1
|
Lopes EP, Santos S, Xavier R, Santos JL, Cabezas MP, Sequeira F, Santos AM. Genetic analysis of Pinna rudis L 1758 (Mollusca, Bivalvia, Pinnidae) in the Northwest Cabo Verde Islands (Central-East Atlantic). PeerJ 2025; 13:e18328. [PMID: 39802188 PMCID: PMC11724654 DOI: 10.7717/peerj.18328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/25/2024] [Indexed: 01/16/2025] Open
Abstract
The rough pen shell Pinna rudis Linnaeus, 1758 (family Pinnidae) is a mollusc with an Atlantic-Mediterranean distribution, typically inhabiting coarse sandy substrates. Habitat degradation is considered the primary cause of population decline, leading to the designation 'Vulnerable' in certain regions. In this study, we conducted a genetic analysis of populations of P. rudis from Cabo Verde and compared them with populations from the Mediterranean and Macaronesia. We based our analysis on two mitochondrial DNA markers, cytochrome oxidase I (COI) and 16S rRNA, and one nuclear marker, 28S rRNA. The results showed a strong genetic structuring among Macaronesia populations, with each island tending to have unique or exclusive haplotypes, though some sharing occurred between islands. We found significant genetic divergence between the population from Cabo Verde and the other sampled population, suggesting that P. rudis is not monotypic, but may include several cryptic species. Bayesian and maximum-likelihood phylogenetic analysis, including all Pinnidae species, indicated that P. rudis from Gorée Island (Senegal) and Baía das Gatas (São Vicente Island) might be undergoing speciation. The high genetic structure found for P. rudis could be influenced by hydrodynamic barriers, local currents and hydrographic isolation, in association with the short larval duration (planktotrophic) reported for this species. Altogether, our findings highlight significant genetic divergence in P. rudis populations, possibly supporting speciation events in the Cabo Verde archipelago among widely distributed taxonomic groups.
Collapse
MESH Headings
- Bivalvia/classification
- Bivalvia/genetics
- DNA, Mitochondrial/analysis
- DNA, Mitochondrial/genetics
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 28S/analysis
- RNA, Ribosomal, 28S/genetics
- Phylogeny
- Genetic Speciation
- Cabo Verde
- Electron Transport Complex IV/genetics
- Conservation of Natural Resources
- Endangered Species
- Aquatic Organisms/classification
- Aquatic Organisms/genetics
- Haplotypes
- Animals
Collapse
Affiliation(s)
- Evandro P. Lopes
- Instituto de Engenharias e Ciências do Mar, Universidade Técnica do Atlântico, Mindelo, São Vicente, Cabo Verde
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Universidade do Porto, Campus de Vairão, Porto, Portugal
| | - Sarah Santos
- Instituto de Engenharias e Ciências do Mar, Universidade Técnica do Atlântico, Mindelo, São Vicente, Cabo Verde
| | - Raquel Xavier
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Universidade do Porto, Campus de Vairão, Porto, Portugal
| | - Joana L. Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Universidade do Porto, Campus de Vairão, Porto, Portugal
| | - M. Pilar Cabezas
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Fernando Sequeira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Universidade do Porto, Campus de Vairão, Porto, Portugal
| | - António M. Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Universidade do Porto, Campus de Vairão, Porto, Portugal
| |
Collapse
|
2
|
