1
|
Oliver MK. African cichlid fishes: morphological data and taxonomic insights from a genus-level survey of supraneurals, pterygiophores, and vertebral counts (Ovalentaria, Blenniiformes, Cichlidae, Pseudocrenilabrinae). Biodivers Data J 2024; 12:e130707. [PMID: 39464263 PMCID: PMC11512106 DOI: 10.3897/bdj.12.e130707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Background The iconic freshwater cichlid fishes (Cichlidae) comprise about 1750 validly named species and hundreds more that are known, but not yet described and named. Cichlids are an important source of protein for millions of people on several continents, are model organisms in studies of evolution, speciation, ecology, development, behaviour and physiology and are popular as aquarium fishes. Yet, comparative studies of cichlid internal anatomy are rare. Even their osteology has not been taxonomically surveyed. The cichlid postcranial skeleton has been especially neglected. New information Here, I provide the first survey in cichlids of the considerable variation in numbers of vertebrae, supraneurals and dorsal- and anal-fin supports (pterygiophores), as well as the patterns with which the pterygiophores insert between the neural or haemal spines. The study includes some 1700 specimens of nearly 400 cichlid species. Focusing on the largest subfamily, the African cichlids or Pseudocrenilabrinae, the survey furnishes data from species in all but one of its 166 genera. Limited data from species in the other cichlid subfamilies (Etroplinae, Ptychochrominae and Cichlinae) and from the related leaffishes, Polycentridae, are also presented. Key examples of pterygiophore insertion patterns from throughout the range of variation are illustrated and discussed. Detailed analytical tables and all raw data are provided in supplementary files.A bizarre specialisation in Cyprichromis is noted, evidently for the first time. Uniquely in this Lake Tanganyikan genus, five to seven anal pterygiophores are abdominal in position, located anterior to the anal fin and inserting toward or between successive pairs of pleural ribs.Taxonomic changes: The most speciose tribe of African cichlids, currently known as Haplochromini, is correctly called Pseudocrenilabrini. Based chiefly on the molecular phylogenetic findings of other workers, I propose four pseudocrenilabrine subtribes, one occurring in rivers and three endemic to Lake Malawi. I also re-assign the Lake Tanganyikan tribe Tropheini as another subtribe of Pseudocrenilabrini, in line with numerous molecular studies placing tropheines firmly within this tribe. The remaining genera of Pseudocrenilabrini remain incertae sedis in this tribe pending clarification of their phylogenetic relationships.The character complex here surveyed is a promising source of taxonomically and phylogenetically informative characteristics distinguishing or uniting cichlid taxa at multiple hierarchical levels, from species through subfamily. This reference set of novel character data can also provide information for palaeontological studies of African cichlids. These attributes are skeletal features potentially available for study in well preserved fossils and may help determine their correct taxonomic placement.
Collapse
Affiliation(s)
- Michael K. Oliver
- Yale Peabody Museum of Natural History, New Haven, United States of AmericaYale Peabody Museum of Natural HistoryNew HavenUnited States of America
| |
Collapse
|
2
|
Scott PA, Najafi-Majd E, Yıldırım Caynak E, Gidiş M, Kaya U, Bradley Shaffer H. Phylogenomics reveal species limits and inter-relationships in the narrow-range endemic lycian salamanders. Mol Phylogenet Evol 2024:108205. [PMID: 39393763 DOI: 10.1016/j.ympev.2024.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/17/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024]
Abstract
Salamanders of the genus Lyciasalamandra are represented by as many as 20 narrow-range endemic taxa inhabiting the Mediterranean coast of Turkey and a handful of Aegean Islands. Despite recent molecular phylogenetic studies, the genus is rife with uncertainty about the number of contained species and their phylogenetic relationships, both of which can interfere with needed conservation actions. To test species limits and infer interrelationships we generated as many as 113,176 RAD loci containing 229,427 single nucleotide polymorphisms (SNPs), for 110 specimens of Lyciasalamandra representing 19 of the 20 described taxa. Through a conservative species delimitation approach, we found support for eight species in the genus which broadly agree with currently described species-level diversity. We then use multiple coalescent-based species tree methods to resolve relationships in this relatively old, synchronous species radiation. We recommend synonymization of the largely over-split subspecific taxa, and the elevation of L. luschani finikensis to full species status as L. finikensis. Our hope is that this revised taxonomic framework provides a stable foundation for conservation management in these fragile, microendemic taxa.
