1
|
Pérez MJ, Cassini GH, Díaz MM. The hind limb of Octodontidae (Rodentia, Mammalia): Functional implications for substrate preferences. ZOOLOGY 2024; 167:126222. [PMID: 39442201 DOI: 10.1016/j.zool.2024.126222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Octodontids are South American caviomorph rodents endemic to mesic and arid biomes displaying a wide range of substrate preferences, from terrestrial to subterranean habits. However, the hind limb morphology of these rodents remain relatively poorly understudied, particularly from an ecomorphological perspective. To investigate the association between hind limb morphology and substrate preference-epigean, semifossorial, fossorial, and subterranean- this study analyzed six skeletal measurements of femur and tibia, along with five morphological indices. We employed phylogenetic mapping, allometry, and multivariate analyses (Phylogentic Flexible Discriminant and Principal Component analyses) on log-transformed variables and indices. The results suggest that the epigeans and subterraneans possess hind limb skeletal features that enhance their mechanical capabilities, which are advantageous for their respective lifestyles. However, in the absence of clear behavioral adaptations or associations, the functional habits of Octodontidae do not requires significant structural modifications of the proximal bones of the hind limbs. These results indicate that understanding the form-function relationship in octodontids requires direct field or laboratory observations of behavior and environmental interactions, highlighting the limitations of current research without such data.
Collapse
Affiliation(s)
- M Julieta Pérez
- Programa de Investigaciones de Biodiversidad Argentina (PIDBA), Programa de Conservación de los Murciélagos de Argentina (PCMA)- Facultad de Ciencias Naturales e Instituto Miguel Lillo (IML), Universidad Nacional de Tucumán, Miguel Lillo 251, Tucumán 4000, Argentina.
| | - Guillermo H Cassini
- Consejo Nacional de Investigaciones Científicas y Técnicas - (CONICET), Argentina; División Mastozoología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Avenida Ángel Gallardo 470, C1405DJR, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Av. Constitución s/n, Luján, Buenos Aires 6700, Argentina
| | - M Mónica Díaz
- Programa de Investigaciones de Biodiversidad Argentina (PIDBA), Programa de Conservación de los Murciélagos de Argentina (PCMA)- Facultad de Ciencias Naturales e Instituto Miguel Lillo (IML), Universidad Nacional de Tucumán, Miguel Lillo 251, Tucumán 4000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - (CONICET), Argentina; Fundación Miguel Lillo, Sección Mastozoología, 4to. Piso, Edificio de Zoología, Miguel Lillo 251, San Miguel de Tucumán, Tucumán 4000, Argentina
| |
Collapse
|
2
|
Mitchell DR, Sherratt E, Weisbecker V. Facing the facts: adaptive trade-offs along body size ranges determine mammalian craniofacial scaling. Biol Rev Camb Philos Soc 2024; 99:496-524. [PMID: 38029779 DOI: 10.1111/brv.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
The mammalian cranium (skull without lower jaw) is representative of mammalian diversity and is thus of particular interest to mammalian biologists across disciplines. One widely retrieved pattern accompanying mammalian cranial diversification is referred to as 'craniofacial evolutionary allometry' (CREA). This posits that adults of larger species, in a group of closely related mammals, tend to have relatively longer faces and smaller braincases. However, no process has been officially suggested to explain this pattern, there are many apparent exceptions, and its predictions potentially conflict with well-established biomechanical principles. Understanding the mechanisms behind CREA and causes for deviations from the pattern therefore has tremendous potential to explain allometry and diversification of the mammalian cranium. Here, we propose an amended framework to characterise the CREA pattern more clearly, in that 'longer faces' can arise through several kinds of evolutionary change, including elongation of the rostrum, retraction of the jaw muscles, or a more narrow or shallow skull, which all result in a generalised gracilisation of the facial skeleton with increased size. We define a standardised workflow to test for the presence of the pattern, using allometric shape predictions derived from geometric morphometrics analysis, and apply this to 22 mammalian families including marsupials, rabbits, rodents, bats, carnivores, antelopes, and whales. Our results show that increasing facial gracility with size is common, but not necessarily as ubiquitous as previously suggested. To address the mechanistic basis for this variation, we then review cranial adaptations for harder biting. These dictate that a more gracile cranium in larger species must represent a structural sacrifice in the ability to produce or withstand harder bites, relative to size. This leads us to propose that facial gracilisation in larger species is often a product of bite force allometry and phylogenetic niche conservatism, where more closely related species tend to exhibit more similar feeding ecology and biting behaviours and, therefore, absolute (size-independent) bite force requirements. Since larger species can produce the same absolute bite forces as smaller species with less effort, we propose that relaxed bite force demands can permit facial gracility in response to bone optimisation and alternative selection pressures. Thus, mammalian facial scaling represents an adaptive by-product of the shifting importance of selective pressures occurring with increased size. A reverse pattern of facial 'shortening' can accordingly also be found, and is retrieved in several cases here, where larger species incorporate novel feeding behaviours involving greater bite forces. We discuss multiple exceptions to a bite force-mediated influence on facial proportions across mammals which lead us to argue that ecomorphological specialisation of the cranium is likely to be the primary driver of facial scaling patterns, with some developmental constraints as possible secondary factors. A potential for larger species to have a wider range of cranial functions when less constrained by bite force demands might also explain why selection for larger sizes seems to be prevalent in some mammalian clades. The interplay between adaptation and constraint across size ranges thus presents an interesting consideration for a mechanistically grounded investigation of mammalian cranial allometry.