Sinigaglia L, Baptista L, Alves C, Feldmann F, Sacchetti C, Rupprecht C, Vijayan T, Martín-González E, Ávila SP, Santos AM, Curto M, Meimberg H. Oceanic islands act as drivers for the genetic diversity of marine species: Cardita calyculata (Linnaeus, 1758) in the NE Atlantic as a case-study. BMC Ecol Evol 2024; 24:138. [PMID: 39511495 PMCID: PMC11542354 DOI: 10.1186/s12862-024-02322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Geographic distribution, as well as evolutionary and biogeographic processes and patterns of marine invertebrate benthic species are strongly shaped by dispersal ability during the life cycle. Remote oceanic islands lie at the brink of complex biotic and abiotic interactions which have significantly influenced the biodiversity patterns we see today. The interaction between geological environmental change and taxon-specific dispersal modes can influence species evolutionary patterns, eventually delimiting species-specific biogeographic regions. In this study, we compare the population genetic patterns of the marine bivalve Cardita calyculata in the northeast Atlantic, discussing the role of Macaronesian islands during past climatic cycles. The genetic structure and diversity patterns were outlined based on SSR-GBAS loci of 165 individuals and on the mitochondrial COI marker of 22 individuals from the Canary Islands, Madeira, Azores and the Mediterranean. The highly structured genetic pattern found among regions and within archipelagos suggests the central role of oceanic islands in promoting the divergence of the species in both the NE Atlantic and the Mediterranean. The high degree of divergence in the COI dataset (> 7%) suggests the existence of potential cryptic speciation that needs to be further explored with a more comprehensive sampling. Such patterns are only congruent with a scenario where C. calyculata populations were maintained during glacial/interglacial cycles, supporting the role of the studied archipelagos as drivers of diversity for marine biota. We stress the importance of developing studies for species with various life history and dispersal modes. In such a way, a more profound understanding of the biogeographic and evolutionary significance of oceanic islands can catalyse directed conservation efforts, especially in the context of the ongoing climate crisis.
Collapse
Grants
- PRT/BD/151539/2021 Fundação para a Ciência e Tecnologia, IP
- UIDB/50027/2020, POCI-01-0145-FEDER-006821, UIDB/00153/2020, LA/P/0048/2020 FEDER funds, through the Operational Program for Competitiveness Factors - COMPETE, FCT
- UIDB/50027/2020, POCI-01-0145-FEDER-006821, UIDB/00153/2020, LA/P/0048/2020 FEDER funds, through the Operational Program for Competitiveness Factors - COMPETE, FCT
- M1.1.a/005/Funcionamento-C-/2016, CIBIO-A; M3.3. B/ORG.R.C./005/2021 Regional Government of the Azores
- M1.1.a/005/Funcionamento-C-/2016, CIBIO-A; M3.3. B/ORG.R.C./005/2021 Regional Government of the Azores
- ProID2017010159 Research, Innovation and Information Society (ACIISI)
- FCT/2023.07418 Fundação para a Ciência e Tecnologia
- FEDER funds, through the Operational Program for Competitiveness Factors – COMPETE, FCT
Collapse
Affiliation(s)
- Livia Sinigaglia
- Institute of Integrative Nature Conservation Research, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada, Azores, 9501-801, Portugal.
- MPB-Marine Palaeontology and Biogeography Lab, University of the Azores, Rua da Mãe de Deus, Ponta Delgada, Azores, 9501-801, Portugal.
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 1021/1055, Porto, 4169-007, Portugal.
