1
|
Lund S, Potapov V, Johnson SR, Buss J, Tanner NA. Highly Parallelized Construction of DNA from Low-Cost Oligonucleotide Mixtures Using Data-Optimized Assembly Design and Golden Gate. ACS Synth Biol 2024; 13:745-751. [PMID: 38377591 PMCID: PMC10949349 DOI: 10.1021/acssynbio.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Commercially synthesized genes are typically made using variations of homology-based cloning techniques, including polymerase cycling assembly from chemically synthesized microarray-derived oligonucleotides. Here, we apply Data-optimized Assembly Design (DAD) to the synthesis of hundreds of codon-optimized genes in both constitutive and inducible vectors using Golden Gate Assembly. Starting from oligonucleotide pools, we synthesize genes in three simple steps: (1) amplification of parts belonging to individual assemblies in parallel from a single pool; (2) Golden Gate Assembly of parts for each construct; and (3) transformation. We construct genes from receiving DNA to sequence confirmed isolates in as little as 4 days. By leveraging the ligation fidelity afforded by T4 DNA ligase, we expect to be able to construct a larger breadth of sequences not currently supported by homology-based methods, which require stability of extensive single-stranded DNA overhangs.
Collapse
Affiliation(s)
- Sean Lund
- Research
Department, New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Vladimir Potapov
- Research
Department, New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Sean R. Johnson
- Research
Department, New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Jackson Buss
- Research
Department, New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Nathan A. Tanner
- Research
Department, New England Biolabs, Ipswich, Massachusetts 01938, United States
| |
Collapse
|
2
|
Levrier A, Karpathakis I, Nash B, Bowden SD, Lindner AB, Noireaux V. PHEIGES: all-cell-free phage synthesis and selection from engineered genomes. Nat Commun 2024; 15:2223. [PMID: 38472230 PMCID: PMC10933291 DOI: 10.1038/s41467-024-46585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Bacteriophages constitute an invaluable biological reservoir for biotechnology and medicine. The ability to exploit such vast resources is hampered by the lack of methods to rapidly engineer, assemble, package genomes, and select phages. Cell-free transcription-translation (TXTL) offers experimental settings to address such a limitation. Here, we describe PHage Engineering by In vitro Gene Expression and Selection (PHEIGES) using T7 phage genome and Escherichia coli TXTL. Phage genomes are assembled in vitro from PCR-amplified fragments and directly expressed in batch TXTL reactions to produce up to 1011 PFU/ml engineered phages within one day. We further demonstrate a significant genotype-phenotype linkage of phage assembly in bulk TXTL. This enables rapid selection of phages with altered rough lipopolysaccharides specificity from phage genomes incorporating tail fiber mutant libraries. We establish the scalability of PHEIGES by one pot assembly of such mutants with fluorescent gene integration and 10% length-reduced genome.
Collapse
Affiliation(s)
- Antoine Levrier
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
- Université Paris Cité, INSERM U1284, Center for Research and Interdisciplinarity, F-75006, Paris, France
| | - Ioannis Karpathakis
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
- Facultatea de Biotehnologii, USAMV Bucuresti, Sector 1, Cod 011464, Bucureşti, Romania
| | - Bruce Nash
- DNA Learning Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Steven D Bowden
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Ariel B Lindner
- Université Paris Cité, INSERM U1284, Center for Research and Interdisciplinarity, F-75006, Paris, France.
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Russ WP, Figliuzzi M, Stocker C, Barrat-Charlaix P, Socolich M, Kast P, Hilvert D, Monasson R, Cocco S, Weigt M, Ranganathan R. An evolution-based model for designing chorismate mutase enzymes. Science 2020; 369:440-445. [PMID: 32703877 DOI: 10.1126/science.aba3304] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 05/13/2020] [Indexed: 02/02/2023]
Abstract
The rational design of enzymes is an important goal for both fundamental and practical reasons. Here, we describe a process to learn the constraints for specifying proteins purely from evolutionary sequence data, design and build libraries of synthetic genes, and test them for activity in vivo using a quantitative complementation assay. For chorismate mutase, a key enzyme in the biosynthesis of aromatic amino acids, we demonstrate the design of natural-like catalytic function with substantial sequence diversity. Further optimization focuses the generative model toward function in a specific genomic context. The data show that sequence-based statistical models suffice to specify proteins and provide access to an enormous space of functional sequences. This result provides a foundation for a general process for evolution-based design of artificial proteins.
Collapse
Affiliation(s)
- William P Russ
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matteo Figliuzzi
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie Computationnelle and Quantitative, Paris, France
| | | | - Pierre Barrat-Charlaix
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie Computationnelle and Quantitative, Paris, France.,Biozentrum, University of Basel, Basel, Switzerland
| | - Michael Socolich
- Center for Physics of Evolving Systems, Biochemistry and Molecular Biology and the Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Peter Kast
- Laboratory of Organic Chemistry, ETH Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, Switzerland
| | - Remi Monasson
- Laboratoire de Physique de l'Ecole Normale Supérieure, PSL and CNRS, Paris, France
| | - Simona Cocco
- Laboratoire de Physique de l'Ecole Normale Supérieure, PSL and CNRS, Paris, France
| | - Martin Weigt
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie Computationnelle and Quantitative, Paris, France.
| | - Rama Ranganathan
- Center for Physics of Evolving Systems, Biochemistry and Molecular Biology and the Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Qiu C, Kaplan CD. Functional assays for transcription mechanisms in high-throughput. Methods 2019; 159-160:115-123. [PMID: 30797033 PMCID: PMC6589137 DOI: 10.1016/j.ymeth.2019.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/18/2019] [Indexed: 01/12/2023] Open
Abstract
Dramatic increases in the scale of programmed synthesis of nucleic acid libraries coupled with deep sequencing have powered advances in understanding nucleic acid and protein biology. Biological systems centering on nucleic acids or encoded proteins greatly benefit from such high-throughput studies, given that large DNA variant pools can be synthesized and DNA, or RNA products of transcription, can be easily analyzed by deep sequencing. Here we review the scope of various high-throughput functional assays for studies of nucleic acids and proteins in general, followed by discussion of how these types of study have yielded insights into the RNA Polymerase II (Pol II) active site as an example. We discuss methodological considerations in the design and execution of these experiments that should be valuable to studies in any system.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|