1
|
Rincon-Sandoval M, Duarte-Ribeiro E, Davis AM, Santaquiteria A, Hughes LC, Baldwin CC, Soto-Torres L, Acero P A, Walker HJ, Carpenter KE, Sheaves M, Ortí G, Arcila D, Betancur-R R. Evolutionary determinism and convergence associated with water-column transitions in marine fishes. Proc Natl Acad Sci U S A 2020; 117:33396-33403. [PMID: 33328271 PMCID: PMC7777220 DOI: 10.1073/pnas.2006511117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Repeatable, convergent outcomes are prima facie evidence for determinism in evolutionary processes. Among fishes, well-known examples include microevolutionary habitat transitions into the water column, where freshwater populations (e.g., sticklebacks, cichlids, and whitefishes) recurrently diverge toward slender-bodied pelagic forms and deep-bodied benthic forms. However, the consequences of such processes at deeper macroevolutionary scales in the marine environment are less clear. We applied a phylogenomics-based integrative, comparative approach to test hypotheses about the scope and strength of convergence in a marine fish clade with a worldwide distribution (snappers and fusiliers, family Lutjanidae) featuring multiple water-column transitions over the past 45 million years. We collected genome-wide exon data for 110 (∼80%) species in the group and aggregated data layers for body shape, habitat occupancy, geographic distribution, and paleontological and geological information. We also implemented approaches using genomic subsets to account for phylogenetic uncertainty in comparative analyses. Our results show independent incursions into the water column by ancestral benthic lineages in all major oceanic basins. These evolutionary transitions are persistently associated with convergent phenotypes, where deep-bodied benthic forms with truncate caudal fins repeatedly evolve into slender midwater species with furcate caudal fins. Lineage diversification and transition dynamics vary asymmetrically between habitats, with benthic lineages diversifying faster and colonizing midwater habitats more often than the reverse. Convergent ecological and functional phenotypes along the benthic-pelagic axis are pervasive among different lineages and across vastly different evolutionary scales, achieving predictable high-fitness solutions for similar environmental challenges, ultimately demonstrating strong determinism in fish body-shape evolution.
Collapse
Affiliation(s)
- Melissa Rincon-Sandoval
- Department of Biology, The University of Oklahoma, Norman, OK 73019
- Universidad Nacional de Colombia sede Caribe, Centro de Estudios en Ciencias del Mar (CECIMAR), Santa Marta, Magdalena, Colombia
| | | | - Aaron M Davis
- Centre for Tropical Water and Aquatic Ecosystem Research, School of Marine and Tropical Biology, James Cook University, Townsville, QLD 4811, Australia
| | | | - Lily C Hughes
- Department of Biological Sciences, The George Washington University, Washington, DC 20052
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
| | - Carole C Baldwin
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
| | - Luisángely Soto-Torres
- Department of Biology, Universidad de Puerto Rico-Rio Piedras, San Juan Puerto Rico, 00931
| | - Arturo Acero P
- Universidad Nacional de Colombia sede Caribe, Centro de Estudios en Ciencias del Mar (CECIMAR), Santa Marta, Magdalena, Colombia
| | - H J Walker
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0244
| | | | - Marcus Sheaves
- Marine Data Technology Hub, James Cook University, Townsville, QLD 4811, Australia
| | - Guillermo Ortí
- Department of Biological Sciences, The George Washington University, Washington, DC 20052
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
| | - Dahiana Arcila
- Department of Biology, The University of Oklahoma, Norman, OK 73019
- Department of Ichthyology, Sam Noble Oklahoma Museum of Natural History, Norman, OK
| | | |
Collapse
|
3
|
Stuessy TF, Hörandl E. The importance of comprehensive phylogenetic (evolutionary) classification-a response to Schmidt-Lebuhn's commentary on paraphyletic taxa. Cladistics 2013; 30:291-293. [DOI: 10.1111/cla.12038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2013] [Indexed: 02/03/2023] Open
Affiliation(s)
- Tod F. Stuessy
- Department of Systematic and Evolutionary Botany; Biodiversity Center; University of Vienna; Rennweg 14 Vienna A-1030 Austria
| | - Elvira Hörandl
- Department of Systematic Botany; Albrecht-von-Haller-Institute for Plant Sciences; Georg-August-University of Göttingen; Göttingen 37073 Germany
| |
Collapse
|