| | - L Baptista
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada, Azores, 9501-801, Portugal
- MPB-Marine Palaeontology and Biogeography Lab, University of the Azores, Rua da Mãe de Deus, Ponta Delgada, Azores, 9501-801, Portugal
- NIOZ Royal Netherlands Institute for Sea Research, Landsdiep 4 1797 SZ 't Horntje, Texel, Netherlands
| | - C Alves
- Institute of Integrative Nature Conservation Research, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada, Azores, 9501-801, Portugal
- MPB-Marine Palaeontology and Biogeography Lab, University of the Azores, Rua da Mãe de Deus, Ponta Delgada, Azores, 9501-801, Portugal
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 1021/1055, Porto, 4169-007, Portugal
| | - F Feldmann
- Institute of Integrative Nature Conservation Research, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada, Azores, 9501-801, Portugal
- MPB-Marine Palaeontology and Biogeography Lab, University of the Azores, Rua da Mãe de Deus, Ponta Delgada, Azores, 9501-801, Portugal
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 1021/1055, Porto, 4169-007, Portugal
| | - C Sacchetti
- MPB-Marine Palaeontology and Biogeography Lab, University of the Azores, Rua da Mãe de Deus, Ponta Delgada, Azores, 9501-801, Portugal
| | - C Rupprecht
- Institute of Integrative Nature Conservation Research, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - T Vijayan
- Institute of Integrative Nature Conservation Research, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - E Martín-González
- Museo de Ciencias Naturales de Tenerife, Organismo Autónomo de Museos y Centros, C/ Fuente Morales, 1, 38003, Santa Cruz de Tenerife, Canary Islands, Spain
| | - S P Ávila
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada, Azores, 9501-801, Portugal
- MPB-Marine Palaeontology and Biogeography Lab, University of the Azores, Rua da Mãe de Deus, Ponta Delgada, Azores, 9501-801, Portugal
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 1021/1055, Porto, 4169-007, Portugal
- Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Azores, 9501-801, Portugal
| | - A M Santos
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 1021/1055, Porto, 4169-007, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, no. 7, Vairão, 4485-661, Portugal
| | - M Curto
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, no. 7, Vairão, 4485-661, Portugal
| | - H Meimberg
- Institute of Integrative Nature Conservation Research, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
3
|
Zaharias P, Kantor YI, Fedosov AE, Puillandre N. Coupling DNA barcodes and exon-capture to resolve the phylogeny of Turridae (Gastropoda, Conoidea). Mol Phylogenet Evol 2024; 191:107969. [PMID: 38007006 DOI: 10.1016/j.ympev.2023.107969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Taxon sampling in most phylogenomic studies is often based on known taxa and/or morphospecies, thus ignoring undescribed diversity and/or cryptic lineages. The family Turridae is a group of venomous snails within the hyperdiverse superfamily Conoidea that includes many undescribed and cryptic species. Therefore 'traditional' taxon sampling could constitute a strong risk of undersampling or oversampling Turridae lineages. To minimize potential biases, we establish a robust sampling strategy, from species delimitation to phylogenomics. More than 3,000 cox-1 "barcode" sequences were used to propose 201 primary species hypotheses, nearly half of them corresponding to species potentially new to science, including several cryptic species. A 110-taxa exon-capture tree, including species representatives of the diversity uncovered with the cox-1 dataset, was build using up to 4,178 loci. Our results show the polyphyly of the genus Gemmula, that is split into up to 10 separate lineages, of which half would not have been detected if the sampling strategy was based only on described species. Our results strongly suggest that the use of blind, exploratory and intensive barcode sampling is necessary to avoid sampling biases in phylogenomic studies.
Collapse
Affiliation(s)
- Paul Zaharias
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 43 rue Cuvier, CP 51, 75005 Paris, France.
| | - Yuri I Kantor
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 43 rue Cuvier, CP 51, 75005 Paris, France; A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninski prospect 33, 119071 Moscow, Russian Federation
| | - Alexander E Fedosov
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 43 rue Cuvier, CP 51, 75005 Paris, France; Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
| | - Nicolas Puillandre