Collapse
Affiliation(s)
- Peter A Scott
- Natural Sciences Collegium, Eckerd College, 4200 54(th) Ave S, St. Petersburg, FL 33711 USA; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Elnaz Najafi-Majd
- Section of Zoology, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey
| | - Elif Yıldırım Caynak
- Section of Zoology, Department of Biology, Faculty of Science, Dokuz Eylül University, İzmir, Turkey
| | - Müge Gidiş
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Biochemistry, Faculty of Arts and Science, Kütahya Dumlupınar University, Kütahya, Turkey
| | - Uğur Kaya
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA; Section of Zoology, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA; La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Kurata NP, Stiassny MLJ, Hickerson MJ, Alter SE. Impacts of Quaternary Climatic Changes on the Diversification of Riverine Cichlids in the Lower Congo River. Integr Comp Biol 2024; 64:520-532. [PMID: 38641423 DOI: 10.1093/icb/icae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024] Open
Abstract
Climatic and geomorphological changes during the Quaternary period impacted global patterns of speciation and diversification across a wide range of taxa, but few studies have examined these effects on African riverine fish. The lower Congo River is an excellent natural laboratory for understanding complex speciation and population diversification processes, as it is hydrologically extremely dynamic and recognized as a continental hotspot of diversity harboring many narrowly endemic species. A previous study using genome-wide SNP data highlighted the importance of dynamic hydrological regimes to the diversification and speciation in lower Congo River cichlids. However, historical climate and hydrological changes (e.g., reduced river discharge during extended dry periods) have likely also influenced ichthyofaunal diversification processes in this system. The lower Congo River offers a unique opportunity to study climate-driven changes in river discharge, given the massive volume of water from the entire Congo basin flowing through this short stretch of the river. Here, we, for the first time, investigate the impacts of paleoclimatic factors on ichthyofaunal diversification in this system by inferring divergence times and modeling patterns of gene flow in four endemic lamprologine cichlids, including the blind cichlid, Lamprologus lethops. Our results suggest that Quaternary climate changes associated with river discharge fluctuations may have impacted the diversification of species along the system and the emergence of cryptophthalmic phenotype in some endemic species. Our study, using reduced representation sequencing (2RADseq), indicates that the lower Congo River lamprologines emerged during the Early-Middle Pleistocene transition, characterized as one of the earth's major climatic transformation periods. Modeling results suggest that gene flow across populations and between species was not constant but occurred in temporally constrained pulses. We show that these results correlate with glacial-interglacial fluctuations. The current hyper-diverse fish assemblages of the lower Congo River riverscape likely reflect the synergistic effects of multiple drivers fueling complex evolutionary processes through time.
Collapse
Affiliation(s)
- Naoko P Kurata
- Department of Ichthyology, American Museum of Natural History, 79th Street and Central Park West, NY 10024, USA
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY 14853, USA
- The Graduate Center of the City University of New York, 365 Fifth Avenue, NY 10016, USA
| | - Melanie L J Stiassny
- Department of Ichthyology, American Museum of Natural History, 79th Street and Central Park West, NY 10024, USA
- The Sackler Institute for Comparative Genomics, American Museum of Natural History, 79th Street and Central Park West, NY 10024, USA
| | - Michael J Hickerson
- The Graduate Center of the City University of New York, 365 Fifth Avenue, NY 10016, USA
- The City College of New York, 160 Convent Ave, NY 10031, USA
- Division of Invertebrate Zoology, American Museum of Natural History, 79th Street and Central Park West, NY 10024, USA
| | - S Elizabeth Alter
- Department of Ichthyology, American Museum of Natural History, 79th Street and Central Park West, NY 10024, USA
- Department of Biology and Chemistry, California State University Monterey Bay, Seaside, CA 93955, USA
| |
Collapse
|
4
|
Behrens KA, Koblmüller S, Kocher TD. Genome assemblies for Chromidotilapia guntheri (Teleostei: Cichlidae) identify a novel candidate gene for vertebrate sex determination, RIN3. Front Genet 2024; 15:1447628. [PMID: 39221227 PMCID: PMC11361979 DOI: 10.3389/fgene.2024.1447628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Advances in genome sequencing have greatly accelerated the identification of sex chromosomes in a variety of species. Many of these species have experienced structural rearrangements that reduce recombination between the sex chromosomes, allowing the accumulation of sequence differences over many megabases. Identification of the genes that are responsible for sex determination within these sometimes large regions has proved difficult. Here, we identify an XY sex chromosome system on LG19 in the West African cichlid fish Chromidotilapia guntheri in which the region of differentiation extends over less than 400 kb. We develop high-quality male and female genome assemblies for this species, which confirm the absence of structural variants, and which facilitate the annotation of genes in the region. The peak of differentiation lies within rin3, which has experienced several debilitating mutations on the Y chromosome. We suggest two hypotheses about how these mutations might disrupt endocytosis, leading to Mendelian effects on sexual development.
