects on other organs are unknown. Herein, we investigated the brain of rat fetuses with CDH for signs of inflammation and response to AFSC-EVs. METHODS CDH was induced by maternal nitrofen administration at E9.5. At E18.5, fetuses were injected intra-amniotically with saline or AFSC-EVs (isolated by ultracentrifugation, characterized as per MISEV guidelines). Fetuses from vehicle-gavaged dams served as controls. Groups were compared for: lung hypoplasia, TNFa and IL-1B brain expression, and activated microglia (Iba1) density in the subgranular zone (SGZ). RESULTS CDH lungs had fewer airspaces compared to controls, whereas AFSC-EV-treated lungs had rescued branching morphogenesis. Fluorescently labeled AFSC-EVs injected intra-amniotically into CDH fetuses had fluorescent signal in the brain. Compared to controls, the brain of CDH fetuses had higher TNFa and IL-1B levels, and increased activated microglia density. Conversely, the brain of AFSC-EV treated fetuses had inflammatory marker expression levels and microglia density similar to controls. CONCLUSION This study shows that the brain of rat fetuses with CDH has signs of inflammation that are abated by the intra-amniotic administration of AFSC-EVs.
Collapse
Affiliation(s)
- Matisse Blundell
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Rebeca L Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - George Biouss
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada.
- Department of Surgery, University of Toronto, Toronto, M5T 1P5, Canada.
| |
Collapse
|
4
|
Zorova LD, Kovalchuk SI, Popkov VA, Chernikov VP, Zharikova AA, Khutornenko AA, Zorov SD, Plokhikh KS, Zinovkin RA, Evtushenko EA, Babenko VA, Pevzner IB, Shevtsova YA, Goryunov KV, Plotnikov EY, Silachev DN, Sukhikh GT, Zorov DB. Do Extracellular Vesicles Derived from Mesenchymal Stem Cells Contain Functional Mitochondria? Int J Mol Sci 2022; 23:ijms23137408. [PMID: 35806411 PMCID: PMC9266972 DOI: 10.3390/ijms23137408] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EV) derived from stem cells have become an effective complement to the use in cell therapy of stem cells themselves, which has led to an explosion of research into the mechanisms of vesicle formation and their action. There is evidence demonstrating the presence of mitochondrial components in EV, but a definitive conclusion about whether EV contains fully functional mitochondria has not yet been made. In this study, two EV fractions derived from mesenchymal stromal stem cells (MSC) and separated by their size were examined. Flow cytometry revealed the presence of mitochondrial lipid components capable of interacting with mitochondrial dyes MitoTracker Green and 10-nonylacridine orange; however, the EV response to the probe for mitochondrial membrane potential was negative. Detailed analysis revealed components from all mitochondria compartments, including house-keeping mitochondria proteins and DNA as well as energy-related proteins such as membrane-localized proteins of complexes I, IV, and V, and soluble proteins from the Krebs cycle. When assessing the functional activity of mitochondria, high variability in oxygen consumption was noted, which was only partially attributed to mitochondrial respiratory activity. Our findings demonstrate that the EV contain all parts of mitochondria; however, their independent functionality inside EV has not been confirmed, which may be due either to the absence of necessary cofactors and/or the EV formation process and, probably the methodology of obtaining EV.
Collapse
Affiliation(s)
- Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
| | - Sergei I. Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
| | | | - Anastasia A. Zharikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia;
| | - Anastasia A. Khutornenko
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
| | - Savva D. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia;
| | | | - Roman A. Zinovkin
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
| | | | - Valentina A. Babenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
| | - Yulia A. Shevtsova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia;
| | - Kirill V. Goryunov
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
- Correspondence: (D.N.S.); (D.B.Z.); Tel.: +7-(495)939-59-44 (D.N.S.); +7-(495)939-59-44 (D.B.Z.)
| | - Gennady T. Sukhikh
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (L.D.Z.); (V.A.P.); (S.D.Z.); (R.A.Z.); (V.A.B.); (I.B.P.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia; (A.A.K.); (Y.A.S.); (K.V.G.); (G.T.S.)
- Correspondence: (D.N.S.); (D.B.Z.); Tel.: +7-(495)939-59-44 (D.N.S.); +7-(495)939-59-44 (D.B.Z.)
| |
Collapse
|