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 43 rue Cuvier, CP 51, 75005 Paris, France
| |
Collapse
|
4
|
Vieira PE, Lavrador AS, Parente MI, Parretti P, Costa AC, Costa FO, Duarte S. Gaps in DNA sequence libraries for Macaronesian marine macroinvertebrates imply decades till completion and robust monitoring. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Pedro E. Vieira
- Centre of Molecular and Environmental Biology (CBMA) Department of Biology University of Minho Braga Portugal
- Institute of Science and Innovation for Bio‐Sustainability (IB‐S) University of Minho Braga Portugal
| | - Ana S. Lavrador
- Centre of Molecular and Environmental Biology (CBMA) Department of Biology University of Minho Braga Portugal
- Institute of Science and Innovation for Bio‐Sustainability (IB‐S) University of Minho Braga Portugal
| | - Manuela I. Parente
- CIBIO Research Centre in Biodiversity and Genetic Resources InBIO Associate Laboratory University of Azores Ponta Delgada Portugal
| | - Paola Parretti
- CIBIO Research Centre in Biodiversity and Genetic Resources InBIO Associate Laboratory University of Azores Ponta Delgada Portugal
- MARE – Marine and Environmental Sciences Centre Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI) Edifício Madeira Tecnopolo Funchal Portugal
| | - Ana C. Costa
- CIBIO Research Centre in Biodiversity and Genetic Resources InBIO Associate Laboratory University of Azores Ponta Delgada Portugal
| | - Filipe O. Costa
- Centre of Molecular and Environmental Biology (CBMA) Department of Biology University of Minho Braga Portugal
- Institute of Science and Innovation for Bio‐Sustainability (IB‐S) University of Minho Braga Portugal
| | - Sofia Duarte
- Centre of Molecular and Environmental Biology (CBMA) Department of Biology University of Minho Braga Portugal
- Institute of Science and Innovation for Bio‐Sustainability (IB‐S) University of Minho Braga Portugal
| |
Collapse
|
5
|
Restructuring of the 'Macaronesia' biogeographic unit: A marine multi-taxon biogeographical approach. Sci Rep 2019; 9:15792. [PMID: 31690834 PMCID: PMC6831653 DOI: 10.1038/s41598-019-51786-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/03/2019] [Indexed: 01/10/2023] Open
Abstract
The Azores, Madeira, Selvagens, Canary Islands and Cabo Verde are commonly united under the term “Macaronesia”. This study investigates the coherency and validity of Macaronesia as a biogeographic unit using six marine groups with very different dispersal abilities: coastal fishes, echinoderms, gastropod molluscs, brachyuran decapod crustaceans, polychaete annelids, and macroalgae. We found no support for the current concept of Macaronesia as a coherent marine biogeographic unit. All marine groups studied suggest the exclusion of Cabo Verde from the remaining Macaronesian archipelagos and thus, Cabo Verde should be given the status of a biogeographic subprovince within the West African Transition province. We propose to redefine the Lusitanian biogeographical province, in which we include four ecoregions: the South European Atlantic Shelf, the Saharan Upwelling, the Azores, and a new ecoregion herein named Webbnesia, which comprises the archipelagos of Madeira, Selvagens and the Canary Islands.
Collapse
|
6
|
Vieira PE, Desiderato A, Holdich DM, Soares P, Creer S, Carvalho GR, Costa FO, Queiroga H. Deep segregation in the open ocean: Macaronesia as an evolutionary hotspot for low dispersal marine invertebrates. Mol Ecol 2019; 28:1784-1800. [DOI: 10.1111/mec.15052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Pedro E. Vieira
- Departamento de Biologia and CESAM — Centro de Estudos do Ambiente e do Mar Universidade de Aveiro Aveiro Portugal
- Departamento de Biologia, CBMA — Centro de Biologia Molecular e Ambiental Universidade do Minho Braga Portugal
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences Bangor University Bangor UK
| | - Andrea Desiderato
- Programa de Pós‐graduação em Zoologia (PGZOO) Universidade Federal do Paraná Curitiba Brazil
- Department of Functional Ecology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
| | | | - Pedro Soares
- Departamento de Biologia, CBMA — Centro de Biologia Molecular e Ambiental Universidade do Minho Braga Portugal
- Institute of Science and Innovation for Bio‐Sustainability (IB‐S) University of Minho Braga Portugal
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences Bangor University Bangor UK
| | - Gary R. Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences Bangor University Bangor UK
| | - Filipe O. Costa
- Departamento de Biologia, CBMA — Centro de Biologia Molecular e Ambiental Universidade do Minho Braga Portugal
- Institute of Science and Innovation for Bio‐Sustainability (IB‐S) University of Minho Braga Portugal