Collapse
Affiliation(s)
- Kristen A. Behrens
- Department of Biology, University of Maryland, College Park, MD, United States
| | | | - Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|
5
|
Behrens KA, Koblmueller S, Kocher TD. Diversity of Sex Chromosomes in Vertebrates: Six Novel Sex Chromosomes in Basal Haplochromines (Teleostei: Cichlidae). Genome Biol Evol 2024; 16:evae152. [PMID: 39073759 DOI: 10.1093/gbe/evae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
African cichlid fishes are known for their high rates of phenotypic evolution. A rapid rate of diversification is apparent also in the diversity of their sex chromosomes. To date, sex determiners have been identified on 18 of 22 chromosomes in the standard karyotype. Here, we use whole-genome sequencing to characterize the sex chromosomes of seven populations of basal haplochromines, focusing on the genus Pseudocrenilabrus. We identify six new sex chromosome systems, including the first report of a cichlid sex-determining system on linkage group 12. We then quantify the rates and patterns of sex chromosome turnover in this clade. Finally, we test whether some autosomes become sex chromosomes in East African cichlids more often than expected by chance.
Collapse
Affiliation(s)
- Kristen A Behrens
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
6
|
Rancilhac L, Enbody ED, Harris R, Saitoh T, Irestedt M, Liu Y, Lei F, Andersson L, Alström P. Introgression Underlies Phylogenetic Uncertainty But Not Parallel Plumage Evolution in a Recent Songbird Radiation. Syst Biol 2024; 73:12-25. [PMID: 37801684 PMCID: PMC11129591 DOI: 10.1093/sysbio/syad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/08/2023] Open
Abstract
Instances of parallel phenotypic evolution offer great opportunities to understand the evolutionary processes underlying phenotypic changes. However, confirming parallel phenotypic evolution and studying its causes requires a robust phylogenetic framework. One such example is the "black-and-white wagtails," a group of 5 species in the songbird genus Motacilla: 1 species, Motacilla alba, shows wide intra-specific plumage variation, while the 4r others form 2 pairs of very similar-looking species (M. aguimp + M. samveasnae and M. grandis + M. maderaspatensis, respectively). However, the 2 species in each of these pairs were not recovered as sisters in previous phylogenetic inferences. Their relationships varied depending on the markers used, suggesting that gene tree heterogeneity might have hampered accurate phylogenetic inference. Here, we use whole genome resequencing data to explore the phylogenetic relationships within this group, with a special emphasis on characterizing the extent of gene tree heterogeneity and its underlying causes. We first used multispecies coalescent methods to generate a "complete evidence" phylogenetic hypothesis based on genome-wide variants, while accounting for incomplete lineage sorting (ILS) and introgression. We then investigated the variation in phylogenetic signal across the genome to quantify the extent of discordance across genomic regions and test its underlying causes. We found that wagtail genomes are mosaics of regions supporting variable genealogies, because of ILS and inter-specific introgression. The most common topology across the genome, supporting M. alba and M. aguimp as sister species, appears to be influenced by ancient introgression. Additionally, we inferred another ancient introgression event, between M. alba and M. grandis. By combining results from multiple analyses, we propose a phylogenetic network for the black-and-white wagtails that confirms that similar phenotypes evolved in non-sister lineages, supporting parallel plumage evolution. Furthermore, the inferred reticulations do not connect species with similar plumage coloration, suggesting that introgression does not underlie parallel plumage evolution in this group. Our results demonstrate the importance of investing genome-wide patterns of gene tree heterogeneity to help understand the mechanisms underlying phenotypic evolution. [Gene tree heterogeneity; incomplete lineage sorting; introgression; parallel evolution; phylogenomics; plumage evolution; wagtails.].
