1
|
Weng Y, Xiao Y, Shi Y, Li N, Wang J, Yan M, Yu J, Li Z. A single-cell transcriptomic atlas of human stem cells from apical papilla during the committed differentiation. Int Endod J 2024. [PMID: 39530778 DOI: 10.1111/iej.14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
AIM Human stem cells derived from the apical papilla (SCAPs) are recognized for their multilineage differentiation potential and their capacity for functional tooth root regeneration. However, the molecular mechanisms underlying odonto/osteogenic differentiation remain largely unexplored. In this study, we utilized single-cell RNA sequencing (scRNA-seq) to conduct an in-depth analysis of the transcriptional changes associated with chemically induced osteogenesis in SCAPs. METHODOLOGY scRNA-seq identified SCAPs as distinct subpopulations. Differentially expressed genes (DEGs) and Gene Ontology (GO) analyses were conducted to evaluate the potential function of each cluster. Pseudotime trajectory analysis was employed to elucidate the potential differentiation processes of the identified SCAP populations. To investigate the osteo/odontogenic potential of Deiodinase Iodothyronine Type 2 (DIO2) on SCAPs, we performed alkaline phosphatase staining, western blot analysis, Alizarin Red S staining and immunofluorescence staining. Additionally, SCAP components were transplanted into mouse calvarial defects to evaluate osteogenesis in vivo. RESULTS The analysis of cell clusters derived from our scRNA-seq data revealed a significant shift in cellular composition when cells were cultured in a mineralization induction medium compared to those cultured in a complete medium. Both groups exhibited heterogeneity, with some cells intrinsically predisposed to osteogenesis and others appearing to be primed for proliferative functions. Notably, we identified a subpopulation characterized by high expression of DIO2, which exhibited pronounced osteogenic activity during differentiation. CONCLUSIONS Our study is the first to reveal a shift in the cellular composition of SCAPs when cultured in a mineralization induction medium compared to a complete medium. Following both in vitro and in vivo validation, the DIO2+ subpopulation exhibited the highest transcriptional similarity to osteogenic function, suggesting its potential utility in tissue regeneration applications.
Collapse
Affiliation(s)
- Yingying Weng
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases and Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya Xiao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui, China
| | - Yijia Shi
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases and Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Na Li
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases and Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases and Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Yan
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases and Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhua Yu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases and Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zehan Li
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases and Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Gu T, Guo R, Fang Y, Xiao Y, Chen L, Li N, Ge XK, Shi Y, Wu J, Yan M, Yu J, Li Z. METTL3-mediated pre-miR-665/DLX3 m 6A methylation facilitates the committed differentiation of stem cells from apical papilla. Exp Mol Med 2024; 56:1426-1438. [PMID: 38825638 PMCID: PMC11263550 DOI: 10.1038/s12276-024-01245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 06/04/2024] Open
Abstract
Methyltransferase-like 3 (METTL3) is a crucial element of N6-methyladenosine (m6A) modifications and has been extensively studied for its involvement in diverse biological and pathological processes. In this study, we explored how METTL3 affects the differentiation of stem cells from the apical papilla (SCAPs) into odonto/osteoblastic lineages through gain- and loss-of-function experiments. The m6A modification levels were assessed using m6A dot blot and activity quantification experiments. In addition, we employed Me-RIP microarray experiments to identify specific targets modified by METTL3. Furthermore, we elucidated the molecular mechanism underlying METTL3 function through dual-luciferase reporter gene experiments and rescue experiments. Our findings indicated that METTL3+/- mice exhibited significant root dysplasia and increased bone loss. The m6A level and odonto/osteoblastic differentiation capacity were affected by the overexpression or inhibition of METTL3. This effect was attributed to the acceleration of pre-miR-665 degradation by METTL3-mediated m6A methylation in cooperation with the "reader" protein YTHDF2. Additionally, the targeting of distal-less homeobox 3 (DLX3) by miR-665 and the potential direct regulation of DLX3 expression by METTL3, mediated by the "reader" protein YTHDF1, were demonstrated. Overall, the METTL3/pre-miR-665/DLX3 pathway might provide a new target for SCAP-based tooth root/maxillofacial bone tissue regeneration.
Collapse
Affiliation(s)
- Tingjie Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Rong Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuxin Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ya Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Luyao Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Na Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xingyun Kelesy Ge
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China
| | - Yijia Shi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jintao Wu
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ming Yan
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinhua Yu
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Zehan Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China.