| | - Henrique Queiroga
- Departamento de Biologia and CESAM — Centro de Estudos do Ambiente e do Mar Universidade de Aveiro Aveiro Portugal
| |
Collapse
|
7
|
Ávila SP, Melo C, Berning B, Sá N, Quartau R, Rijsdijk KF, Ramalho RS, Cordeiro R, De Sá NC, Pimentel A, Baptista L, Medeiros A, Gil A, Johnson ME. Towards a 'Sea-Level Sensitive' dynamic model: impact of island ontogeny and glacio-eustasy on global patterns of marine island biogeography. Biol Rev Camb Philos Soc 2019; 94:1116-1142. [PMID: 30609249 DOI: 10.1111/brv.12492] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/04/2023]
Abstract
A synthetic model is presented to enlarge the evolutionary framework of the General Dynamic Model (GDM) and the Glacial Sensitive Model (GSM) of oceanic island biogeography from the terrestrial to the marine realm. The proposed 'Sea-Level Sensitive' dynamic model (SLS) of marine island biogeography integrates historical and ecological biogeography with patterns of glacio-eustasy, merging concepts from areas as diverse as taxonomy, biogeography, marine biology, volcanology, sedimentology, stratigraphy, palaeontology, geochronology and geomorphology. Fundamental to the SLS model is the dynamic variation of the littoral area of volcanic oceanic islands (defined as the area between the intertidal and the 50-m isobath) in response to sea-level oscillations driven by glacial-interglacial cycles. The following questions are considered by means of this revision: (i) what was the impact of (global) glacio-eustatic sea-level oscillations, particularly those of the Pleistocene glacial-interglacial episodes, on the littoral marine fauna and flora of volcanic oceanic islands? (ii) What are the main factors that explain the present littoral marine biodiversity on volcanic oceanic islands? (iii) How can differences in historical and ecological biogeography be reconciled, from a marine point of view? These questions are addressed by compiling the bathymetry of 11 Atlantic archipelagos/islands to obtain quantitative data regarding changes in the littoral area based on Pleistocene sea-level oscillations, from 150 thousand years ago (ka) to the present. Within the framework of a model sensitive to changing sea levels, we discuss the principal factors affecting the geographical range of marine species; the relationships between modes of larval development, dispersal strategies and geographical range; the relationships between times of speciation, modes of larval development, ecological zonation and geographical range; the influence of sea-surface temperatures and latitude on littoral marine species diversity; the effect of eustatic sea-level changes and their impact on the littoral marine biota; island marine species-area relationships; and finally, the physical effects of island ontogeny and its associated submarine topography and marine substrate on littoral biota. Based on the SLS dynamic model, we offer a number of predictions for tropical, subtropical and temperate volcanic oceanic islands on how rates of immigration, colonization, in-situ speciation, local disappearance, and extinction interact and affect the marine biodiversity around islands during glacials and interglacials, thus allowing future testing of the theory.
Collapse
Affiliation(s)
- Sérgio P Ávila
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada 9501-801, Portugal.,Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada 9501-801, Portugal.,MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, Ponta Delgada 9501-801, Portugal
| | - Carlos Melo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada 9501-801, Portugal.,MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, Ponta Delgada 9501-801, Portugal.,Departamento de Geologia, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal
| | - Björn Berning
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada 9501-801, Portugal.,Oberösterreichisches Landesmuseum, Geowissenschaftliche Sammlungen, Leonding 4060, Austria
| | - Nuno Sá
- Departamento de Ciências Tecnológicas e do Desenvolvimento, Faculdade de Ciências da Universidade dos Açores, Ponta Delgada 9501-801, Portugal
| | - Rui Quartau
- Instituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.,Divisão de Geologia Marinha, Instituto Hidrográfico, Lisboa, Portugal
| | - Kenneth F Rijsdijk
- Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem, University of Amsterdam, Amsterdam 1098, The Netherlands
| | - Ricardo S Ramalho
- Departamento de Geologia, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal.,Instituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.,School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K
