1
|
Birjandi AA, Lynham S, Matalova E, Ghuman M, Sharpe P. Regenerative Potential of PDL-Derived Small Extracellular Vesicles. J Periodontal Res 2024. [PMID: 39581762 DOI: 10.1111/jre.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 11/26/2024]
Abstract
Treatment of gingival fibroblasts with PDL extracellular vesicles results in promotion of Wnt signalling pathway and osteogenic differentiation. PDL secretome shows selective wound healing and matrix remodelling which can have implications for future periodontal regenerative strategies.
Collapse
Affiliation(s)
- Anahid A Birjandi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, Kings College London, London, UK
| | - Steven Lynham
- Centre of Excellence for Mass Spectrometry, Denmark Hill, King's College London, London, UK
| | - Eva Matalova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Mandeep Ghuman
- Centre for Host-Microbiome Interactions. Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Paul Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, Kings College London, London, UK
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
2
|
Han P, Raveendran N, Liu C, Basu S, Jiao K, Johnson N, Moran CS, Ivanovski S. 3D bioprinted small extracellular vesicles from periodontal cells enhance mesenchymal stromal cell function. BIOMATERIALS ADVANCES 2024; 158:213770. [PMID: 38242057 DOI: 10.1016/j.bioadv.2024.213770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Recent research indicates that combining 3D bioprinting and small extracellular vesicles (sEVs) offers a promising 'cell-free' regenerative medicine approach for various tissue engineering applications. Nonetheless, the majority of existing research has focused on bioprinting of sEVs sourced from cell lines. There remains a notable gap in research regarding the bioprinting of sEVs derived from primary human periodontal cells and their potential impact on ligamentous and osteogenic differentiation. Here, we investigated the effect of 3D bioprinted periodontal cell sEVs constructs on the differentiation potential of human buccal fat pad-derived mesenchymal stromal cells (hBFP-MSCs). Periodontal cell-derived sEVs were enriched by size exclusion chromatography (SEC) with particle-shaped morphology, and characterized by being smaller than 200 nm in size and CD9/CD63/CD81 positive, from primary human periodontal ligament cells (hPDLCs) and human gingival fibroblasts (hGFs). The sEVs were then 3D bioprinted in 10 % gelatin methacryloyl (GelMA) via microextrusion bioprinting. Release of sEVs from bioprinted constructs was determined by DiO-labelling and confocal imaging, and CD9 ELISA. Attachment and ligament/osteogenic/cementogenic differentiation of hBFP-MSCs was assessed on bioprinted GelMA, without and with sEVs (GelMA/hPDLCs-sEVs and GelMA/hGFs-sEVs), scaffolds. hBFP-MSCs seeded on the bioprinted sEVs constructs spread well with significantly enhanced focal adhesion, mechanotransduction associated gene expression, and ligament and osteogenesis/cementogenesis differentiation markers in GelMA/hPDLCs-sEVs, compared to GelMA/hGFs-sEVs and GelMA groups. A 2-week osteogenic and ligamentous differentiation showed enhanced ALP staining, calcium formation and toluidine blue stained cells in hBFP-MSCs on bioprinted GelMA/hPDLCs-sEVs constructs compared to the other two groups. The proof-of-concept data from this study supports the notion that 3D bioprinted GelMA/hPDLCs-sEVs scaffolds promote cell attachment, as well as ligamentous, osteogenic and cementogenic differentiation, of hBFP-MSCs in vitro.
Collapse
Affiliation(s)
- Pingping Han
- The University of Queensland, School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia.
| | - Nimal Raveendran
- The University of Queensland, School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
| | - Chun Liu
- The University of Queensland, School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
| | - Saraswat Basu
- The University of Queensland, School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
| | - Kexin Jiao
- The University of Queensland, School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
| | - Nigel Johnson
- The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
| | - Corey S Moran
- The University of Queensland, School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia.
| |
Collapse
|