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Suda Y, Nakamura K, Matsuyama F, Hamada Y, Makabe H, Narita M, Nagumo Y, Mori T, Kuzumaki N, Narita M. Peripheral-central network analysis of cancer cachexia status accompanied by the polarization of hypothalamic microglia with low expression of inhibitory immune checkpoint receptors. Mol Brain 2024; 17:20. [PMID: 38685046 PMCID: PMC11059753 DOI: 10.1186/s13041-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
While the excessive inflammation in cancer cachexia is well-known to be induced by the overproduction of inflammatory mediators in the periphery, microflora disruption and brain dysfunction are also considered to contribute to the induction of cancer cachexia. Hypothalamic microglia play a crucial role in brain inflammation and central-peripheral immune circuits via the production of inflammatory mediators. In the present study, we evaluated possible changes in excessive secretion of gut microbiota-derived endotoxin and the expression timeline of several inflammation-regulatory mediators and their inhibiting modulators in hypothalamic microglia of a mouse model of cancer cachexia following transplantation of pancreatic cancer cells. We demonstrated that the plasma level of lipopolysaccharide (LPS) was significantly increased with an increase in anaerobic bacteria, especially Firmicutes, in the gut at the late stage of tumor-bearing mice that exhibited dramatic appetite loss, sarcopenia and severe peripheral immune suppression. At the early stage, in which tumor-bearing mice had not yet displayed "cachexia symptoms", the mRNA expression of pro-inflammatory cytokines, but not of the neurodegenerative and severe inflammatory modulator lipocalin-2 (LCN2), was significantly increased, whereas at the late "cachexia stage", the level of LCN2 mRNA was significantly increased along with significant decreases in levels of inhibitory immune checkpoint receptors programmed death receptor-1 (PD-1) and CD112R in hypothalamic microglia. In addition, a high density of activated neurons in the paraventricular nucleus (PVN) of the hypothalamus region and a significant increase in corticosterone secretion were found in cachexia model mice. Related to the cachexia state, released corticosterone was clearly increased in normal mice with specific activation of PVN neurons. A marked decrease in the natural killer cell population was also observed in the spleen of mice with robust activation of PVN neurons as well as mice with cancer cachexia. On the other hand, in vivo administration of LPS in normal mice induced hypothalamic microglia with low expression of inhibitory immune checkpoint receptors. These findings suggest that the induction of cancer cachexia may parallel exacerbation of the hypothalamic inflammatory status with polarization to microglia expressed with low levels of inhibitory immune checkpoint receptors following LPS release from the gut microflora.
Collapse
Affiliation(s)
- Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Keiko Nakamura
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Department of Pharmacy, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Fukiko Matsuyama
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Japan Small Animal Medical Center, 1-10-4 Higashitokorozawawada, Tokorozawa-Shi, Saitama, 359-0023, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hitoshi Makabe
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Michiko Narita
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yasuyuki Nagumo
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan.
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan.
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
4
|
Xiao Y, Chen L, Xu Y, Yu R, Lu J, Ke Y, Guo R, Gu T, Yu H, Fang Y, Li Z, Yu J. Circ-ZNF236 mediates stem cells from apical papilla differentiation by regulating LGR4-induced autophagy. Int Endod J 2024; 57:431-450. [PMID: 38240345 DOI: 10.1111/iej.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 03/07/2024]
Abstract
AIM Human stem cells from the apical papilla (SCAPs) are an appealing stem cell source for tissue regeneration engineering. Circular RNAs (circRNAs) are known to exert pivotal regulatory functions in various cell differentiation processes, including osteogenesis of mesenchymal stem cells. However, few studies have shown the potential mechanism of circRNAs in the odonto/osteogenic differentiation of SCAPs. Herein, we identified a novel circRNA, circ-ZNF236 (hsa_circ_0000857) and found that it was remarkably upregulated during the SCAPs committed differentiation. Thus, in this study, we showed the significance of circ-ZNF236 in the odonto/osteogenic differentiation of SCAPs and its underlying regulatory mechanisms. METHODOLOGY The circular structure of circ-ZNF236 was identified via Sanger sequencing, amplification of convergent and divergent primers. The proliferation of SCAPs was detected by CCK-8, flow cytometry analysis and EdU incorporation assay. Western blotting, qRT-PCR, Alkaline phosphatase (ALP) and Alizarin red staining (ARS) were performed to explore the regulatory effect of circ-ZNF236/miR-218-5p/LGR4 axis in the odonto/osteogenic differentiation of SCAPs in vitro. Fluorescence in situ hybridization, as well as dual-luciferase reporting assays, revealed that circ-ZNF236 binds to miR-218-5p. Transmission electron microscopy (TEM) and mRFP-GFP-LC3 lentivirus were performed to detect the activation of autophagy. RESULTS Circ-ZNF236 was identified as a highly stable circRNA with a covalent closed loop structure. Circ-ZNF236 had no detectable influence on cell proliferation but positively regulated SCAPs odonto/osteogenic differentiation. Furthermore, circ-ZNF236 was confirmed as a sponge of miR-218-5p in SCAPs, while miR-218-5p targets LGR4 mRNA at its 3'-UTR. Subsequent rescue experiments revealed that circ-ZNF236 regulates odonto/osteogenic differentiation by miR-218-5p/LGR4 in SCAPs. Importantly, circ-ZNF236 activated autophagy, and the activation of autophagy strengthened the committed differentiation capability of SCAPs. Subsequently, in vivo experiments showed that SCAPs overexpressing circ-ZNF236 promoted bone formation in a rat skull defect model. CONCLUSIONS Circ-ZNF236 could activate autophagy through increasing LGR4 expression, thus positively regulating SCAPs odonto/osteogenic differentiation. Our findings suggested that circ-ZNF236 might represent a novel therapeutic target to prompt the odonto/osteogenic differentiation of SCAPs.