| | - Ricardo Cordeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada 9501-801, Portugal.,Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada 9501-801, Portugal.,MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, Ponta Delgada 9501-801, Portugal
| | - Nuno C De Sá
- Institute of Environmental Sciences, Leiden University, Leiden, 2300, The Netherlands
| | - Adriano Pimentel
- Centro de Informação e Vigilância Sismovulcânica dos Açores, Rua Mãe de Deus, Ponta Delgada, 9501-801, Portugal.,Instituto de Investigação em Vulcanologia e Avaliação de Riscos, University of the Azores, Ponta Delgada, 9501-801, Portugal
| | - Lara Baptista
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada 9501-801, Portugal.,MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, Ponta Delgada 9501-801, Portugal
| | - António Medeiros
- Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada 9501-801, Portugal
| | - Artur Gil
- Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada 9501-801, Portugal.,Ce3C - Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, University of the Azores, Ponta Delgada, 9501-801, Portugal
| | - Markes E Johnson
- Department of Geosciences, Williams College, Williamstown, MA 01267, U.S.A
| |
Collapse
|
8
|
Evolutionary lineages of marine snails identified using molecular phylogenetics and geometric morphometric analysis of shells. Mol Phylogenet Evol 2018; 127:626-637. [PMID: 29913310 DOI: 10.1016/j.ympev.2018.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 01/12/2023]
Abstract
The relationship between morphology and inheritance is of perennial interest in evolutionary biology and palaeontology. Using three marine snail genera Penion, Antarctoneptunea and Kelletia, we investigate whether systematics based on shell morphology accurately reflect evolutionary lineages indicated by molecular phylogenetics. Members of these gastropod genera have been a taxonomic challenge due to substantial variation in shell morphology, conservative radular and soft tissue morphology, few known ecological differences, and geographical overlap between numerous species. Sampling all sixteen putative taxa identified across the three genera, we infer mitochondrial and nuclear ribosomal DNA phylogenetic relationships within the group, and compare this to variation in adult shell shape and size. Results of phylogenetic analysis indicate that each genus is monophyletic, although the status of some phylogenetically derived and likely more recently evolved taxa within Penion is uncertain. The recently described species P. lineatus is supported by genetic evidence. Morphology, captured using geometric morphometric analysis, distinguishes the genera and matches the molecular phylogeny, although using the same dataset, species and phylogenetic subclades are not identified with high accuracy. Overall, despite abundant variation, we find that shell morphology accurately reflects genus-level classification and the corresponding deep phylogenetic splits identified in this group of marine snails.
Collapse
|
9
|
Ávila SP, Cordeiro R, Madeira P, Silva L, Medeiros A, Rebelo AC, Melo C, Neto AI, Haroun R, Monteiro A, Rijsdijk K, Johnson ME. Global change impacts on large-scale biogeographic patterns of marine organisms on Atlantic oceanic islands. MARINE POLLUTION BULLETIN 2018; 126:101-112. [PMID: 29421076 DOI: 10.1016/j.marpolbul.2017.10.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/27/2017] [Accepted: 10/30/2017] [Indexed: 06/08/2023]
Abstract
Past climate changes provide important clues for advancement of studies on current global change biology. We have tested large-scale biogeographic patterns through four marine groups from twelve Atlantic Ocean archipelagos and searched for patterns between species richness/endemism and littoral area, age, isolation, latitude and mean annual sea-surface temperatures. Species richness is strongly correlated with littoral area. Two reinforcing effects take place during glacial episodes: i) species richness is expected to decrease (in comparison with interglacial periods) due to the local disappearance of sandy/muddy-associated species; ii) because littoral area is minimal during glacial episodes, area per se induces a decrease on species richness (by extirpation/extinction of marine species) as well as affecting speciation rates. Maximum speciation rates are expected to occur during the interglacial periods, whereas immigration rates are expected to be higher at the LGM. Finally, sea-level changes are a paramount factor influencing marine biodiversity of animals and plants living on oceanic islands.