Collapse
Affiliation(s)
- Loïs Rancilhac
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, 752 36 Uppsala, Sweden
| | - Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Biomolecular Engineering, University of California, 95064 Santa Cruz, CA, USA
| | - Rebecca Harris
- Department of Biology, University of Washington, Seattle, WA 98105, USA
| | - Takema Saitoh
- Yamashina Institute for Ornithology, 115 Konoyama, Abiko, Chiba 270-1145, Japan
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, P.O. Box 50007, 104 05 Stockholm, Sweden
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Per Alström
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, 752 36 Uppsala, Sweden
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
7
|
Rodríguez-Machado S, Elías DJ, McMahan CD, Gruszkiewicz-Tolli A, Piller KR, Chakrabarty P. Disentangling historical relationships within Poeciliidae (Teleostei: Cyprinodontiformes) using ultraconserved elements. Mol Phylogenet Evol 2024; 190:107965. [PMID: 37977500 DOI: 10.1016/j.ympev.2023.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/18/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Poeciliids (Cyprinodontiformes: Poeciliidae), commonly known as livebearers, are popular fishes in the aquarium trade (e.g., guppies, mollies, swordtails) that are widely distributed in the Americas, with 274 valid species in 27 genera. This group has undergone various taxonomic changes recently, spurred by investigations using traditional genetic markers. Here we used over 1,000 ultraconserved loci to infer the relationships within Poeciliidae in the first attempt at understanding their diversification based on genome-scale data. We explore gene tree discordance and investigate potential incongruence between concatenation and coalescent inference methods. Our aim is to examine the influence of incomplete lineage sorting and reticulate evolution on the poeciliids' evolutionary history and how these factors contribute to the observed gene tree discordace. Our concatenated and coalescent phylogenomic inferences recovered four major clades within Poeciliidae. Most supra-generic level relationships we inferred were congruent with previous molecular studies, but we found some disagreements; the Middle American taxa Phallichthys and Poecilia (Mollienesia) were recovered as non-monophyletic, and unlike other recent molecular studies, we recovered Brachyrhaphis as monophyletic. Our study is the first to provide signatures of reticulate evolution in Poeciliidae at the family level; however, continued finer-scale investigations are needed to understand the complex evolutionary history of the family along with a much-needed taxonomic re-evaluation.
Collapse
Affiliation(s)
- Sheila Rodríguez-Machado
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| | - Diego J Elías
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States; Field Museum of Natural History, Chicago, IL 60605, United States
| | - Caleb D McMahan
- Field Museum of Natural History, Chicago, IL 60605, United States
| | - Anna Gruszkiewicz-Tolli
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, United States
| | - Kyle R Piller
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, United States
| | - Prosanta Chakrabarty
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
8
|
Wang J, Tai J, Zhang W, He K, Lan H, Liu H. Comparison of seven complete mitochondrial genomes from Lamprologus and Neolamprologus (Chordata, Teleostei, Perciformes) and the phylogenetic implications for Cichlidae. Zookeys 2023; 1184:115-132. [PMID: 38314327 PMCID: PMC10838552 DOI: 10.3897/zookeys.1184.107091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/27/2023] [Indexed: 02/06/2024] Open
Abstract
In this study, mitochondrial genomes (mitogenomes) of seven cichlid species (Lamprologuskungweensis, L.meleagris, L.ornatipinnis, Neolamprologusbrevis, N.caudopunctatus, N.leleupi, and N.similis) are characterized for the first time. The newly sequenced mitogenomes contained 37 typical genes [13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs) and 22 transfer RNA genes (tRNAs)]. The mitogenomes were 16,562 ~ 16,587 bp in length with an A + T composition of 52.1~58.8%. The cichlid mitogenomes had a comparable nucleotide composition, A + T content was higher than the G + C content. The AT-skews of most mitogenomes were inconspicuously positive and the GC-skews were negative, indicating higher occurrences of C than G. Most PCGs started with the conventional start codon, ATN. There was no essential difference in the codon usage patterns of these seven species. Using Ka/Ks, we found the fastest-evolving gene were atp8. But the results of p-distance indicated that the fastest-evolving gene was nad6. Phylogenetic analysis revealed that L.meleagris did not cluster with Lamprologus species, but with species from the genus Neolamprologus. The novel information obtained about these mitogenomes will contribute to elucidating the complex relationships among cichlid species.