Collapse
Affiliation(s)
- Ya Xiao
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Luyao Chen
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yunlong Xu
- Endodontic Department, Changzhou Stomatological Hospital, Changzhou, Jiangsu, China
| | - Ruiyang Yu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiamin Lu
- Endodontic Department, Changzhou Stomatological Hospital, Changzhou, Jiangsu, China
| | - Yue Ke
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Rong Guo
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tingjie Gu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Haowen Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuxin Fang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Zehan Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinhua Yu
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Feng H, Feng J, Han X, Ying Y, Lou W, Liu L, Zhang L. The Potential of Siglecs and Sialic Acids as Biomarkers and Therapeutic Targets in Tumor Immunotherapy. Cancers (Basel) 2024; 16:289. [PMID: 38254780 PMCID: PMC10813689 DOI: 10.3390/cancers16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The dysregulation of sialic acid is closely associated with oncogenesis and tumor progression. Most tumor cells exhibit sialic acid upregulation. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are receptors that recognize sialic acid and are expressed in various immune cells. The activity of Siglecs in the tumor microenvironment promotes immune escape, mirroring the mechanisms of the well-characterized PD-1/PD-L1 pathway in cancer. Cancer cells utilize sialic acid-linked glycans to evade immune surveillance. As Siglecs exhibit similar mechanisms as the established immune checkpoint inhibitors (ICIs), they are potential therapeutic targets for different forms of cancer, especially ICI-resistant malignancies. Additionally, the upregulation of sialic acid serves as a potential tumor biomarker. This review examines the feasibility of using sialic acid and Siglecs for early malignant tumor detection and discusses the potential of targeting Siglec-sialic acid interaction as a novel cancer therapeutic strategy.
Collapse
Affiliation(s)
- Haokang Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiale Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The Shanghai Geriatrics Medical Center, Zhongshan Hospital MinHang MeiLong Branch, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Rao P, Jing J, Fan Y, Zhou C. Spatiotemporal cellular dynamics and molecular regulation of tooth root ontogeny. Int J Oral Sci 2023; 15:50. [PMID: 38001110 PMCID: PMC10673972 DOI: 10.1038/s41368-023-00258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Tooth root development involves intricate spatiotemporal cellular dynamics and molecular regulation. The initiation of Hertwig's epithelial root sheath (HERS) induces odontoblast differentiation and the subsequent radicular dentin deposition. Precisely controlled signaling pathways modulate the behaviors of HERS and the fates of dental mesenchymal stem cells (DMSCs). Disruptions in these pathways lead to defects in root development, such as shortened roots and furcation abnormalities. Advances in dental stem cells, biomaterials, and bioprinting show immense promise for bioengineered tooth root regeneration. However, replicating the developmental intricacies of odontogenesis has not been resolved in clinical treatment and remains a major challenge in this field. Ongoing research focusing on the mechanisms of root development, advanced biomaterials, and manufacturing techniques will enable next-generation biological root regeneration that restores the physiological structure and function of the tooth root. This review summarizes recent discoveries in the underlying mechanisms governing root ontogeny and discusses some recent key findings in developing of new biologically based dental therapies.
Collapse
Affiliation(s)
- Pengcheng Rao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|