Collapse
Affiliation(s)
- Sérgio P Ávila
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Azores, Portugal; Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9501-801 Ponta Delgada, Açores, Portugal; MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, 9501-801 Ponta Delgada, Açores, Portugal.
| | - Ricardo Cordeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Azores, Portugal; Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9501-801 Ponta Delgada, Açores, Portugal; MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, 9501-801 Ponta Delgada, Açores, Portugal
| | - Patrícia Madeira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Azores, Portugal; Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9501-801 Ponta Delgada, Açores, Portugal; MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, 9501-801 Ponta Delgada, Açores, Portugal
| | - Luís Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Azores, Portugal; Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9501-801 Ponta Delgada, Açores, Portugal
| | - António Medeiros
- Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9501-801 Ponta Delgada, Açores, Portugal
| | - Ana C Rebelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Azores, Portugal; Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9501-801 Ponta Delgada, Açores, Portugal; MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, 9501-801 Ponta Delgada, Açores, Portugal
| | - Carlos Melo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Azores, Portugal; MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, 9501-801 Ponta Delgada, Açores, Portugal; Departamento de Geologia, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana I Neto
- Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9501-801 Ponta Delgada, Açores, Portugal; Grupo de Investigação em Ecologia Aquática de Sistemas Insulares do Grupo de Biodiversidade dos Açores, cE3c - Centro de Ecologia, Evolução e Alterações Ambientais, Universidade dos Açores, Departamento de Biologia, 9501-801 Ponta Delgada, São Miguel, Açores, Portugal
| | - Ricardo Haroun
- Biodiversity and Conservation Research Group, IU-ECOAQUA, Scientific & Technological Marine Park, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain
| | | | - Kenneth Rijsdijk
- Theoretical and Computation Ecology, Institute for Biodiversity and Ecosystem Dynamics & Institute for Interdisciplinary Studies, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
| | - Markes E Johnson
- Department of Geosciences, Williams College, Williamstown, MA 01267, USA
| |
Collapse
|
10
|
Abalde S, Tenorio MJ, Afonso CML, Uribe JE, Echeverry AM, Zardoya R. Phylogenetic relationships of cone snails endemic to Cabo Verde based on mitochondrial genomes. BMC Evol Biol 2017; 17:231. [PMID: 29178825 PMCID: PMC5702168 DOI: 10.1186/s12862-017-1069-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/06/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Due to their great species and ecological diversity as well as their capacity to produce hundreds of different toxins, cone snails are of interest to evolutionary biologists, pharmacologists and amateur naturalists alike. Taxonomic identification of cone snails still relies mostly on the shape, color, and banding patterns of the shell. However, these phenotypic traits are prone to homoplasy. Therefore, the consistent use of genetic data for species delimitation and phylogenetic inference in this apparently hyperdiverse group is largely wanting. Here, we reconstruct the phylogeny of the cones endemic to Cabo Verde archipelago, a well-known radiation of the group, using mitochondrial (mt) genomes. RESULTS The reconstructed phylogeny grouped the analyzed species into two main clades, one including Kalloconus from West Africa sister to Trovaoconus from Cabo Verde and the other with a paraphyletic Lautoconus due to the sister group relationship of Africonus from Cabo Verde and Lautoconus ventricosus from Mediterranean Sea and neighboring Atlantic Ocean to the exclusion of Lautoconus endemic to Senegal (plus Lautoconus guanche from Mauritania, Morocco, and Canary Islands). Within Trovaoconus, up to three main lineages could be distinguished. The clade of Africonus included four main lineages (named I to IV), each further subdivided into two monophyletic groups. The reconstructed phylogeny allowed inferring the evolution of the radula in the studied lineages as well as biogeographic patterns. The number of cone species endemic to Cabo Verde was revised under the light of sequence divergence data and the inferred phylogenetic relationships. CONCLUSIONS The sequence divergence between continental members of the genus Kalloconus and island endemics ascribed to the genus Trovaoconus is low, prompting for synonymization of the latter. The genus Lautoconus is paraphyletic. Lautoconus ventricosus is the closest living sister group of genus Africonus. Diversification of Africonus was in allopatry due to the direct development nature of their larvae and mainly triggered by eustatic sea level changes during the Miocene-Pliocene. Our study confirms the diversity of cone endemic to Cabo Verde but significantly reduces the number of valid species. Applying a sequence divergence threshold, the number of valid species within the sampled Africonus is reduced to half.