Collapse
Affiliation(s)
- Jiachen Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, ChinaNanjing Forestry UniversityNanjingChina
| | - Jingzhe Tai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, ChinaNanjing Forestry UniversityNanjingChina
| | - Wenwen Zhang
- Institute of Environmental Sciences, Ministry of Ecology and Environment of China State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains Research Center for Biodiversity Conservation and Biosafety, Nanjing 210042, ChinaInstitute of Environmental Sciences, Ministry of Ecology and Environment of China State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains Research Center for Biodiversity Conservation and BiosafetyNanjingChina
| | - Ke He
- Zhejiang Agriculture and Forestry University, Hangzhou 311300, ChinaZhejiang Agriculture and Forestry UniversityHangzhouChina
| | - Hong Lan
- Zhejiang Open University, Hangzhou 310012, ChinaZhejiang Open UniversityHangzhouChina
| | - Hongyi Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
9
|
Nakamura H, Aibara M, Nikaido M. Ancient standing genetic variation facilitated the adaptive radiation of Lake Victoria cichlids. Genes Genet Syst 2023; 98:93-99. [PMID: 37495512 DOI: 10.1266/ggs.23-00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Cichlid fishes are textbook examples of explosive speciation and adaptive radiation, providing a great opportunity to understand how the genomic substrate yields extraordinary species diversity. Recently, we performed comparative genomic analyses of three Lake Victoria cichlids to reveal the genomic substrates underlying their rapid speciation and adaptation. We found that long divergent haplotypes derived from large-scale standing genetic variation, which originated before the adaptive radiation of Lake Victoria cichlids, may have contributed to their rapid diversification. In addition, the present study on genomic data from other East African cichlids suggested the reuse of alleles that may have originated in the ancestral lineages of Lake Tanganyika cichlids during cichlid evolution. Therefore, our results highlight that the primary factor that could drive repeated adaptive radiation across East African cichlids was allelic reuse from standing genetic variation to adapt to their own specific environment. In this report, we summarize the main results and discuss the evolutionary mechanisms of cichlids, based on our latest findings.
Collapse
Affiliation(s)
- Haruna Nakamura
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies
| | - Mitsuto Aibara
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
10
|
Kundu S, De Alwis PS, Kim AR, Lee SR, Kang HE, Go Y, Gietbong FZ, Wibowo A, Kim HW. Mitogenomic Characterization of Cameroonian Endemic Coptodon camerunensis (Cichliformes: Cichlidae) and Matrilineal Phylogeny of Old-World Cichlids. Genes (Basel) 2023; 14:1591. [PMID: 37628642 PMCID: PMC10454717 DOI: 10.3390/genes14081591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The mitogenomic evolution of old-world cichlids is still largely incomplete in Western Africa. In this present study, the complete mitogenome of the Cameroon endemic cichlid, Coptodon camerunensis, was determined by next-generation sequencing. The mitogenome was 16,557 bp long and encoded with 37 genes (13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a control region). The C. camerunensis mitogenome is AT-biased (52.63%), as exhibited in its congener, Coptodon zillii (52.76% and 53.04%). The majority of PCGs start with an ATG initiation codon, except COI, which starts with a GTG codon and five PCGs and ends with the TAA termination codon and except seven PCGs with an incomplete termination codon. In C. camerunensis mitogenome, most tRNAs showed classical cloverleaf secondary structures, except tRNA-serine with a lack of DHU stem. Comparative analyses of the conserved blocks of two Coptodonini species control regions revealed that the CSB-II block was longer than other blocks and contained highly variable sites. Using 13 concatenated PCGs, the mitogenome-based Bayesian phylogeny easily distinguished all the examined old-world cichlids. Except for Oreochromini and Coptodinini tribe members, the majority of the taxa exhibited monophyletic clustering within their respective lineages. C. camerunensis clustered closely with Heterotilapia buttikoferi (tribe Heterotilapiini) and had paraphyletic clustering with its congener, C. zillii. The Oreochromini species also displayed paraphyletic grouping, and the genus Oreochromis showed a close relationship with Coptodinini and Heterotilapiini species. In addition, illustrating the known distribution patterns of old-world cichlids, the present study is congruent with the previous hypothesis and proclaims that prehistoric geological evolution plays a key role in the hydroclimate of the African continent during Mesozoic, which simultaneously disperses and/or colonizes cichlids in different ichthyological provinces and Rift Lake systems in Africa. The present study suggests that further mitogenomes of cichlid species are required, especially from western Africa, to understand their unique evolution and adaptation.
Collapse
Affiliation(s)
- Shantanu Kundu
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea; (S.K.); (P.S.D.A.)
| | - Piyumi S. De Alwis
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea; (S.K.); (P.S.D.A.)
| | - Ah Ran Kim
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| | - Soo Rin Lee
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| | - Hye-Eun Kang
- Institute of Marine Life Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Yunji Go
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea;
| | | | - Arif Wibowo
- Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia;
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea; (S.K.); (P.S.D.A.)
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| |
Collapse
|