Collapse
Affiliation(s)
- D Rex Mitchell
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, 2522, Australia
| | - Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- South Australian Museum, Adelaide, South Australia, 5000, Australia
| | - Vera Weisbecker
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
3
|
Zelditch ML, Swiderski DL. Effects of Procrustes Superimposition and Semilandmark Sliding on Modularity and Integration: An Investigation Using Simulations of Biological Data. Evol Biol 2023. [DOI: 10.1007/s11692-023-09600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Mitteroecker P, Schaefer K. Thirty years of geometric morphometrics: Achievements, challenges, and the ongoing quest for biological meaningfulness. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178 Suppl 74:181-210. [PMID: 36790612 PMCID: PMC9545184 DOI: 10.1002/ajpa.24531] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 12/30/2022]
Abstract
The foundations of geometric morphometrics were worked out about 30 years ago and have continually been refined and extended. What has remained as a central thrust and source of debate in the morphometrics community is the shared goal of meaningful biological inference through a tight connection between biological theory, measurement, multivariate biostatistics, and geometry. Here we review the building blocks of modern geometric morphometrics: the representation of organismal geometry by landmarks and semilandmarks, the computation of shape or form variables via superimposition, the visualization of statistical results as actual shapes or forms, the decomposition of shape variation into symmetric and asymmetric components and into different spatial scales, the interpretation of various geometries in shape or form space, and models of the association between shape or form and other variables, such as environmental, genetic, or behavioral data. We focus on recent developments and current methodological challenges, especially those arising from the increasing number of landmarks and semilandmarks, and emphasize the importance of thorough exploratory multivariate analyses rather than single scalar summary statistics. We outline promising directions for further research and for the evaluation of new developments, such as "landmark-free" approaches. To illustrate these methods, we analyze three-dimensional human face shape based on data from the Avon Longitudinal Study of Parents and Children (ALSPAC).
Collapse
Affiliation(s)
- Philipp Mitteroecker
- Department of Evolutionary Biology, Unit for Theoretical BiologyUniversity of ViennaViennaAustria
| | - Katrin Schaefer
- Department of Evolutionary AnthropologyUniversity of ViennaViennaAustria,Human Evolution and Archaeological Sciences (HEAS)University of ViennaViennaAustria
| |
Collapse
|
5
|
The Impact of Tooth Wear on Occlusal Shape and the Identification of Fossils of New World Porcupines (Rodentia: Erethizontidae). J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Singleton M, Ehrlich DE, Adams JW. Biomechanical correlates of zygomaxillary-surface shape in papionin primates and the effects of hard-object feeding on mangabey facial form. J Hum Evol 2022; 163:103121. [PMID: 34992026 DOI: 10.1016/j.jhevol.2021.103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022]
Abstract
Extant African papioninans are distinguished from macaques by the presence of excavated facial fossae; however, facial excavation differs among taxa. Mangabeys (Cercocebus, Rungwecebus, and Lophocebus) exhibit fossae that invade the zygomatic forming pronounced suborbital fossae (SOFs). Larger-bodied Papio, Mandrillus, and Theropithecus have lateral rostral fossae with minimal/absent suborbital fossae. Because prior studies have shown that mangabeys exhibit adaptations to anterior dental loading (e.g., palatal retraction), it is plausible that mangabey SOFs represent structural accommodation to masticatory-system shape rather than facial allometry, as commonly hypothesized. We analyzed covariation between zygomaxillary-surface shape, masticatory-system shape, and facial size in 141 adult crania of Macaca fascicularis, Papio kindae, Cercocebus, and Lophocebus. These taxa represent the range of papionin SOF expression while minimizing size variation (narrow allometry). Masticatory-system landmarks (39) registered palate shape, bite points, masticatory muscle attachments, and the temporomandibular joint. Semilandmarks (450) captured zygomaxillary-surface shape. Following Procrustes superimposition with semilandmark sliding and principal components analyses, multivariate regression was used to explore allometry, and two-block partial least-squares analyses (within-configuration and separate-blocks) were used to examine covariation patterns. Scores on principal components 1-2 and the first partial least-square (PLS1) separate mangabeys from Macaca and Papio. Both zygomaxillary-surface shape and masticatory-system shape are correlated with size within taxa and facial morphotypes; however, regression distributions indicate morphotype shape differences are non-allometric. PLS1 accounts for ∼95% of shape covariance (p < 0.0001) and shows strong linear correlations (r-PLS = ∼0.95, p < 0.0001) between blocks. Negative PLS1 scores in mangabeys reflect deep excavation of the suborbital malar surface, palatal retraction, and anterior displacement of jaw adductor muscles and the temporomandibular joint. Neither PC1 nor PLS1 scores ordinate specimens by facial size. Taken together, these results fail to support the allometric hypothesis but suggest that mangabey zygomaxillary morphology is closely linked with adaptations to hard-object feeding.
Collapse
Affiliation(s)
- Michelle Singleton
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S. Lakeshore Dr, Chicago, IL 60605 USA.
| | - Daniel E Ehrlich
- Institute for Social Research and Data Innovation, University of Minnesota, 50 Willey Hall, 225 19th Ave S, Minneapolis, MN 55455 USA
| | - Justin W Adams
- Department of Anatomy & Developmental Biology, Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, Victoria, 3800 Australia; Palaeo-Research Institute, Humanities Research Village, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa; Geosciences, Museums Victoria, Melbourne 3053, Australia
| |
Collapse
|