Collapse
Affiliation(s)
- Samuel Abalde
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Manuel J Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Carlos M L Afonso
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005 - 139, Faro, Portugal
| | - Juan E Uribe
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Ana M Echeverry
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Rafael Zardoya
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
11
|
Abalde S, Tenorio MJ, Afonso CML, Zardoya R. Mitogenomic phylogeny of cone snails endemic to Senegal. Mol Phylogenet Evol 2017; 112:79-87. [PMID: 28450228 DOI: 10.1016/j.ympev.2017.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 01/11/2023]
Abstract
Cone snails attain in Senegal one of their highest peaks of species diversity throughout the continental coast of Western Africa. A total of 15 endemic species have been described, all placed in the genus Lautoconus. While there is ample data regarding the morphology of the shell and the radular tooth of these species, virtually nothing is known regarding the genetic diversity and phylogenetic relationships of one of the most endangered groups of cones. In this work, we determined the complete or near-complete (only lacking the control region) mitochondrial (mt) genomes of 17 specimens representing 11 endemic species (Lautoconus belairensis, Lautoconus bruguieresi, Lautoconus cacao, Lautoconus cloveri, Lautoconus cf. echinophilus, Lautoconus guinaicus, Lautoconus hybridus, Lautoconus senegalensis, Lautoconus mercator, Lautoconus taslei, and Lautoconus unifasciatus). We also sequenced the complete mt genome of Lautoconus guanche from the Canary Islands, which has been related to the cones endemic to Senegal. All mt genomes share the same gene arrangement, which conforms to the consensus reported for Conidae, Neogastropoda and Caenogastropoda. Phylogenetic analyses using probabilistic methods recovered three major lineages, whose divergence coincided in time with sea level and ocean current changes as well as temperature fluctuations during the Messinian salinity crisis and the Plio-Pleistocene transition. Furthermore, the three lineages corresponded to distinct types of radular tooth (robust, small, and elongated), suggesting that dietary specialization could be an additional evolutionary driver in the diversification of the cones endemic to Senegal. The reconstructed phylogeny showed several cases of phenotypic convergence (cryptic species) and questions the validity of some species (ecotypes or phenotypic plasticity), both results having important taxonomic and conservation consequences.
Collapse
Affiliation(s)
- Samuel Abalde
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Manuel J Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Carlos M L Afonso
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Rafael Zardoya
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain.
| |
Collapse
|
12
|
Drivers of Cape Verde archipelagic endemism in keyhole limpets. Sci Rep 2017; 7:41817. [PMID: 28150720 PMCID: PMC5288781 DOI: 10.1038/srep41817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/30/2016] [Indexed: 11/21/2022] Open
Abstract
Oceanic archipelagos are the ideal setting for investigating processes that shape species assemblages. Focusing on keyhole limpets, genera Fissurella and Diodora from Cape Verde Islands, we used an integrative approach combining molecular phylogenetics with ocean transport simulations to infer species distribution patterns and analyse connectivity. Dispersal simulations, using pelagic larval duration and ocean currents as proxies, showed a reduced level of connectivity despite short distances between some of the islands. It is suggested that dispersal and persistence driven by patterns of oceanic circulation favouring self-recruitment played a primary role in explaining contemporary species distributions. Mitochondrial and nuclear data revealed the existence of eight Cape Verde endemic lineages, seven within Fissurella, distributed across the archipelago, and one within Diodora restricted to Boavista. The estimated origins for endemic Fissurella and Diodora were 10.2 and 6.7 MY, respectively. Between 9.5 and 4.5 MY, an intense period of volcanism in Boavista might have affected Diodora, preventing its diversification. Having originated earlier, Fissurella might have had more opportunities to disperse to other islands and speciate before those events. Bayesian analyses showed increased diversification rates in Fissurella possibly promoted by low sea levels during Plio-Pleistocene, which further explain differences in species richness between both genera.
Collapse
|
13
|
|